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Integrated Systems Laboratory, ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland

Phonon transport is simulated in ultra-scaled nanowires in the presence of anharmonic phonon-
phonon scattering. A modified valence-force-field model containing four types of bond deformation is
employed to describe the phonon bandstructure. The inclusion of five additional bond deformation
potentials allows to account for anharmonic effects. Phonon-phonon interactions are introduced
through inelastic scattering self-energies solved in the self-consistent Born approximation in the Non-
equilibrium Green’s Function formalism. After calibrating the model with experimental data, the
thermal current, resistance, and conductivity of <100>-, <110>-, and <111>-oriented Si nanowires
with different lengths and temperatures are investigated in the presence of anharmonic phonon-
phonon scattering and compared to their ballistic limit. It is found that all the simulated thermal
currents exhibit a peak at temperatures around 200 K if phonon scattering is turned-on while they
monotonically increase when this effect is neglected. Finally, phonon transport through Si-Ge-Si
nanowires is considered.

PACS numbers:

I. INTRODUCTION

The recent replacement of conventional planar Si metal-oxide-semiconductor field-effect transistors (MOSFETs) by
three-dimensional (3-D) transistors with a multi-gate configuration1 has confirmed the leading role that nanowire-like
structures will play in the future of Moore’s scaling law2. Ultra-scaled nanowires are not only expected to become the
active components of next generation integrated circuits3–7 due to their excellent electrostatic properties, but could
also work as energy harvesters through the Seebeck effect if their surface is properly engineered8,9.
The main difference between nanowire transistors and thermo-generators resides in the value of their thermal

conductivity κth which measures how efficiently heat can propagate through a material. While it is crucial to have
a high κth for transistors so that the heat dissipated during ON-OFF switches can be rapidly evacuated from their
active region, thermo-generators rely on a low κth that allows for an efficient conversion of the available heat into
energy. Measurement techniques have evolved to the point where they can provide a deep insight into the thermal
conduction of nanowires10,11, which is essential for both electronic and thermoelectric applications. A the same time
the theoretical understanding of the thermal properties of nanowires has kept improving due to the development
of always complexer and more accurate models12–23. In many cases, a direct comparison of experimental data and
simulation results is possible.
Due to time constraints, computer aided design tools usually combine the classical drift-diffusion, energy-balance,

and electro-thermal models24 to simulate the thermal properties of a device. However, at the nanometer scale, such
approaches are no more valid and must be replaced by models treating thermal transport at the phonon level. Nowa-
days, most theoretical investigations of nanoscale thermal transport are based either (i) on the linearized Boltzmann
Transport Equation with Fermi’s Golden Rule15,16,20,21, (phonon quantum confinement neglected) (ii) on Equilibrium
Molecular Dynamics simulations23 (computationally very intensive and statistical average over long time periods
required), (iii) on first-principle (ab-initio) methods19 (limited to very small systems), or (iv) on coherent phonon
Non-equilibrium Green’s Function (NEGF) approaches12,17,22 (no dissipative interactions).
The versatility and flexibility of NEGF25,26 make it one of the most widely-spread and appreciated formalisms to

solve quantum transport problems. Although NEGF lends itself naturally to the description of various scattering
mechanisms27, taking into account incoherent effects such as the anharmonic decay of high energy phonons into
two low energy particles, as required in thermal transport simulations, still represents a challenge from a physical
and computational point of view. There have been some successful implementations of anharmonic phonon-phonon
scattering in the framework of NEGF, but they have been restricted to very small, one-dimensional, atomic chains or
molecular junctions13,14,18.
In this paper, an atomistic phonon transport approach based on the NEGF formalism, a modified valence-force-

field (VFF) model, including anharmonic phonon-phonon scattering in the self-consistent Born approximation, and
capable of treating three-dimensional nanowires composed of several thousands atoms is therefore presented. Realistic
harmonic and anharmonic potential energies are used to construct the dynamical matrix of the considered systems
and to compute the anharmonic phonon-phonon interactions. Hence, the model can accurately reproduce the bulk
phonon bandstructure and lattice thermal conductivity of a given material.
In spite of the computational complexity, ultra-scaled nanowires with a diameter of 3 nm, different crystal orien-

tations (<100>, <110>, and <111>), lengths (20, 40, and 60 nm), temperatures (from 50 to 1000 K), and made
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of more than 20000 atoms can be simulated within a couple of hours. As applications, the thermal current flowing
through such nanowires as well as the resulting thermal resistance and conductivity are calculated. As key findings,
it is shown that anharmonic phonon-phonon scattering in Si nanowires reduces their thermal conductivity by a fac-
tor 3-5 as compared to bulk structures and forces the thermal current to decrease for temperatures larger than 200
K (backscattering effect) while ballistic simulations predict an increase. The situation is reversed in heterogeneous
Si-Ge-Si nanowires where anharmonic phonon scattering can lead to an increase of the thermal current by opening
additional propagating channels for phonons.
The paper is organized as follows: the NEGF-based phonon transport approach, the anharmonic phonon-phonon

scattering self-energies, and the calculation of thermal currents are introduced in Section II. Then, in Section III,
different types of Si and Si-Ge-Si nanowires are simulated in the ballistic limit of phonon transport and in the presence
of anharmonic phonon-phonon scattering. Finally, conclusions are drawn in Section IV and an outlook about future
work is presented.

