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Motivated by recent work on Hall viscosity, we derive from first principles the Kubo formulas for
the stress-stress response function at zero wavevector that can be used to define the full complex
frequency-dependent viscosity tensor, both with and without a uniform magnetic field. The formulas
in the existing literature are frequently incomplete, incorrect, or lack a derivation; in particular,
Hall viscosity is overlooked. Our approach begins from the response to a uniform external strain
field, which is an active time-dependent coordinate transformation in d space dimensions. These
transformations form the group GL(d,R) of invertible matrices, and the infinitesimal generators are
called strain generators. These enable us to express the Kubo formula in different ways, related by
Ward identities; some of these make contact with the adiabatic transport approach. The importance
of retaining contact terms, analogous to the diamagnetic term in the familiar Kubo formula for
conductivity, is emphasized. For Galilean-invariant systems, we derive a relation between the stress
response tensor and the conductivity tensor that is valid at all frequencies and in both the presence
and absence of a magnetic field. In the presence of a magnetic field and at low frequency, this yields
a relation between the Hall viscosity, the q2 part of the Hall conductivity, the inverse compressibility
(suitably defined), and the diverging part of the shear viscosity (if any); this relation generalizes
a result found recently by others. We show that the correct value of the Hall viscosity at zero
frequency can be obtained (at least in the absence of low-frequency bulk and shear viscosity) by
assuming that there is an orbital spin per particle that couples to a perturbing electromagnetic
field as a magnetization per particle. We study several examples as checks on our formulation. We
also present formulas for the stress response that directly generalize the Berry (adiabatic) curvature
expressions for zero-frequency Hall conductivity or viscosity to the full tensors at all frequencies.

I. INTRODUCTION

There has been great interest recently in the viscosity
of quantum fluids, coming from various directions. These
directions include a conjectured lower bound on the ratio
of the shear viscosity to entropy density of a fluid, from
the AdS/CFT correspondence1; the properties of an in-
teracting gas of fermions with interactions described by
s-wave scattering at or near the unitarity limit2; and the
so-called Hall viscosity, an antisymmetric part of the vis-
cosity tensor analogous to Hall conductivity, which has
been calculated for several gapped topological phases3–5.
Viscosity, whether in a solid or fluid, is essentially the

set of transport coefficients describing the relaxation of
a deviation of the momentum density from its value in
(possibly only local) equilibrium. Hence it is necessary
that momentum be conserved in order even to consider
viscosity. If the momentum density at x at time t is
g(x, t), the continuity equation for momentum is

∂gν(x, t)

∂t
+ ∂µτµν(x, t) = 0, (1.1)

(Greek indices µ, ν, . . . , = 1, . . . , d refer to space com-
ponents, d is the dimension of space, and repeated Greek
indices are summed). The stress tensor operator τµν(x, t)
plays a central role in calculating viscosity. The viscos-
ity tensor in a fluid can be defined as the expectation
of the stress due to a time-varying “strain”. Unlike in a
solid, in a fluid with no external fields present, an intrin-
sic local static strain tensor is not defined in full in any

completely natural way, but we can define its trace as
tru = δ(Ld)/Ld, where Ld is the volume, for a uniform
dilation, or locally using the average particle number den-
sity n as tru = −δn/n. The local expected stress does
not respond to a change in the shape of a box confining
the fluid (which can be considered as an attempt to im-
pose a static strain uαβ), except that there is a response
of the pressure to a change in volume; the pressure is the
expectation of the trace of the stress tensor, divided by
the dimension of space. However, time-dependent strain
has an analog, which is the matrix of gradients of the
velocity field v, the average velocity of the fluid:

∂uαβ
∂t

=
∂vβ
∂xα

.

The change in the average stress tensor 〈τµν〉 from its
equilibrium value can be formally expanded in time
derivatives, as

δ 〈τµν〉 = −λµναβuαβ − ηµναβ
∂uαβ
∂t

+ . . . , (1.2)

where λµναβ is the tensor of elastic moduli and ηµναβ is
the viscosity tensor. Here we may view this as holding
between local quantities at the same position in space
from a long-wavelength point of view, or to zeroth order
in spatial derivatives. Then in a fluid,

