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We analyze the couplings between spins and phonons in graphene. We present a complete analysis
of the possible couplings between spins and flexural, out of plane, vibrations. From tight-binding
models we obtain analytical and numerical estimates of their strength. We show that dynamical
effects, induced by quantum and thermal fluctuations, significantly enhance the spin-orbit gap.

PACS numbers:

I. INTRODUCTION

Graphene combines in an unique way structural and
electronic properties not found in other materials1,2. Its
special electronic structure made graphene the initial
model for a two dimensional topological insulator.3–5 Nu-
merical calculations suggested that the gap which is the
hallmark of a topological insulator is in the micro Kelvin
range, too small to be experimentally observed.6–9 Re-
cently, different approaches based on heavy adatoms de-
position have been proposed in order to engineer a topo-
logical state.10,11 Experimentally, these proposals are dif-
ficult to be implemented, since the presence of adatoms
implies a z → −z (mirror) symmetry breaking which in-
duces a Rashba-like SO coupling.12 These calculations
are also the main guide for the interpretation of spin
transport experiments. The calculations assumed lattice
made up of ions of infinite mass, and ignored the lattice
degrees of freedom.

In the present work, we analyze the coupling of spins
to lattice vibrations in graphene, with emphasis on flex-
ural modes, which are unique to a two dimensional mem-
brane, and have lower frequencies than conventional in-
plane phonons. Flexural phonons have a great impact
on the SOC since out-of-plane distortions of the lattice
hybridize π orbitals with higher orbitals of carbon, lead-
ing to a first order contribution in the spin-orbit inter-
action strength, contrary to in-plane distortions, whose
contribution is at least quadratic, as it happens with the
intrinsic SOC.6,8 The main results of our paper are: i)
A complete characterization of all possible couplings to
flexural modes, including analytical expressions for each
of them, and ii) An analysis of the effect of dynamic flex-
ural modes on the Kane-Mele spin-orbit coupling, which
defines the range of parameters where the topological in-
sulator features of graphene can be observed. This anal-
ysis is relevant in order to study the effect of ripples in
spin transport.13 Our analysis is also applicable to carbon
nanotubes,14 an issue that has become more interesting
since carbon nanotubes have been recently proposed as
a possible platform for hosting Majorana fermions.15,16

We first present a symmetry analysis of the possible

couplings between spins and lattice vibrations. This
study can also be applied to static out of plane defor-
mations. Next, in Section III, we make numerical es-
timates of the couplings, based on simple tight binding
models. Section IV discusses the change induced in the
spin-orbit couplings due to the presence of lattice excita-
tions, due to quantum and thermal fluctuation. Finally,
Section V contains a summary of the more relevant re-
sults. A number of mathematical details are included in
the Appendices.

II. SYMMETRY ANALYSIS AND COUPLINGS

The low energy sector of the electronic spectrum lies
on the two inequivalent corners of the Brillouin zone K±,
known as valleys or Dirac points. In our convention
K± = ±

(
4π/(3

√
3a), 0

)
, where a is the carbon-carbon

distance, see Fig. 1. The electronic Hamiltonian reads:

H = −ivF ~Σ · ~∂ + ∆IΣz ⊗ sz + ∆R (Σx ⊗ sy − Σy ⊗ sx)
(1)

where ~Σ = (Σx,Σy) and Σz are 4×4 matrices associated
to the sublattice degree of freedom. This Hamiltonian
operate in a space of 8-component Bloch functions Ψ =
(ψA,K+,↑, ψB,K+,↑, ψB,K−,↑,−ψA,K−,↑, ψA,K+,↓, ψB,K+,↓,

ψB,K−,↓,−ψA,K−,↓)T . The first term corresponds to
the massless Dirac Hamiltonian, the second term is the
Kane-Mele mass which arises due to the SO interaction,
and the last one is a Rashba-like coupling which is
present in the case of a mirror symmetry breaking. Both
∆I and ∆R are weak, 1 − 15 µeV in the former case
according to previous estimates.6,8,9

We analyze first the SO-coupling assisted electron in-
teraction with flexural phonons from a symmetry group
theory approach.17 Before we present the exhaustive
analysis, we disclose the results in the following lines.
The spin-phonon coupling Hamiltonian reads:

Hs−ph = HA1
+HB2

+HG′ (2)
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Irrep z → −z symmetric z → −z asymmetric
A1 Σz ⊗ sz Σx ⊗ sy − Σy ⊗ sx
A2 Σx ⊗ sx + Σy ⊗ sy
B2 Λz ⊗ sz