II. THEORY

A. Model Derivation

The Non-equilibrium Green’s Function formalism is used to solve phonon transport with anharmonic phonon-phonon
scattering. No electronic contribution is taken into account here because the influence of phonon-electron scattering
on the thermal conductivity of lightly-doped nanowires is negligible as compared to other scattering mechanisms28.
This situation changes at higher electron concentrations, for which phonon-electron scattering becomes as important
as other interactions. To avoid any confusion, all the structures considered in this work are assumed not-intentionally
doped.

In steady state, in a three-dimensional structure, the equations for the retardedDR,ij
nm (ω) and greater/lesserD

≷,ij
nm (ω)

phonon Green’s Functions have the following form13,14,17,18

∑
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In Eq. (1) and (2), the indices l, l1, l2, m, and n run over atom positions, i, j, k, k1, and k2 over oscillation directions
(x, y, and z), Mn is the mass of the atom at position Rn, ω the phonon frequency, ΠR,ij

nm (ω) the retarded self-energy
including both an open boundary component ΠRB,ij

nm (ω) calculated as in Ref.29 and a scattering component ΠRS,ij
nm (ω)

derived later in this paper. Similarly, Π
≷,ij
nm (ω) = Π

≷B,ij
nm (ω)+Π

≷S,ij
nm (ω) is the sum of the greater/lesser open boundary

and scattering self-energy. The Φij
nm’s are entries of the dynamical matrix Φ of size 3NA, where NA is the number

of atoms in the simulation domain and 3 the number of degrees of freedom per atom, i. e. the number of directions
along which atoms can oscillate (x, y, and z). They are defined as

Φij
nm =

d2V harm

dRi
ndR

j
m

, (3)

the second derivative of the valence-force-field (VFF) harmonic potential energy V harm with respect to the ith
component of the atom position Rn and the jth component of the atom position Rm. A well-parametrized VFF
model accurately describes all the phonon branches of a given material and can be therefore considered as a full-band
approach. To ensure an accurate reproduction of the phonon bandstructure of group IV semiconductors, the VFF
potential energy V harm must include at least four bond interactions, bond stretching, bond bending, bond cross
stretching, and coplanar bond bending, requiring four material parameters, as depicted in the upper part of Fig. 1.
More information about the construction of Φ and the harmonic force constants can be found in Ref.30,31.
The total Hamiltonian operator accounting for harmonic and anharmonic interactions can be written as13
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lû
j
mûk
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The first term on the right-hand side of Eq. (4) is the kinetic operator, the second one the harmonic operator, and
the third one the anharmonic operator. The kinetic and harmonic operators directly appear in Eq. (1) while the
anharmonic term is treated as a perturbation that can be cast into a scattering self-energy whose form still needs to



3

be determined. The operator ûi
n represents the quantized displacement of an atom situated at Rn along the direction

i (x, y, or z) measured with respect to its equilibrium position. The term dV
(3)ijk
lmn contains the third derivative of the

anharmonic potential energy V anh as function of the ith component of the atom position Rl, the jth component of
the atom position Rm, and the kth component of the atom position Rn

dV
(3)ijk
lmn =

d3V anh

dRi
ldR

j
mdRk

n

. (5)

The anharmonic potential energy V anh contains five bond interactions, as shown in the lower part of Fig. 1, leading
to the following expression30

V anh =
2

3a30

∑

mn

α′
(

|Rmn|
2 − |R0

mn|
2
)3

+
2

3a30

∑

lmn

β′
(

Rlm ·Rln −R
0
lm ·R0

ln

)3
+

2

3a30

∑

lmn

τ ′
(

|Rlm|2 − |R0
lm|2

)2 (
|Rln|

2 − |R0
ln|

2
)

+

2

3a30

∑

lmn

δ1
(

Rlm ·Rln −R
0
lm ·R0

ln

)2 (
|Rlm|2 − |R0

lm|2
)

+

2

3a30

∑

lmn

δ3
(

Rlm ·Rln −R
0
lm ·R0

ln

) (

|Rlm|2 − |R0
lm|2

) (

|Rln|
2 − |R0

ln|
2
)