λµναβ = κ−1δµνδαβ , (1.3)

that is, only the trace of τ responds, and only to tr u,
corresponding to a change in volume or local density of
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the fluid. The coefficient κ−1 is the inverse compress-
ibility, κ−1 = −Ld(∂P/∂(Ld))N , the derivative of the
pressure with respect to volume Ld of the fluid, taken
at fixed particle number N . So far, we did not use ro-
tational invariance (isotropy) of the fluid; if we do, then
the stress tensor is symmetric, and only the more familiar
symmetrized rate of strain

1

2

(
∂vα
∂xβ

+
∂vβ
∂xα

)
(1.4)

enters, so that ηµναβ is also symmetric under the ex-
change α ↔ β. Another part of the expected stress is
the momentum flux mnvµvν (where m is the particle
mass), which is very important in fluid mechanics (e.g.
in obtaining the Navier-Stokes equations), but will not
be encountered in this paper as we consider only linear
response to strains.
Without assuming rotation invariance, we can further

distinguish some parts of the viscosity tensor. η can be
divided into a symmetric and antisymmetric part under
exchange of the first and the last pair of indices3:

ηµναβ = ηSµναβ + ηAµναβ ,

ηSµναβ = ηSαβµν ,

ηAµναβ = −ηAαβµν . (1.5)

For the zero-frequency parts that we consider at the mo-
ment, only the symmetric part of ηS contributes to dis-
sipation. For a rotationally-invariant d-dimensional sys-
tem it has only two independent components,

ηSµναβ = ζδµνδαβ + ηsh
(
δµαδνβ + δµβδνα − 2

d
δµνδαβ

)
,

(1.6)
with ζ the bulk viscosity and ηsh the shear viscosity. ηA

can only be nonzero when time-reversal symmetry is bro-
ken, and in rotationally-invariant two dimensional system
has only one independent component,

ηAµναβ = ηH (δναǫµβ − δµβǫαν) , (1.7)

with ηH the so-called Hall viscosity3,4. For gapped quan-
tum systems at zero temperature, it has been shown us-
ing the adiabatic approach to quantum transport that

ηH = 1
2~ns, (1.8)

where n is the expected particle number density in the
ground state, and s is minus the average orbital spin per
particle4,5; see also Refs. 6 and 7. ~ is Planck’s constant,
which we usually set to 1. We should point out that in
Ref. 5, there is an unfortunate sign mistake in the defi-
nition of the stress tensor in eq. (2.18) of that reference,
which propagated through the paper, though the adia-
batic curvature results are correct. This means that all
viscosities calculated there should have the opposite sign;
above we have also reversed the sign in the definition of

the scalar ηH , so as to retain the memorable formula, eq.
(1.8).

The purpose of this paper is to develop a variety of
Kubo formulas from which the viscosity tensor, which
in general is frequency dependent and complex, can be
calculated in quantum fluids at zero or non-zero temper-
atures. A motivation for doing so is to define the Hall
viscosity from a Kubo formula, and thus make contact
with traditional approaches. In addition, we consider the
relation of the viscosity tensor to the conductivity tensor
in Galilean-invariant systems, in which the latter tensor
is the momentum-momentum density response; the rela-
tion comes from the continuity equation, eq. (1.1), and
(along with some other relations in this paper) it can be
called a Ward identity. This has been studied previously,
or else frequently is used as the definition of the viscosity
for calculation purposes; our goal is to do it allowing for
the possibility of a Hall viscosity. Moreover, we will do
the same in the presence of a magnetic field. In this case,
total (kinetic) momentum is not time-independent, but
precesses at the cyclotron frequency. We will show that
we can nonetheless derive parallel formulas in this case.
In particular, we recover a formula of Hoyos and Son8

that relates the Hall viscosity in a quantum Hall state to
the order q2 part of the Hall conductivity at wavevector
q and the inverse compressibility κ−1 above (suitably de-
fined in the presence of the magnetic field), and generalize
it further. These results bring us closer to finding exper-
imental techniques with which the Hall viscosity can be
measured. We also study several example systems, to
validate our approach to Kubo formulas for the viscos-
ity tensor. Finally, we show, in a partially heuristic way,
that the Hall viscosity can be rederived from macroscopic
electrodynamics by using the relation with conductivity,
and assuming that at low frequencies the system behaves
as if there is an orbital spin −s per particle that acts as
a contribution to magnetization density.