E1

(
−Σy ⊗ sz
Σx ⊗ sz

) (
−Σz ⊗ sy
Σz ⊗ sx

)
E2

(
Σx ⊗ sy + Σy ⊗ sx
Σx ⊗ sx − Σy ⊗ sy

)
,

(
−Λz ⊗ sy
Λz ⊗ sx

)
E′1

(
Λx ⊗ sz
Λy ⊗ sz

)

G′


Λx ⊗ sx
Λx ⊗ sy
−Λy ⊗ sy
−Λy ⊗ sx


TABLE I: Classification of the possible SO coupling terms
according to how they transform under the symmetry oper-
ations of C′′6v. Note that all these operators are even under
time reversal operation t→ −t.

where:

HA1 = g1 (Σx ⊗ sy − Σy ⊗ sx) ∂i∂
iuA1+

+g2[−Λz ⊗ sy
(
∂2
xuA1 − ∂2

yuA1

)
+ 2Λz ⊗ sx∂x∂yuA1 ]+

+g3[(Σx ⊗ sy + Σy ⊗ sx)
(
∂2
xuA1 − ∂2

yuA1

)
+

+2 (Σx ⊗ sx − Σy ⊗ sy) ∂x∂yuA1 ]
(3)

HB2 = g4Σz ⊗ sz(uB2)2 (4)

HG′ = g5[(Λx ⊗ sx)u1 + (Λx ⊗ sy)u2−
−(Λy ⊗ sy)u3 − (Λy ⊗ sx)u4] (5)

The main ingredients in order to construct these
couplings, electronic operators and symmetry-adapted
phonon fields, are summarized in Tab. I and Tab. II
respectively. Next, we construct these couplings step by
step.

Electronic operators

The point group of the graphene crystal is C6v, which
contains 12 elements: the identity, five rotations and six
reflections in planes perpendicular to the crystal plane.
Instead of dealing with degenerate states at two inequiv-
alent points one can enlarge the unit cell in order to
contain six atoms, in such a way that K± are mapped
onto the Γ point (see Fig. 1 b)). From the point of
view of the lattice symmetries, this means that the two
elementary translations (ta1

, ta2
) are factorized out of

the translation group and added to the point group C6v,
which becomes C ′′6v = C6v + ta1

× C6v + ta2
× C6v. If

we do not consider the spin degree of freedom, the π

Irrep Z phonon mode (z → −z asymmetric)

A1

1

11
1

11

1� 6 ´

B2

1

11
-1

-1-1

1� 6 ´

G′

0

1-1

0

1-1

1 � 2 ´

2

-1-1
-2

11

1� 12 ´

0

1-1

0

-11

1 � 2 ´

2

-1-1
2

-1-1

1� 12 ´

TABLE II: Classification of flexural (Z) phonon modes accord-
ing to how they transform under the symmetry operations of
C′′6v. The numbers indicate the out-of-plane displacement of
the atom within the 6-atoms unit cell.

electronic states at K± transforms according to the 4-
dimensional G′ irreducible representation of C ′′6v. Then,
in order to write down the low-energy electronic Hamil-
tonian we have to consider the 16 Hermitian operators
acting in a 4-dimensional space. We define two different
sets of 4 × 4 hermitian matrices {Σi}, {Λi} associated
to sublattice and valley degrees of freedom respectively,
so the set {I,Σi,Λi,Σi · Λj} provides a representation
of the algebra of generators of U(4). In the basis in-
troduced before Σi and Λi matrices are odd under the
time reversal operation t → −t, see Appendix A. If we
consider the spin degree of freedom then the π electronic
states at K± transform according to the 8-dimensional
representation G′ ×D1/2, where D1/2 is the spinor rep-
resentation associated to the spinorial part of the wave
function. Thus, we introduce a set of Pauli matrices {si}
associated to the spin degree of freedom, also odd under
time reversal operation. Importantly, we are now intro-
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FIG. 1: a) Real space lattice and Brillouin zone of flat
graphene with 2 atoms per unit cell. b) The same with 6
atoms per unit cell. Note that K± are now equivalent to Γ.

ducing a pseudovector in the 3-dimensional space, mean-
ing that the operators which contain sz are even under a
reflection in the graphene plane (mirror symmetry oper-
ation, z → −z), whereas the operators which contain the
in-plane components are odd. The result of this sym-
metry based approach is summarized in Tab. I, where
all the possible time reversal symmetric terms which in-
volve spin operators are classified according to how they
transforms under the symmetry operations of C ′′6v. These
matrices correspond to all the allowed SO coupling terms
within the low-energy description.