, (6)

where Rmn=Rn-Rm is the bond vector connecting atoms m and n, R0
mn the same bond vector when the atoms m

and n are at their equilibrium position (no oscillation), a0 the lattice constant of the material under consideration,
α′, β′, τ ′, δ1, and δ3 anharmonic force constants whose values are determined in Section III A. As demonstrated in
Ref.30, there exists more anharmonic interactions than those considered in Eq. (6), but they play a less important
role than the five ones that are kept here.
To find an expression for the anharmonic phonon-phonon scattering self-energy in Eq. (1) and (2), several steps

need to be completed. The idea is to derive an equation of motion for the time-dependent phonon Green’s Function
Dij

nm(t, t′), which is proportional to the expectation value 〈ûi
m(t)ûj

n(t
′)〉, starting from the definition of the Hamiltonian

operator Ĥ in Eq. (4). This leads to the formation of an infinite hierarchy of coupled equations: the expectation
value of two operators depends on three operators whose expectation value depends on four operators and so forth.
To truncate this infinite hierarchy, Wick’s decomposition techniques and/or Feynman diagram expansions32 can be
applied. Finally, after Fourier transforming the time difference t-t′ to, the steady-state form of the anharmonic
phonon-phonon scattering self-energy is obtained. The greater/lesser components are then defined as13,14

Π≷S,ij
nm (ω) = 2i~
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Knowing that “Π<S(ω)D>(ω)” measures the rate at which phonons with energy ~ω are generated (in-scattering
rate)33 and looking at the definition of Π<S(ω) in Eq. (7), it can be seen that for ω′ >0, the anharmonic decay of a
high energy phonon with frequency ω+ω′ (D<(ω +ω′)) creates two lower energy phonons with frequency ω (D>(ω))
and ω′ (D>(ω′)). This interpretation relies on the fact that lesser Green’s Functions characterize the occupancy of
a state while greater Green’s Functions refer to the probability that a state is available (unoccupied). Hence, at the
beginning of the anharmonic phonon-phonon scattering process described above, the state with frequency ω+ω′ is
occupied while two states at frequencies ω and ω′ are available. Recalling that D<,ij

nm (−ω)=D>,ji
mn (ω)34, the same

kind of interpretation can be made for the case where ω′ <0, the difference being that a high energy phonon is
created from two low energy particles through anharmonic interactions. Hence, the scattering self-energies in Eq. (7)
simultaneously describe the anharmonic decay and creation of high energy phonons.
The last required component in Eq. (1) and (2), the retarded scattering self-energy ΠRS(ω), is calculated directly

from the lesser Π<S(ω) and greater Π>S(ω) self-energies with

ΠRS,ij
nm (ω) =

1

2

(

Π>S,ij
nm (ω)−Π<S,ij

nm (ω)
)

+ iP

∫

dω′

2π

Π>S,ij
nm (ω′)−Π<S,ij

nm (ω′)

ω − ω′
, (8)

where P denotes the Cauchy principal integral value.
Equations (1), (2), (7), and (8) must be solved iteratively till convergence between the Green’s Functions D<(ω),

D>(ω), and DR(ω) and the anharmonic phonon-phonon scattering self-energies Π<S(ω), Π>S(ω), and ΠRS(ω) is
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obtained. This process is called self-consistent Born approximation. After convergence is reached, the phonon thermal
current Iph,s−>s+1 flowing between the sth and sth+1 unit cell (or slab) of the simulation domain can be computed
as17,37

Iph,s−>s+1 =
~

2π

∑

n∈s

∑

m∈s+1

∑

ij

∫

∞

0

dω ω
(

Φij
nmD<,ji

mn (ω)−D<,ij
nm (ω)Φji

mn

)

. (9)

In Eq. (9), the atom position Rn is situated inside the sth unit cell and Rm inside the sth+1 one. A unit cell
is defined as an ensemble of N consecutive atomic layers along the direction of the current flow: N=4 if phonon
transport occurs along the <100> crystal axis, N=2 for <110>, and N=6 for <111>. Due to current conservation
requirements, Iph,s−>s+1 must remain the same, irrespective of the choice of s and s+1.

B. Approximations

The expression for the anharmonic phonon-phonon scattering self-energy in Eq. (7) is exact, but difficult to imple-
ment from a numerical point of view. In effect, it involves the summation over several indices (4 referring to atom
positions and 4 to oscillation directions), it requires the knowledge of the entire lesser and greater phonon Green’s
Function matrices D

<(ω) and D
>(ω), respectively, and it couples all the phonon frequencies together through the

integral over ω′. If no approximation is made to the calculation of the scattering self-energies, the simulation of a
nanowire structure composed of 20000 atoms demands for the inversion of full matrices of size N=60000 to solve
Eq. (1). The resulting computational burden is too heavy to make such an approach practical.
To allow for an efficient solution of Eq. (1) and (2), only a small fraction of DR(ω) and D

≷(ω) is calculated, their
diagonal and first off-diagonal blocks, based on a recursive Green’s Function (RGF) algorithm35,36. This implies that

the scattering self-energies in Eq. (7) must be assumed block-diagonal, i. e. only the self-energy components Π
≷S,ij
nm (ω)

where the atom indices n and m are identical are evaluated. As a consequence, the expression for Π≷S(ω) becomes