The basic strategy of our work is to define the viscosity
from the response of the stress to an external field. This
external field enters (in some gauge choices) as a spatial
metric, or if we do not assume rotational invariance, as
what we will call a strain; it is generally assumed to be
constant in space. (This strain field is external, and can
have arbitrary time dependence. This does not contra-
dict our statement that a static strain is not fully de-
fined in a fluid, as that was for an intrinsic strain, which
would be a property defined given any state of the fluid
in no external field. But where the intrinsic strain is de-
fined, i.e. for its static trace and for its time derivative,
the stress responses to either of the two strains should
agree.) It is well known (especially in gravitation the-
ory and high-energy physics) that the stress tensor is the
change in the Lagrangian or Hamiltonian with respect
to the metric. We build on this to consider the under-
lying response function, that gives the viscosity, as the
next order response of this stress to the time-derivative
of the strain field. This approach has the advantage of
making contact with previous work in which the Hall vis-
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cosity of some systems was calculated3–5 using the adia-
batic transport technique. It closely parallels the case of
conductivity, in which one considers the response of the
current, which is the change in Lagrangian or Hamilto-
nian with the vector potential, to an electric field, viewed
as the time-derivative of the perturbing vector potential,
setting that vector potential to zero at the end. Our
approach uses the standard Hamiltonian (canonical) op-
erator formalism, plus linear response. We do not make
any assumptions that hydrodynamic behavior or local
equilibrium holds, or use constitutive relations, beyond
motivating the names for some parts of our expressions,
such as compressibility and viscosity. We focus on quan-
tum systems, but a similar discussion could be given in
the classical setting.

Early work on response-function type formulas for
transport coefficients was done by Green, Kubo, Mori,
Kadanoff and Martin, and Luttinger, starting in the
1950s9–13. Green and Mori initially used somewhat phe-
nomenological methods. “Mechanical” formulations as
the response to an external field, similar to ours, were
used by Kubo10 for the electrical conductivity case, and
by Luttinger13 for thermal transport and viscosity, and
for the most part the final formulas agree with those of
Green and Mori. Kubo and Luttinger began by deriv-
ing the retarded response function to an externally ap-
plied field, and then transformed to expressions that are
not as familiar today, involving an integration over an
imaginary time variable, as well as one over real time.
By contrast, most references from the last forty years
follow Kadanoff and Martin12 in using only retarded re-
sponse functions to obtain “Kubo-type” formulas, now
usually called simply Kubo formulas. (We too use only
this formalism.) For the particular case of viscosity, many
authors including Luttinger13 base the definition on the
continuity equation, eq. (1.1), and his “mechanical” for-
mulation is a study of the response of the momentum
density to an electric field (which couples to the number
current, equal to the momentum density times the mass
in a Galilean-invariant system of particles that all have
the same mass and unit charge). This leads him to a cor-
rect formula as a stress-stress response function which,
however, he writes in terms of an additional integral over
an imaginary-time interval. In many other papers, in-
cluding the interesting recent Ref. 14, the starting for-
mula is the momentum-momentum response, which has
to be expanded to order q2 as the wavevector q tends
to zero, to obtain the viscosity tensor. (We note that
this approach cannot be employed to define viscosity of
a finite system, which was defined using a strain in the
adiabatic approach.) In some of these papers the stress-
stress form is not used at all. But in most papers that do
give a stress-stress form for the response function that
yields the viscosity, the formulas frequently are incom-
plete, lack a derivation, contain pitfalls for the unwary,
or are simply incorrect. In particular, we are not aware
of any derivations from an external strain field in the
many-body literature. Hence, and because so much time

has elapsed and notations have changed since the 1960s,
we feel justified in revisiting these formal matters here.
In order to explain the issues that need to be corrected

in the stress-stress form, we will use the more familiar
case of conductivity as an analogy. For the (complex)
conductivity tensor at zero wavevector, it was shown by
Kubo10 that the approach outlined above gives rise to
the Kubo formula

σµν(ω) =
in

mω+
δµν

+
1

ω+

∫ ∞

0

dt eiω
+t

∫
ddx 〈[jµ(x, t), jν (0, 0)]〉0 . (1.9)