Phonon modes

In the lattice with 6 atoms per unit cell, the am-
plitude of a flexural phonon mode at Γ (≡ K±) is
given by a 6-component vector whose entries are asso-
ciated to the displacements of each sublattice atoms:
|h〉 = (hA1, hB1, hA2, hB2, hA3, hB3). This vector belongs
to a 6-dimensional representation of C ′′6v which can be
reduced as A1 + B2 + G′. The polarization vectors as-
sociated to the 1-dimensional irreducible representations
correspond to the acoustic (ZA) and optical (ZO) modes
at the original Γ point (with 2 atoms per unit cell), whose
polarization vectors in the 6 atoms basis read:

|A1〉 =
1√
6

(1, 1, 1, 1, 1, 1)

|B2〉 =
1√
6

(1,−1, 1,−1, 1,−1) (6)

The 4-dimensional irreducible representation corresponds
to the 4 degenerate modes at K± points, whose polariza-
tion vectors read:

|A,K+〉 =
1√
3

(1, 0, ei
2π
3 , 0, e−i

2π
3 , 0)

|B,K+〉 =
1√
3

(0, 1, 0, ei
2π
3 , 0, e−i

2π
3 )

|A,K−〉 =
1√
3

(1, 0, e−i
2π
3 , 0, ei

2π
3 , 0)

|B,K−〉 =
1√
3

(0, 1, 0, e−i
2π
3 , 0, ei

2π
3 ) (7)

Note that |A/B,K−〉 = (|A/B,K+〉)∗. However, we
must consider the real linear combinations of the vec-
tors of Eq. (7) which transforms according to G′ in order
to construct the couplings. These are:

|1〉 =
i

2
[− |AK+〉+ |AK−〉 − |BK+〉+ |BK−〉]

|2〉 =
1

2
[|AK+〉+ |AK−〉 − |BK+〉 − |BK−〉]

|3〉 =
i

2
[− |AK+〉+ |AK−〉+ |BK+〉 − |BK−〉]

|4〉 =
1

2
[|AK+〉+ |AK−〉+ |BK+〉+ |BK−〉] (8)

The polarization vectors of Eq. (6), together with he vec-
tors of Eq. (8), form a symmetry adapted basis, in such a
way that the displacement vector of a flexural mode can
be written as |h〉 = uA1

|A1〉+uB2
|B2〉+u1 |1〉+u2 |2〉+

u3 |3〉+u4 |4〉, where ui are the symmetry adapted (real)
displacement fields. The results of this analysis are sum-
marized in Tab. II.

Spin-phonon couplings

This analysis allows us to identify the SO assisted elec-
tron coupling with flexural phonons at the center and
the corners of the Brillouin zone. The spin-phonon in-
teraction Hamiltonian can be expanded in powers of the
phonon displacement fields and their derivatives, in such
a way that the displacement fields (and the derivatives)
are paired with the electronic operators corresponding to
the same irreducible representation, and taking into ac-
count that these combinations must be even under the
operation z → −z. The couplings of Eqs. (3)-(5) corre-
spond to the leading terms in such expansion.

Since a uniform translation of the crystal cannot af-
fect the electron motion, it is clear that it can cou-
ple to acoustic phonons (at Γ, A1 phonons) only
through spatial derivatives of the corresponding dis-
placement field. Moreover, if we consider the graphene
as a continuum surface, only out-of-plane distortions
which generate extrinsic curvature can couple to elec-
tron spin through the SO interaction. This implies
that the leading term must depend on second deriva-
tives ∂i∂juA1 . Since ∂i∂

iuA1 transforms according to A1,
and

(
∂2
xuA1 − ∂2

yuA1 , 2∂x∂yuA1

)
forms a doublet which

transforms according to E2, in principle three different
couplings are allowed by the symmetries. We obtain Eq.
3.

In the case of optical phonons at the center of the Bril-
louin zone, note that there is no term which transforms
according to the B2 irreducible representation in the col-
umn of z → −z asymmetric operators, which means that
the leading term must be quadratic on the phonon dis-
placement fields. Since B2×B2 = A1 we obtain a Kane-
Mele-like coupling term, Eq. 4.

Finally, in the case of flexural phonons at the corners
of the Brillouin zone, where both acoustic and optical
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tABs,s Vssσ

tABs,pi

(
p̂i · ~δ

)
Vspσ

tABpi,pj

(
p̂i · ~δ

)(
p̂j · ~δ

)
Vppσ+

+
[
(p̂i · p̂j)−

(
p̂i · ~δ

)(
p̂j · ~δ

)]
Vppπ

TABLE III: Two-center matrix elements in the Slater-Koster
approximation as function of the tight-binding parameters
(see the text). p̂i represents a unitary vector in the direc-

tion of maximum amplitude of the orbital pi, and ~δ is the
vector which connects neighboring sites A and B.

branches are degenerate, the coupling reads as Eq. 5.