Π≷S,ij
nn (ω) = 2i~

∑

k1k2k3k4

∑

lm

∫

∞

−∞

dω′

2π
dV

(3)ik1k2

nlm dV
(3)k3k4j
lmn D

≷,k1k3

ll (ω + ω′)D≶,k4k2

mm (ω′). (10)

Note that in Eq. (10), only summations over the 3×3 diagonal blocks of the phonon Green’s Functions D
≷(ω) are

performed. To further reduce the computational complexity and the memory requirement, the three indices l, m, and

n of the third derivative of the anharmonic potential energy, dV
(3)
lmn, must refer to atoms belonging to the same bond

vector. At least two out of the three indices are therefore identical. As last approximation, the principal integral term
in Eq. (8) is neglected.
The simplifications leading to Eq. (10) certainly affect the simulation results and might lead to an overestimation

or underestimation of the phonon thermal current Iph flowing through the simulated nanostructures. However, a
correction mechanism can still be introduced: the anharmonic force constants α′, β′, τ ′, δ1, and δ3 in Eq. (6) can be
fitted so that available experimental data, for example the bulk lattice thermal conductivity of a given semiconductor,
is accurately reproduced by the model. By doing so, the errors resulting from the approximations made to Eq. (10)
are partly compensated. The fitting process is explained in more details in Section IIIA.

C. Implementation

If multiple central processing units (CPUs) are available, the solution of Eq. (1), (2), (8), and (10) can be parallelized
using the message passing interface (MPI)38 standard and the same work distribution scheme as in Ref.39: depending
on the size of the available machine, only a small number of phonon frequencies is attributed to each CPU, which
stores the corresponding Green’s Functions and scattering self-energies. Then, to compute Π≷S(ω) in Eq. (10), data
must be exchanged between the different CPUs storing D≶(ω + ω′) and D≷(ω′). The nanowire simulations reported
in Section III were run on 3000 CPUs during 2 to 12 hours.
Typically, an energy vector starting at E=~ω=0 eV and extending up to the maximum phonon energy of the

considered material (plus a small offset) is generated at the beginning of each simulation. The distance between two
energy points is constant and amounts to 0.1 meV at most. As it can be seen in the integral boundaries of Eq. (10),
the frequency ω′ in D≷(ω′) can be negative, but for convenience, the selected energy vector starts at E=0. The
negative frequencies/energies are properly handled by recalling the property D<,ij

nm (−ω)=D>,ji
mn (ω) already mentioned

above.
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To check the convergence of the self-consistent Born iterations between the phonon Green’s Function in Eq. (2)
and the anharmonic phonon-phonon scattering self-energies in Eq. (10), the values of the thermal current Iph,s−>s+1

flowing between unit cell s and s+1 are analyzed. Convergence is reached when Iph,s−>s+1 in Eq. (9) is the same for
all the unit cells s, i. e. when current conservation is satisfied. Usually, between 10 and 100 iterations are required
to reach this goal, depending on the structure temperature (low temperature means less scattering and therefore less
iterations) and length (the shorter the less iterations).

III. RESULTS

A. Model Calibration

To compensate for the approximations made to Eq. (10), the values of the five anharmonic force constants α′, β′,
τ ′, δ1, and δ3 in Eq. (6) are tuned so that the bulk lattice thermal conductivity of the considered semiconductors
can be reproduced by the simulation approach. Here, as an illustration, the Si parameters are optimized: instead
of adjusting each anharmonic force constant independently, the values of Ref.30 are used as initial guesses and then
scaled, all by the same factor Fscal. In this approach, only one single parameter needs to be determined, Fscal, not
five, thus reducing the complexity of the fitting procedure.
To optimize the value of Fscal, the first challenge consists in simulating one-dimensional bulk structures instead

of three-dimensional nanowires, as described so far in this paper. Solving Eq. (1) and (2) for bulk is relatively
straightforward: the dynamical matrix Φ must account for the periodicity along the y and z axis (transport occurs
along x), introducing a qy- and qz-dependence to the dynamical matrix, Φ → Φ(qy, qz), where the phonon wave
vectors qy and qz span the entire first Brillouin Zone (BZ). The thermal current Iph in Eq. (9) is then obtained by
summing up all the qy and qz contributions. To facilitate the summation, a square unit cell is chosen instead of the
primitive one, making the BZ square too.
The difficulty to go from nanowire to bulk structures resides in the treatment of the lesser/greater scattering self-

energies in Eq. (10). Anharmonic phonon-phonon scattering in bulk does not only couple all the phonon frequency
together (integral over ω′), but also all the qy and qz wave vectors through a double summation over these parameters.
Taking this double summation into account makes the numerical implementation of Eq. (10) for bulk cases much
more difficult than for nanowires since many more phonon Green’s Functions are coupled to each other (frequency
and momentum coupling). However, by increasing the size of the selected bulk unit cells along the y and z axis, the
phonon bandstructure along qy and qz becomes folded40, thus automatically coupling different qy and qz wave vectors
together.
Since the folding effect increases with the dimensions of the bulk unit cell, what remains to be determined is