Here jν(x, t) is the current density operator (equal to
gν/m in a Galilean-invariant system), ω+ = ω + iǫ, the
limit ǫ → 0+ is implicit, and the expectation is taken
in the unperturbed ground state or statistical ensem-
ble, denoted 〈. . .〉0. We set the charge of the particles
to 1 throughout this paper. This expression gives the
response of the expectation of the current density to a
uniform external electric field. (When multiplied by m2,
it is also the q → 0 limit of the momentum-momentum
response mentioned above; this fact will not play any
role just now). The first term is the so-called diamag-
netic current, which (in the approach we are using at
the moment) arises because the current density in the
presence of a perturbing vector potential Aν is actually
jν(x, t) − Aν(x, t)n(x, t)/m (because the Hamiltonian is
quadratic in Aν), where n(x, t) is the number density op-
erator. The second term is the current-current retarded
response function (though we usually reserve such termi-
nology for the complete expression). We note that text-
book derivations of linear response usually assume that
the perturbing field appears only linearly in the Hamil-
tonian (except possibly when considering conductivity),
and then no such “contact” terms (i.e. terms like the dia-
magnetic term in the conductivity) appear.
It would not be wise to drop the diamagnetic current

term from the conductivity. Recall the Sokhotski-Plemelj
formula (for ω real),

1

ω + iǫ
= PP

1

ω
− iπδ(ω), (1.10)

where PP denotes the principal part (both terms become
meaningful once substituted into an integral). Even if
one wants to find only the real part of the conductivity,
the diamagnetic term contributes a δ-function at zero
frequency. In some cases, such as for fermions without
impurity scattering (disorder), both in Fermi liquids and
paired superfluids, the time-integral term vanishes and
the diamagnetic term is the full response. At zero fre-
quency, one would say that the conductivity is infinite,
which is correct.
For the real part, some authors instead use the formula

Reσµν(ω) =
Re
∫∞

0 dt eiω
+t
∫
ddx 〈[jµ(x, t), jν (0, 0)]〉0
ω

,

(1.11)
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in which the πδ(ω) coming from use of the Sokhotski-
Plemelj formulas has been dropped, both in the dia-
magnetic term, and in the time-integral term (the latter
would contain the imaginary part of the time integral, in
place of the real part here). This is correct when these
δ-functions cancel, which does happen for the case with
impurity scattering. In the simple Drude approximation,
the complex conductivity tensor is

σµν(ω) =
in

m(ω + i/τimp)
, (1.12)

where 1/τimp is the impurity scattering rate; there is no
δ(ω) piece in the real part. In that case the real part of
the time integral, which is kept, gives the correct broad-
ened Drude peak, in the simplest approximation. But
in the limit as the impurity scattering rate goes to zero,
the correct result at zero frequency should be diverging,
while use of the above formula gives a result that in-
creases as the rate gets smaller, but jumps to zero when
there is strictly no impurity scattering. One would like
to criticize this behavior for not being continuous, how-
ever if the value at zero scattering was infinity it would
not be continuous either. Looking at the full function of
ω, not only at ω = 0, we would like to say that the cor-
rect result approaches a δ-function continuously as the
scattering rate goes to zero. This makes sense only if
we interpret Reσµν(ω) as a distribution for any scatter-
ing rate; then it is correct to say that as the rate goes
to zero, it approaches a δ-function continuously (in the
space of distributions). But this continuity with the limit
of zero scattering is lost if the above form Re

∫∞

0
dt . . . /ω

is used.
The use of eq. (1.11) also leads to difficulties with the

Kramers-Kronig (KK) relations, that do not occur with
the correct form, eq. (1.9), even if the diamagnetic term
is dropped (because that complex term obeys the KK
relations). The difficulty can be remedied only by rein-
stating the πδ(ω) times the imaginary part of the ω = 0
time-integral. However, the diamagnetic term cannot be
recovered in this way, unless one has for example an ar-
gument that the real part of σ contains no δ-function at
zero.
The issues in the literature on Kubo stress-stress for-

mulas for viscosity are very similar to these. Let us now
give one of our forms (slightly simplified) for the response
function from which we obtain the viscosity:

χµναβ(ω) =
1

iω+

{〈
∂τµν(0)

∂λαβ

∣∣∣∣
λ=0

〉

0

+i

∫ ∞

0

dt

∫
ddx eiω

+t 〈[τµν(x, t), ταβ(0, 0)]〉0
}
.(1.13)

The time-integral term is what would be expected for
the stress-stress response. The first term, which is fre-
quency independent except for the 1/ω+ factor, is what
we call (following long-time usage in the high-energy lit-
erature) a contact term (this has no connection at all
with the so-called “contact” in the theory of interacting