III. TIGHT-BINDING MODEL

The strength of these couplings can be estimated from
a tight-binding model. We assume the convention of Fig
1. We choose the simplest tight-binding model with 4
orbitals {s, px, py, pz} per carbon atom and only nearest
neighbors hoppings. We neglect the effect of d orbitals9

because all these couplings are first order in the SO inter-
action constant, as we are going to see. The Hamiltonian
can be written as:

HTB =
∑
i,λ

tλc
†
i,λci,λ +

 ∑
<i,j>

∑
λ,λ′

tijλ,λ′c
†
i,λcj,λ′ +H.C.


(9)

where the latin indices label the sites of the carbon atoms
and λ = s, px, py, pz labels the orbitals considered in the
calculation. For the on-site energies we take ts = εs,
tpi = εp. The two-center matrix elements can be com-
puted within the Slater-Koster approximation as it is in-
dicated in Tab. III. We take (in eV):18,19 εs = −7.3,
εp = 0, Vssσ = −3.63, Vspσ = 4.2, and Vppσ = 5.38, and
Vppπ = −2.24. We describe the spin-obit interaction in

terms of the Hamiltonian HSO = ∆~L · ~s, where ~L and
~s correspond to the orbital angular momentum and spin
operators respectively. We take ∆ = 20 meV.20

Our aim is to estimate the strength of the effective
couplings within the low energy sector of the electronic
spectrum. We can define the π (pz, low energy sector)
and σ (s, px, py, high energy sector) orbital subspaces at
least locally (see the discussion next and Fig. 2). Then,
the electronic Hamiltonian can be written in the block
form:

H =

(
Hπ Hπσ
Hσπ Hσ

)
(10)

FIG. 2: Flat graphene and bent graphene. The arrows repre-
sent the px (black), py (red), and pz (blue) orbitals. The local
basis of atomic p orbitals in the bent graphene is uniquely de-
fined by the isomorphism between them.

We project out σ orbitals by a Schrieffer-Wolf
transformation.21 We take the Green function G =
(ε−H)

−1
, evaluate the block Gπ associated to the low-

energy sector, and use it in order to identify the low-

energy effective Hamiltonian. If we define G(0)
π,σ =

(ε−Hπ,σ)
−1

, then we can write:

(
Gπ Gπσ
Gσπ Gσ

)
=


(
G(0)
π

)−1

Hπσ

Hσπ
(
G(0)
σ

)−1


−1

(11)

We obtain Gπ =

[(
G(0)
π

)−1

+HπσG(0)
σ Hσπ

]−1

, so ε −

G−1
π = Hπ +HπσG(0)

σ Hσπ. In the low energy sector (ε ≈
0) the effective Hamiltonian reads:

Heffπ ≈ Hπ −HπσH−1
σ Hσπ (12)

Both the SO interaction and the out-of-plane distor-
tions enter in the π − σ mixing blocks. In the ab-
sence of out-of-plane distortions the only coupling al-
lowed by the symmetries has the structure of a Kane-
Mele mass. Our estimation from the tight-binding model

is ∆flat
I = εs∆

2/
(
18V 2

spσ

)
in agreement with Ref. 8. We

have ∆flat
I ≈ 9 µeV.

In the case of B2 phonons we have to add to this anal-
ysis the effect of a vertical displacement of one sublat-
tice respect to the other. If the calculation is performed
with the 6 atoms unit cell one can identify both the cou-
pling with flexural phonons at K± (G′). In the case of
A1 phonons, since the coupling depends on the second
derivatives of the phonon field, the calculation is not so
straightforward.

Phonons at Γ

As we mentioned before, the coupling with acoustic
phonons can be inferred from the effect of extrinsic cur-
vature of the graphene sample. The approach that we



5

present here is quite similar to the calculation of the SO
coupling in carbon nanotubes. The crucial fact is how
to choose the basis of π and σ orbitals. In the carbon
nanotubes calculation the σ orbitals are chosen in such
a way that they follow the shape of the nanotube, and
the π orbital is chosen in the radial direction. Here we
do essentially the same, but we try to formalize it a little
bit. In the low energy limit the graphene sample can be
described within a continuum theory. We assume that
the position of the carbon atoms lie on a smooth surface,
which is valid in the long-wavelength limit. Moreover,
we assume that this surface is isometric to a plane. This
means that a diffeomorphism f from a flat graphene sur-
face (Sflat) to a curved graphene surface (Scurv) exists
in such a way that the metric on the curved surface is
pull-backed to the flat one. Thus, the isomorphism f de-
fines an unique way to introduce a local basis for the px
and py atomic orbitals.