the minimum size of this unit cell that best mimics the qy and qz coupling induced by anharmonic phonon-phonon
scattering. Practical tests have shown that increasing the size of the bulk unit cell beyond (4Ly)×(4Lz), where Ly×Lz

is the size of the original square unit cell and 4 the multiplication factor along y and z, does not affect the results
any more. Hence, wave vector coupling is captured in bulk simulations by working with unit cells 16× larger than
the smallest one with a square shape. Then the qy- and qz-dependent Brillouin Zone can be safely discretized using
6 points along each wave vector direction for a total of 36 grid points ranging from 0 to π/Ly and 0 to π/Lz.
As a next step, several simulations are performed to determine the value of Fscal so that the anharmonic phonon

scattering model gives a room temperature lattice thermal conductivity of κth ≈150W/K/m for Si. The corresponding
α′, β′, τ ′, δ1, and δ3 values are reported in Table I. However, assuming that these parameters are temperature-
independent does not allow to capture the bulk κth of Si at temperatures T below 200 K and above 400 K. A good
reproduction of κth(T ) from 20 to 1000 K is only possible if all the anharmonic force constants in Table I are multiplied
by a temperature-dependent factor f(T ) defined as

f(T ) =







(

T
300

)0.9
, 0 ≤ T ≤ 200

c1 + c2T + c3T
2 + c4T

3, 200 ≤ T ≤ 400
1 + 0.2T−300

300 , 400 ≤ T ≤ 1000

(11)

and plotted in Fig. 2(a). The coefficients c1 to c4 are given in Table II. The form of f(T ) has been empirically derived:
it has been first observed that the temperature behavior of the experimental κth(T ) for T >300 K is different from
T <300 K. By comparing simulations results to experimental data, the forms (T/300)0.9 and 1 + 0.2(T − 300)/300
have been determined for T ≤ 300 and T ≥300, respectively. As last enhancement, the behavior of df(T )/dT in the
region 200 <≤ T ≤ 400 is smoothed to prevent discontinuities in the κth(T ) curves.
Making the anharmonic force constants α′, β′, τ ′, δ1, and δ3 temperature-dependent is justified by the fact that the

harmonic V harm and anharmonic V anh potential energies depend on the temperature, which has not been accounted
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for anywhere else in the model and by the fact that higher order anharmonic potential contributions have been
neglected. Other phonon simulation approaches including anharmonic effects must also give a temperature dependence
to their interaction potentials in order to reproduce experimental data16,41,42.
Finally, to capture the low temperature maximum of the lattice thermal conductivity of bulk Si, boundary and

impurity scattering must be introduced into the model. A single fitting potential value V bound/imp=4.7 meV/m2

containing both effects is used for that purpose. Hence, the following boundary/impurity scattering self-energy must
be added to Eq. (10)

Π≷bound/imp,ij
nn (ω) = |V bound/imp|2D≷,ij

nn (ω). (12)

Putting together all the requirements described above, κth of bulk Si can now be computed as function of the
temperature using the “dR/dL” method43. The following steps need to be performed one after the other to obtain
κth:

1. a small temperature difference ∆T is applied between the two ends of bulk structures of length L=25, 50, and
75 nm,

2. the length-dependent phonon thermal current Iph(L) (unit W/m2) flowing from one side of the structures to
the other is calculated with Eq. (9) including anharmonic phonon-phonon, boundary, and impurity scattering,

3. the thermal resistance Rth(L)=∆T/Iph(L) (unit: Km2/W) is extracted. Since phonon transport is in bulk
structures is mainly diffusive, Rth(L) increases linearly as function of L. Three lengths are always considered
to check that this property is satisfied,

4. the derivative of Rth(L) with respect to L, dRth(L)/dL (unit: Km/W), is finally employed to obtain the

lattice thermal conductivity κth=(dRth(L)/dL)
−1

(unit: W/K/m). The same process is repeated for different
temperatures.

The results for bulk Si are shown in Fig. 2(b). A very good agreement between experimental44 and simulation data is
obtained for temperatures ranging from 20 to 1000 K. Furthermore, an average mean free path (MFP) for scattering
λph can be derived from the simulation results based on the following equation45

λph =

(

dRth(L)

dL

)

×Rth,0, (13)

where the length-independent term Rth,0 refers to the ballistic thermal resistance extracted when all the scattering
mechanisms are turned-off. The average MFP λph is plotted in Fig. 2(c) as function of the structure temperature.
The results agree well with data calculated with another method46.