Fermi gases at the unitarity limit15–17). Without giving
the full details here, λαβ is the external strain, and vary-
ing the Hamiltonian with respect to λµν gives (minus)
the stress tensor τµν(x). The stress still depends on λ,
like the current above. Thus the response of the expecta-
tion of the stress to the strain contains the contact term,
which is one more derivative with respect to λαβ ; it is
directly analogous to the diamagnetic conductivity. By
contrast, stress-stress response formulas in the literature
usually omit this term, an exception being the early work
of Luttinger13, whose expression is equivalent to this, but
is written in a way that may now seem obscure (the rela-
tion can be found in Kubo10). We will now give reasons
why the contact term has to be retained.
We pointed out earlier that in a homogeneous fluid,

the expectation of the stress is

〈τµν(x, t)〉0 = Pδµν , (1.14)

and that a static strain affects this at first order, the
coefficient being the inverse compressibility. It follows
that there will be a part of the response function,

χµναβ(ω) ∼
iκ−1

ω+
δµνδαβ + . . . (1.15)

as ω → 0, and any remaining 1/ω+ term has vanishing
trace on the indices µν and on αβ (this result is valid
at non-zero as well as at zero temperature). The coef-
ficient κ−1 is equal to the zero frequency limit of the
response function −iω+χµµαα/d

2, and there is a contri-
bution from the contact term as well as from the time-
integral term (we discuss this more formally in Sec. III.4
below). Thus dropping the contact term spoils this rela-
tion. It is a feature of our approach that this term can be
easily identified as the inverse compressibility, because it
is the response to a static external strain.
We then define the complex viscosity tensor to be

ηµναβ(ω) = χµναβ(ω)−
iκ−1

ω+
δµνδαβ . (1.16)

(We note that Luttinger13 recognized the need to sub-
tract such a term to obtain the viscosity tensor, however
he derives it using hydrodynamic arguments and local
equilibrium.) It follows from the preceding remarks that
the bulk viscosity cannot diverge as ω → 0 (see the def-
initions above, for rotationally-invariant systems). The
shear viscosity has a contribution from the contact term,
and so the real part has a δ(ω) contribution. This may
sometimes be cancelled by another from the time-integral
term. In particular, this occurs in a gapped system at
zero temperature, which should have no dissipative vis-
cosity at ω = 0. It also occurs in an interacting Fermi
liquid at positive temperature T , which has a finite shear
viscosity at ω = 0 that tends to infinity as the tempera-
ture goes to zero. Thus, similarly to the case of the con-
ductivity of a Fermi gas with impurities, the δ-function
terms must cancel. Either of these cancelations is spoiled
if the contact term is dropped.
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Some authors, who consider fluids at positive tempera-
tures, use an expression for the real part of the viscosity,

Re ηµναβ(ω) =

Re
∫∞

0 dt
∫
ddx eiω

+t 〈[τµν(0, t), ταβ(x, 0)]〉0
ω

,(1.17)

where ω in the denominator is real (iǫ is dropped). In
particular, Kadanoff and Martin give a related form,
which can be obtained from this using the fluctuation-
dissipation theorem and letting ω → 0. In this form,
δ-functions δ(ω) are all dropped, which removes the κ−1

term, and gives the viscosity correctly only if the remain-
ing δ(ω)’s do cancel in the real part of our full expression
above. As with the conductivity of a Fermi gas with im-
purities, use of this form in an interacting Fermi liquid as
T → 0 gives discontinuous behavior of the shear viscosity,
which ought to be continuous when viewed as a distribu-
tion. It also gives zero for a non-interacting Fermi gas,
instead of infinity. While one may say that in either of
these two limits, hydrodynamics is not well defined, it is
preferable to have continuous behavior of our theories,
and these are reasons to retain the contact term.
A few authors go a step further than this, asserting

that the complex viscosity is given by

ηµναβ(ω)
?
=

∫∞

0 dt
∫
ddx eiω

+t 〈[τµν(0, t), ταβ(x, 0)]〉0
ω

, (1.18)

with 1/ω, not the more correct 1/ω+. This is incorrect,
as the right hand side usually has a divergence as ω → 0
in the trace part, which is a contribution to, but not equal
to, κ−1. Further, if the δ(ω)’s are to cancel in the real
part of the correct expression, it must also have a 1/ω di-
vergence in the imaginary part of the shear viscosity, that
is cancelled by that due to the contact term. [The recent
paper by Taylor and Randeria14 correctly states that the
contact term (in one particular form) contributes to the
imaginary part of the viscosity.] These latter forms also
lead to difficulties with the KK relations, as in the con-
ductivity case. There is sufficient information in these
forms to recover a version (given by the last expression,
but with ω replaced by ω+ in the denominator) that sat-
isfies the KK relations, but the contact term cannot be
fully recovered in this way.
A further reason to retain the contact term is that then