Consider graphene in a flat configuration. We intro-
duce unitary vectors p̂x, p̂y in the direction of maximum
amplitude of the orbitals px, py respectively, see Fig. 2.
From a geometrical point of view, these vectors are el-
ements of the tangent bundle associated to Sflat.

22 At
the same time, the axis of maximum localization of the
pz orbital verifies p̂z = p̂x × p̂y. Now consider a curved
graphene which is related to the flat graphene by a iso-
morphism f . The push-forward of f maps the tangent
bundle of Sflat to the tangent bundle of Scurv, which
means that the vectors p̂x, p̂y at any position of the bent
graphene are uniquely determined by the action of the
push-forward of the isomorphism on the original p̂x, p̂y
defined in the flat configuration. And of course, p̂z in the
bent graphene surface is given by the vectorial product
of the new p̂x, p̂y. More physically, what we are doing
is the following. Consider a sheet of paper. Consider a
point on it and write down a small arrow. Now deform
the sheet of paper smoothly (folding is not differentiable)
without breaking it. The new surface of your paper is
then isometric to the original plane. Consider the previ-
ous point in the new curved sheet of paper. The vector
tangent to the arrow at that point, which is uniquely de-
fined, is actually the push-forwarded original vector on
the flat sheet of paper. This way of introducing the local
basis in the bent graphene has two advantages: 1) we re-
cover ”smoothly” the original basis when we restore the
curved graphene to the original flat configuration; 2) we
keep the notion of parallelism by imposing f to be an
isomorphism instead of just a diffeomorphism. Note that
this apparent restriction does not affect the estimation of
the SO assisted electron coupling with flexural phonons,
since we are introducing extrinsic curvature and setting
the Gaussian curvature to zero.

We know how to choose the orbital basis and then cal-
culate the two-center matrix elements, at least locally,
using the Koster-Slater parametrization. For simplicity,
we consider a curved graphene surface with a constant
curvature along a given direction (a cylinder), so essen-
tially the same problem as a carbon nanotube. Thus, we

φ

a) b)

pz δ

θ

pi

FIG. 3: a) Definition of the angle φ. b) Sketch for the calcu-
lation of the new hoppings between pz and pi orbitals.

have two parameters, the radius of curvature R and the
angle φ between the direction of curvature and the x-axis
(essentially the chiral angle in a nanotube), see Fig. 3 a).
The new hoppings between π and σ orbitals can be cal-
culated following the prescription of Tab. III. These are
function of the angle θ defined in Fig. 3 b). Assuming
that R� a, we have to the leading term in a/R:

θ ≈ |δx cos(φ) + δy sin(φ)|
R

(13)

where δx,y are the components of the vector ~δ which con-
nects nearest neighbors. After a straightforward calcula-
tion, the block Hamiltonian that mixes π and σ states at
K± can be written as the matrix:

Hσπ =
3a

8R


0 −Vspσeiτ2φ

−Vspσe−iτ2φ 0
0 iτ

(
V1 + e−iτ2φV2

)
iτ
(
V1 + eiτ2φV2

)
0

0 V1 − e−iτ2φV2

−V1 + eiτ2φV2 0


(14)

where V1 = Vppσ + Vppπ, V2 = (Vppσ + 3Vppπ) /2, and
τ = ±1 labels the valley K±.

This expression is exact to the leading order in a/R as-
suming a constant R and φ along the graphene surface.
Now we perform a local approximation, which is valid
at long wavelengths: we assume that R and φ depends
slightly on the position. Hence, they can be related with
the second derivatives of the height profile, since the sec-
ond fundamental form (F) of a surface in the Monge’s
parametrization (r = (x, y, h(x, y))) reads:

F =
1√

1 + ∂ih∂ih

(
∂x∂xh ∂x∂yh
∂x∂yh ∂y∂yh

)
(15)

If we neglect quadratic terms on h, then F is just the
tensor of second derivatives. At the same time, note that
within the continuum description of graphene as a mem-
brane, the height profile h should be identified with the
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flexural acoustic phonon field at long wavelengths uA1
.

Then, the local R and φ can be related with the second
derivatives of uA1

as:

∂x∂xuA1
≈ −R−1 cos2 φ

∂y∂yuA1 ≈ −R−1 sin2 φ

∂x∂yuA1 ≈ −R−1 sinφ cosφ (16)

By projecting out the σ electronic states as Eq. 12
indicates, we arrive at the electron-phonon coupling of
Eq. 3 with:

g1 =
aεs∆ (Vppσ + Vppπ)

12V 2
spσ

≈ 3 meV · Å

g2 =
aVppπ∆

2 (Vppσ − Vppπ)
≈ 4 meV · Å

(17)