B. Homogeneous Si Nanowires

After parametrizing the anharmonic force constant in Eq. (6) and assuming that these parameters are transferable to
nanostructures, the thermal properties of not-intentionally doped Si nanowires, as depicted in Fig. 3, are investigated
in the ballistic limit of transport and in the presence of anharmonic phonon-phonon scattering. Boundary scattering
is automatically taken into account due to the finite extend of the simulated structures which have a diameter of 3
nm. The nanowire length extends from 20 to 60 nm and phonon transport occurs along the x direction, aligned either
with the <100>, <110>, or <111> crystal axis. The largest simulation domain considered in this work contains more
than 20000 atoms that can oscillate along the x, y, and z directions. Surface atoms are also allowed to freely move31.
Before starting with the thermal characteristics of the nanowires in Fig. 3, the mechanism governing the injection of

phonons from semi-infinite contacts into a finite simulation domain should be analyzed. For that purpose, the thermal
current and phonon population in a L=40 nm long Si nanowire with x=<100>, and a left (right) contact temperature
of 300 K (350 K) are studied. The temperature difference between the left and right contact is intentionally chosen
very high to magnify what is happening. There are three distinct cases:

• phonon transport is ballistic in the semi-infinite contacts and in the finite simulation domain (ballistic),

• it is ballistic in the semi-infinite contacts, but anharmonic phonon-phonon scattering is taken into account in
the finite simulation domain (coherent injection),
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• anharmonic phonon-phonon scattering is included in the semi-infinite contacts and in the finite simulation
domain. This requires defining scattering self-energies in the contacts and incorporating them into the calculation
of the open boundary conditions (incoherent injection)47,48.

The differences between these three scenarios are illustrated in Fig. 4. In the pure ballistic simulation, the phonon
population is the same all along the nanowire length, although the temperature of the left and right contact is different.
When anharmonic phonon-phonon scattering is turned-on, the phonon population becomes larger at the “hot” contact
(T=350 K) than at the cold one (T=300 K), as expected. However, in the coherent injection case, due to domain
mismatch at the contact/device interface, boundary reflections of the phonon population can be observed, which is
unphysical and should be avoided. The distribution of the phonon population looks reasonable (smooth behavior)
only when scattering is present in the nanowire structure and in the contacts. Hence, incoherent injection is enabled
in all the other simulations performed in this paper.
A comment about the thermal currents in Fig. 4(b): in all cases, it is conserved, demonstrating the convergence of

the self-consistent Born iterations between the phonon Green’s Functions and scattering self-energies in Eq. (1), (2),
(8), and (10). Current conservation has been checked for all the results presented here. Note also that anharmonic
phonon-phonon scattering decreases the magnitude of the thermal current by a factor of roughly 2 in Fig. 4(b) and
the coherent and incoherent phonon injection mechanisms deliver about the same current value.
In Fig. 5, the thermal current Iph (unit: W) flowing through L=40 nm long Si nanowires with transport along the

<100>, <110>, and <111> crystal axis is reported for temperatures ranging from 0 to 1000 K, in the ballistic limit of
transport (left) and with anharmonic phonon-phonon scattering (right). A temperature difference ∆T=0.1 K is applied
between the two ends of the nanowires. Irrespective of the simulation model (w/o scattering), the <110>-oriented
nanowire exhibits the largest thermal current, the <100>- and <111>-oriented structures have similar characteristics.
While the ballistic thermal currents keep increasing as the temperature increases, anharmonic phonon-phonon

scattering leads to a maximum of Iph at temperatures around 200 K followed by a current decrease. A similar behavior
is reported in Ref.13,18 where the thermal conductance of 1-D Si atomic chains is calculated: a conductance maximum
occurs at temperatures around 200 K. The fact that scattering becomes more important at high temperatures explain
the current decrease after T=200 K. Hence, below 100 K, the ballistic model captures relatively well the thermal
properties of the nanowires, but above this temperature, it significantly overestimates Iph, by a factor of 1.7 at room
temperature and 4 at 1000 K. It is worthwhile noting here that the thermal current shows a maximum at around
T=200 K even when the anharmonic force constants α′, β′, τ ′, δ1, and δ3 in Eq. (6) have no temperature dependence.
As for the bulk structures in Sec. III A, the thermal resistance Rth(L) (unit: K/W) of the Si nanowires in Fig. 3

can be calculated for different structure lengths (L=20, 40, and 60 nm) and temperatures varying from 50 to 1000 K.
The corresponding results are shown in Fig. 6(a)-(c). As a consequence of the larger thermal current observed when
phonons flow along the <110> crystal axis, nanowires with this configuration have the smallest thermal resistances,
at low and high temperatures.
Due to the diffusive nature of phonon transport in nanowires with anharmonic phonon-phonon scattering, their

thermal resistance Rth(L) increases linearly with their length: the resistance values at L=20, 40, and 60 nm all lie
on a single line as can be seen in Fig. 6(a)-(c). This allows to compute a phonon-phonon scattering limited lattice