Importantly, within the present Koster-Slater approxi-
mation we have to extend the tight-binding calculation
to second-nearest neighbors in order to obtain a non-zero
g3 coupling. In that case we obtain:

g3 =
a∆ (3Vppπ + Vppσ)

(
V

(2)
ppσ + V

(2)
ppπ

)
8 (Vppσ − Vppπ)

2 (18)

where V
(2)
ppσ and V

(2)
ppπ are new second-nearest neighbors

hopping parameters.
In order to estimate the coupling with optical phonons

we have to consider the effect of a vertical displacement
of one sublattice with respect to the other, similarly
to the case of silicene.23 Processes which involve only
one phonon give a vanishing contribution as expected
from symmetry considerations. We can repeat the same
scheme as before by considering virtual processes medi-
ated by two phonons (∝ Hflexπσ H−1

σ Hflexσπ , note that Hσ
also contains the SO interaction). We identify the Kane-
Mele like coupling with flexural optical phonons at Γ,
whose strength reads:

g4 =
2ε2s∆ (Vppπ − Vppσ)

2

9a2V 4
spσ

≈ 20 meV · Å−2 (19)

Phonons at K±

We estimate now the coupling with phonons at the cor-
ners of the Brillouin zone. We simplify the tight-binding
model in order to treat the problem analytically. We
are going to consider the model described in Ref. 24
and adapted in Ref. 25 in order to describe the acoustic
phonon modes in graphite. We consider two parameters:
Von, which is the on-site energy of the σ orbitals, and
Vhop, which is the hopping between σ orbitals at nearest
neighbors when the orbitals are maximally localized in
the direction which links the two atoms, otherwise the

hopping is taken to zero. These parameters can be esti-
mated from the Slater-Koster parameters as:

Von =
εs − εp

3

Vhop =
Vssσ − 2

√
2Vspσ − 2Vppσ

3
(20)

This model was employed in Ref. 6 in order to esti-
mate the SO coupling in graphene and carbon nanotubes.
Within this model for flat graphene, the Kane-Mele cou-

pling reads ∆flat
I = 3Von∆2/(4V 2

hop), in agreement with
Ref. 6. Note also that this estimation is numerically very
close to the one of Ref. 8.

We perform the calculation in the unit cell with
6 atoms. We can estimate the terms that mix π
and σ states by considering the vertical displace-
ment of one lattice respect to the other, as we
mentioned before. By projecting out the σ orbitals
we arrive to a 6x6 effective Hamiltonian for the π
electronic states at the new Γ, which can be seen
as a matrix expressed in the monoelectronic basis
(|ΓA1π〉, |ΓA2π〉, |ΓA3π〉, |ΓB1π〉, |ΓB2π〉, |ΓB3π〉).
In order to identify the effective Hamiltonian in
the low energy sector we have to express this
matrix in the monoelectronic basis associated to
the lattice with 2 atoms per unit cell, let’s say
(|ΓAπ〉, |ΓBπ〉, |K+Aπ〉, |K+Bπ〉, |K−Aπ〉, |K−Bπ〉).
Both basis are related by the unitary transformation:

U =
1√
3



1 0 1 0 1 0

1 0 ei
2π
3 0 e−i

2π
3 0

1 0 e−i
2π
3 0 ei

2π
3 0

0 1 0 1 0 1

0 1 0 ei
2π
3 0 e−i

2π
3

0 1 0 e−i
2π
3 0 ei

2π
3

 (21)

By doing so, we identify the strength of the coupling with
phonons at the corner of the Brillouin zone:

g5 =

√
3Von∆

(√
2Vppσ −

√
2Vppπ + Vspσ

)
2
√

2aV 2
hop

≈ 4 meV · Å−1

(22)

IV. ENHANCEMENT OF KANE-MELE MASS

One of the most interesting consequences of this anal-
ysis is the effect of the coupling of Eq. 4 in the electronic
spectrum. The contribution of flexural phonons to the
Kane-Mele coupling can be written as:

∆ph = g4

〈
(uB2)2

〉
(23)

where the brackets express the thermal average over the
entire Brillouin zone.

The flexural optical (ZO) mode strictly at Γ transforms
according to B2. A rough estimate consists on neglecting
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FIG. 4: Effective Kane-Mele mass induced by the coupling
with flexural phonons. In red (lower curve) the estimation
neglecting the acoustic branch and the dispersion of the op-
tical one. In blue (upper curve) the calculation within the
model described in Appendix B.

the contribution from the acoustic branch and the disper-
sion of the optical mode. Since ~ωZOΓ ≈ 110 meV,26 tem-
perature plays no role, see the red curve in Fig. 4. How-
ever, the zero-point motion contribution ∆0 = ~g4

2MωZOΓ

≈
0.03 meV is non-negligible (here M is the mass of the
carbon atom).