thermal conductivity κth = 1/A ∗ (dRth(L)/dL)
−1

, where A is the area of the nanowire cross section. In Fig. 6(d),
κth is given as function of the nanowire temperature and crystal orientation. The highest value is obtained for the
<110>-oriented nanowire. At low temperatures, the <100>-nanowire exceeds its <111> counterpart, but this trend
is reversed at high temperatures.
It can also be observed that under the influence of anharmonic phonon-phonon scattering, κth severely drops in

nanowires as compared to bulk structures, from 148 W/K/m at room temperature down to 57, 29, and 28 W/K/m in
<110>, <111>, and <100> nanowires, respectively. By comparing these simulation results with available experimen-
tal data, it appears that the phonon-phonon scattering limited thermal conductivities in Fig. 6(d) are considerably
larger than the values reported in Ref.8 (2 W/K/m at room temperature) although the considered diameters are
much smaller (3 vs 50 nm). Hence, anharmonic phonon-phonon scattering alone cannot explain the results of Ref.8,
for which surface roughness must be added16.

C. Si-Ge-Si Nanowires

As a second application, the double heterojunction Si-Ge-Si nanowires schematized in Fig. 7(a) are considered.
Such devices, if the Si-Ge periods are repeated as in superlattices, could exhibit very low thermal conductivities20,49

while keeping relatively good electronic properties, thus fulfilling two important criteria needed for high performance
thermogenerators. Since the maximum phonon energy in Ge is smaller than in Si (37 vs. 64 meV with the harmonic
parameters of Ref.30), as illustrated in Fig. 7(b), the high energy phonons propagating through Si are blocked when
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they try to enter the Ge middle layer. This energy filtering effect leads to a reduction of the lattice thermal conductivity
of Si-Ge-Si nanowires.
Here, what will be investigated is the influence of anharmonic phonon-phonon scattering on the thermal current

flowing through Si-Ge-Si nanowires with a diameter of 3 nm, a Ge layer thickness of 2.2 nm, and Si extension
lengths varying from LSi=2.2 to 10.9 nm. The same scattering model is used for Ge as for Si with the anharmonic
force constants of Ge given in Table I. They were obtained by scaling the values of Ref.30 by the same amount as
the Si constants. No temperature-dependent coefficient f(T ) has been defined for Ge since all the S-Ge-Si nanowire
simulations are performed at room temperatures. Interface scattering is included by default since each material region
is explicitly described in the simulation domain (different atomic masses, harmonic and anharmonic force constants).
Strain is also taken into account and no roughness is introduced at the Si/Ge interfaces, which are sharp.
In the ballistic model, a phonon with an energy larger than 37 meV cannot move through a Si-Ge-Si structure

because of the absence of propagating channels in Ge in this energy range. When anharmonic phonon-phonon
scattering is turned-on, the same phonon can penetrate into the Si extensions, then decay into two low energy
particles that can finally propagate through the Ge layer. These two situations are plotted in Fig. 7(c)-(d), where
the energy- and position-resolved thermal current flowing through a Si-Ge-Si nanowire is reported for energies larger
than 37 meV. As it can be seen, the presence of anharmonic phonon-phonon scattering creates additional current
trajectories at high energy that do not exist in the ballistic model.
As last numerical experiment, the length of the Si extensions, LSi in a Si-Ge-Si nanowires is varied to study how

anharmonic phonon-phonon scattering influences the thermal current value. Results are shown in Fig. 8: in the left
subplot, current conservation is demonstrated and in the right one, the thermal currents with and without anharmonic
phonon-phonon scattering are compared. For short Si extensions, the thermal current with scattering is higher than
the ballistic one, but it decreases as LSi increases. The ballistic current remains constant. Two competing effects
explain this behavior: anharmonic phonon-phonon scattering opens additional transport channels for phonons, as
depicted in Fig. 7(c)-(d), but it can also change the direction of propagation of one of the two low particles created
through the decay of a high energy phonon, thus reducing the current magnitude. This is known as backscattering45.
While the first effect (additional channels) does not depend on the Si length, the second one (backscattering) increases
with LSi, explaining the current characteristics in Fig. 8(b).

IV. CONCLUSION AND OUTLOOK

A simulation approach including anharmonic phonon-phonon scattering in the framework of the valence-force-field
method and the Non-equilibrium Green’s Function formalism has been presented in this paper. After the calibration
of anharmonic force constants using the temperature-dependent lattice thermal conductivity of Si as a target, the
thermal properties of ultra-scaled nanowires with different lengths, material composition, and crystal orientations
have been studied. The thermal current, resistance, and conductivity of these structures have been extracted in the
presence of anharmonic phonon-phonon scattering and in the ballistic limit of transport. It has been found that
neglecting anharmonic phonon-phonon scattering at high temperatures can lead to a significant overestimation of the
thermal current flowing through nanowires. Furthermore, it has also been demonstrated that in heterogeneous Si-Ge-
Si nanowires, two competing effects induced by anharmonic phonon-phonon scattering face each other: an increase
of the thermal current through the presence of additional phonon paths and a decrease of this current through
backscattering effects. The first effect dominates in short devices, the second in long ones. This means that accurate
studies about the figure of merit of thermogenerators or the thermal efficiency of nano-transistors should go beyond
the ballistic limit of phonon transport and include anharmonic phonon-phonon interactions.
As future work, the approach proposed here should be combined with an atomistic electron transport model taking