This is a very crude approximation, since the iden-
tification of uB2 with the ZO mode is strictly true at
the Γ point. The entire Brillouin zone contributes to
the average, so away from Γ both flexural acoustic (ZA)
and optical branches enter. We can use the symmetry-
adapted basis |A1〉 and |B2〉 phonons as a basis in order
to describe the polarizations of the ν = ZA,ZO phonons:

|ν〉 = ηνA1
(q) |A1〉+ ηνB2

(q) |B2〉 (24)

Note that, because of time reversal symmetry, η (q) =
[η (−q)]

∗
. Thus, we have:〈

(uB2)2
〉
≈ 1

N

∑
q∈BZ

∑
ν

∣∣ηνB2
(q)
∣∣2 〈∣∣uνq∣∣2〉

T
(25)

where:

uνq =
1√
N

N∑
i=1

uν (Ri) e
−iq·Ri (26)

is the Fourier transform of the phonon displacement field
in branch ν, and the brackets denote thermal average.

We need a model in order to describe the deviations
of the polarizations vectors and the frequencies of both
branches in the entire Brillouin zone. In Appendix B we
describe the simpler nearest-neighbor forces model that
one can consider in order to describe the dynamics of
flexural phonons. We compute the induced Kane-Mele
mass from Eqs. (23) and (25) within this model. The
results are shown in Fig. 4 (blue curve). Remarkably,
the Kane-Mele gap induced by phonons 2∆ph is of the
order of 0.1 meV.

V. CONCLUSIONS

We have studied the possible SO-mediated electron in-
teraction with flexural phonons allowed by the symme-
tries of the lattice and estimated the strength of these
couplings from a tight-binding model. This analysis can
be used in order to study the SO coupling in carbon nan-
otubes.

We find that the quadratic coupling with the phonons
at Γ, particularly with the ZO branch, renormalizes the
Kane-Mele mass in a remarkable way. From our the-
ory, we predict an enhancement of two orders of mag-
nitude in comparison to previous estimations for flat
graphene, putting this gap close to the present exper-
imental limits27. Note that the frequency of flexural
modes depends on the coupling to the substrate, if any,
and can be tuned by applied strains28. On general
grounds, it can be expected that a compressive strain
will lower the frequency of these modes, enhancing the
spin-orbit coupling.

Our theory is also relevant for spin transport experi-
ments, particularly in suspended samples,29 where charge
transport is ultimately limited by flexural phonons.30
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Appendix A: Choice of the spinor basis

With this appendix we try to avoid possible confusions
due to notation and choice of spinor basis in the main
text, in particular when compared to Ref. 4.

When discussing the symmetries of the graphene lat-
tice from the perspective of group theory it is common
to introduce electronic operators without specifying their
explicit expression in a certain basis, only the algebraic
rules which determine how they transform under the
symmetry operations of the enlarged point group C ′′6v.
For instance, the two 4× 4 matrices which transform ac-
cording to the vector irreducible representation E1 are
denoted by Σx, Σy. The matrix Σz is defined in order
to complete the Pauli-matrix algebra, and it transforms
according to A2. On the other hand, the matrices which
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Irrep z → −z symmetric z → −z asymmetric
A1 σz ⊗ τz ⊗ sz σx ⊗ τz ⊗ sy − σy ⊗ sx
A2 σx ⊗ τz ⊗ sx + σy ⊗ sy
B2 τz ⊗ sz

E1

(
−σy ⊗ sz

σx ⊗ τz ⊗ sz

) (
−σz ⊗ τz ⊗ sy
σz ⊗ τz ⊗ sx

)
E2

(
σx ⊗ τz ⊗ sy + σy ⊗ sx
σx ⊗ τz ⊗ sx − σy ⊗ sy

)
(
−τz ⊗ sy
τz ⊗ sx

)
E′1

(
−σy ⊗ τy ⊗ sz
σy ⊗ τx ⊗ sz

)

G′


−σy ⊗ τy ⊗ sx
−σy ⊗ τy ⊗ sy
σy ⊗ τx ⊗ sy
σy ⊗ τx ⊗ sx


TABLE IV: Classification of the possible SO coupling terms
according to how they transform under the symmetry opera-
tions of the lattice and reflection in the graphene plane.

transform according to the vector irreducible representa-
tion E′2 are denoted by Λx, Λy, and as before Λz is de-
fined in order to complete the Pauli-matrix algebra and
transforms according to B1.

A more physical construction would be the following.
As we mentioned in the text, in order to write down the
low-energy electronic Hamiltonian (neglecting the spin)
we have to consider the 16 Hermitian operators acting
in a 4-dimensional space. We could define two differ-
ent sets of 2 × 2 Pauli matrices {σi}, {τi} associated to
the physical sublattice and valley degrees of freedom re-
spectively, so the set {I, σi, τi, σi ⊗ τj} provides a rep-
resentation of the algebra of generators of U(4). These
operators act in a space of 4-component Bloch functions
Ψ = (ψA,K+

, ψB,K+
, ψA,K−,↑, ψB,K−)T . Then, we intro-

duce the Pauli matrices associated to spin, so we have to
double the space of Bloch functions in order to contain
the two spin projections. The possible SO couplings in
this basis are summarized in Tab. IV. In the first row we
can recognize the Kane-Mele and Rashba-like couplings
as discussed in Ref. 4. Note that in this basis the time
reversal operation is implemented by the anti-unitary op-
erator T = iτx ⊗ syK, where K denotes complex conju-
gation.

In the main text we employ a different basis,
where the order of the projection of the Bloch func-
tions at each sublattice in different valleys is in-
verted, and also a minus sign is introduced: Ψ =
(ψA,K+

, ψB,K+
, ψB,K− ,−ψA,K−)T . This basis is very

convenient because the notation is simplified. In this
basis the operators Σi, Λi are related with the matrices
acting in subalattice and valley indices as:

Σi = σi ⊗ I
Λi = I ⊗ τi (A1)

The notation is simplified essentially because in the basis
the time reversal operation is implemented by T = iΣy⊗
Λy ⊗ syK, in such a way that the three sets of matrices
are odd under the action of T :

Σi
T−−→ ΣyΣ∗iΣy = −Σi

Λi
T−−→ ΛyΛ∗iΛy = −Λi

si
T−−−→ sys

∗
i sy = −si (A2)

and then the possible SO terms are constructed from
products of a spin matrix si with Σi or Λi.

Appendix B: Model for flexural phonons

We consider the simpler nearest-neighbor forces model
where the elastic energy of the lattice can be written as:

E =
α

a2

∑
i


hAi − 1

3

∑
〈ij〉

hBj

2

+

hBi − 1

3

∑
〈ij〉

hAj

2


(B1)

Here a is the carbon-carbon distance and α is a constant
with units of energy which can be related with the bend-
ing rigidity (κ) of graphene in a continuum description,31

as we are going to see next. This model leads to the dy-
namical matrix:

D (q) =
2α

3a2

(
3 + |f(q)|2

3 −2f (q)

−2f (q)
∗

3 + |f(q)|2
3

)
(B2)

where f (q) =
∑
α e

iq·~δα , and the sum is extended to
nearest-neighbors. The frequencies read:

ω± =

√
2α

3Ma2

(
3 +
|f (q) |2

3
± 2|f (q) |

)
(B3)

with polarization vectors |±〉 = 1√
2

(
f(q)
|f(q)| ,∓1

)T
. Here

M is the mass of the carbon atom. The two branches
of Eq. (B3) are plotted in Fig. 5. The upper branch
ω+ must be identified with the optical one, whereas ω−
corresponds to the acoustic one.

The model reproduces very well the dispersion of flex-
ural phonons.26 At q ∼ Γ we have:

ω+ ≡ ωZOq ≈
√

8α

Ma2
−
√
αa2

8M
q2

ω− ≡ ωZAq ≈
√

α

8Ma−2
q2 (B4)

Note that the dispersion relation of ZA phonons is
quadratic, as expected from symmetry considerations.
On the other hand, both branches are degenerate at K±
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FIG. 5: Dispersion of flexural phonons computed within the
nearest-neighbor force model described in the text with α =
8.5 eV. In red (upper curve) the dispersion for the optical
branch, in blue (lower curve) the acoustic branch.

(ωZAK±
= ωZOK±

= ωZOΓ /2), as it is also expected from sym-

metry arguments. When we compare this model with the

theory of elasticity31 we deduce the relation:

α = 6
√

3κ (B5)

We set the value of α from the frequency of the flexural
optical phonon at Γ, ~ωZOΓ ≈ 110 meV.26 We obtain
α = 8.5 eV. By using the relation of Eq. (B5) we obtain
κ ≈ 0.8 eV, which is a very reasonable value for the
bending rigidity of graphene. This agreement confirms
the reliability of the model. We compute the induced
Kane-Mele mass from Eqs. (23) and (25) within this
model. Note that:

∣∣ηZOB2
(q)
∣∣2 =

1

2

(
1 +
<f (q)

|f (q)|

)
∣∣ηZAB2

(q)
∣∣2 =

1

2

(
1− <f (q)

|f (q)|

)
(B6)

where <f denotes the real part of f . The results are
shown in Fig. 4 (blue curve).
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