electron-phonon scattering into account39. By simultaneously driving the electron and phonon populations out-of-
equilibrium, self-heating and phonon drag effects could be introduced into the model. This will require the derivation
of additional self-energies to control the energy flow between electrons and phonons and ensure energy conservation
within the simulation domain.
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FIG. 1: Schematic representation of the different harmonic (a-d) and anharmonic (e-i) bond interactions included in the
calculation of the phonon bandstructure and anharmonic phonon-phonon scattering self-energies, respectively. The term ∆r

describes bond length deformation, ∆θ bond angle deformation. The material constants α, β, τ , κ, α′, β′, τ ′, δ1, and δ3 are
empirical parameters whose values are determined by fitting available experimental targets.
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FIG. 2: (a) Temperature-dependent scaling function f(T ) for the anharmonic force constants α′, β′, τ ′, δ1, and δ3. (b)
Comparison between the experimental lattice thermal conductivity κth of bulk Si as function of the temperature (solid line)
and simulations results obtained with the model proposed in this paper (dashed line with stars). (c) Temperature-dependent
average phonon mean-free path for scattering λph in bulk Si extracted from the simulation results in (b). At 300 K, λph=160
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FIG. 3: (a) Schematic view of the Si nanowires considered in this work. The diameter d is set to 3 nm, the length L vary from
20 to 60 nm, the transport direction x is aligned with the <100> (b), <110> (c), and <111> (d) crystal axis. In (b), y=(010),
z=(001), in (c), y=(110), z=(001), and in (d), y=(110), z=(112).
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FIG. 4: (a) Spatially-resolved phonon population in a L=40 nm Si nanowire with x=<100>, a left-contact (x=0) temperature
T=300 K, and a right-contact (x=40 nm) temperature T=350 K. The phonon population in the ballistic limit of transport
(dashed-dotted line), with anharmonic phonon-phonon scattering and ballistic contacts (coherent injection, solid gray lines),
and with anharmonic phonon-phonon scattering in the device and contacts (incoherent injection, dashed line) are plotted. (b)
Spatially-resolved thermal current flowing through the same structure and under the same conditions as in (a).
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FIG. 5: (a) Temperature-dependent ballistic thermal current flowing through L=40 nm Si nanowires with x=<100> (gray
line with circles), x=<110> (dashed line with triangles), and x=<111> (dashed-dotted line with crosses). A temperature
difference ∆T=0.1 K is applied between the 2 ends of the nanowires. (b) Same as in (a), but in the presence of anharmonic
phonon-phonon scattering.
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FIG. 6: (a) Thermal resistance through Si nanowires with L=20, 40, and 60 nm, T=100 (line with circles), 300 (dashed line
with triangles), 500 (dashed-dotted line with stars), and 750 K (gray line with crosses), ∆T=0.1 K, x=<100>, and in the
presence of anharmonic phonon-phonon scattering. (b) Same as (a), but for x=<110>. (c) Same as in (a) and (b), but for
x=<111>. (d) Anharmonic phonon-phonon limited thermal conductivity κth in Si nanowires as function of the temperature
for x=<100> (gray line with circles), x=<110> (dashed line with triangles), and x=<111> (dashed-dotted line with crosses).
The inset shows κth around T=300 K.
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FIG. 7: (a) Schematic view of a Si-Ge-Si double heterojunction nanowire with x=<100> and d=3 nm. The Ge region
measures LGe=2.2 nm, the Si extensions vary from LSi=2.2 to 10.9 nm. (b) Bulk Si (solid lines) and Ge (dashed lines) phonon
bandstructure. (c) Ballistic spectral thermal current through a LSi=4.3 nm Si-Ge-Si nanowire in the energy range 37≤ E ≤64
meV at T=300 K with ∆T=10 K. (d) Same as in (c), but in the presence of anharmonic phonon-phonon scattering. Dark
regions indicate high current concentrations, white no current.
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Parameter α′ (eV/m3) β′ (eV/m3) τ ′ (eV/m3) δ1 (eV/m3) δ3 (eV/m3)

Si -2.421e10 -1.082e10 -2.338e9 -2.323e9 6.656e9

Ge -2.113e10 -5.323e9 -2.796e9 -1.735e8 1.225e9

TABLE I: Temperature-independent value of the anharmonic force constants in Si and Ge.
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Coefficient c1 c2 c3 c4

Value -0.2097 5.98e-3 -7.644e-6 1.667e-9

TABLE II: Coefficients to compute the temperature-dependent factor f(T ) in Eq. (11).