the Ward identity relation with the conductivity tensor
has a simple form,

σνβ(q, ω) =
in

mω+
δνβ+

qµqα
m2ω+2

χµναβ(ω)+O(q4), (1.19)

in zero magnetic field in a Galilean-invariant system. We
see that there is a term iκ−1qνqβ/(m

2ω+3) on the right
hand side, which is sometimes wrongly omitted (e.g. in
Ref. 14).
Now we will describe some of the highlights of our work

in the present paper. We begin in Sec. II with some tech-
nical background used to set up the stress response ex-
pressions. As mentioned above, we work systematically

with the response to an external “strain” field. This can
be introduced in two ways in particular. Again, an anal-
ogy with conductivity may be helpful here. The conduc-
tivity is the response of the number current density to
an external electric field, and the field is taken to be uni-
form in space, and have frequency ω. The field can be
represented in two ways in particular, which are simply
two gauge choices. One is as a scalar potential, which de-
pends linearly on position, because the field is uniform.
The other is as a vector potential which is constant in
space, and whose time derivative gives the electric field
(and so is non-zero even when ω = 0). Both formula-
tions appear in the literature; the latter is very common-
place, while the first has the drawback that the linearly-
varying scalar potential is not compatible with periodic
boundary conditions, and the choice of suitable bound-
ary conditions for a finite-size calculation becomes more
problematic, though this is frequently ignored. On the
other hand, in the first formulation the external electric
field appears only linearly in the Hamiltonian, so there is
no contact term in the response function, whereas in the
formulation using the vector potential, the external field
appears quadratically, and so there is a contact term—
the diamagnetic current term, as discussed above. Last,
we note that the transformation from one formulation to
the other is a unitary transformation, simply implement-
ing the change of gauge in the quantum theory.
Similar alternatives appear in the case of stress re-

sponse. It is known that stress is the derivative of the
Hamiltonian with strain, so we may begin with a Hamil-
tonian with a general, spatially-uniform strain that de-
pends on time (it appears nonlinearly in the Hamilto-
nian). A time-independent strain can be eliminated from
the Hamiltonian by a coordinate transformation, which
for spatially-constant strain is a linear transformation.
The two coordinate systems used to describe our system,
which are related by this transformation, are referred to
as the x and X variables, respectively. These coordinate
transformations take the place of U(1) gauge transforma-
tions; the relation can be understood if we realize that the
conserved quantity corresponding here to particle num-
ber in the conductivity case is the total momentum of the
particles, and so in the generators of infinitesimal trans-
formations, the x-dependence must be multiplied by the
momentum of the particle on which it acts:

Jαβ = − 1
2

∑

i

{xiα, piβ} (1.20)

for zero magnetic field, which leads to coordinate trans-
formations (for the conductivity problem, the corre-
sponding operators are

∑
i x

i
α). These generators will

be called strain generators; they play a central role in
our approach. In fact, the time derivative of a strain
generator gives the corresponding component of the in-
tegrated stress tensor. This follows either from expand-
ing the (Fourier-transformed) continuity equation to first
order in wavevector, or by seeing that the time deriva-
tive is the commutator with the Hamiltonian, which thus
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produces the change in the Hamiltonian with a uniform
strain, which we know is the (integrated) stress.

As the strain generators generate linear transforma-
tions of the coordinates (and inverse ones of the mo-
menta, as the transformations are canonical), they obey
the relations of the Lie algebra gl(d,R) of the group of
invertible matrices GL(d,R) which describes (invertible)
linear transformations. We further generalize this to the
case with a magnetic field (in d = 2 dimensions). Pre-
vious work4,5 considered mainly transformations in the
subgroup SL(d,R), consisting of shears and rotations but
not dilations, because of the apparent difficulty of includ-
ing dilations in the presence of a magnetic field. Here we
overcome this difficulty using a technical trick: when the
system is dilated, for consistency the magnetic field must
be rescaled as an inverse length-squared. To do this, we
promote the magnetic field strength to be a quantum
variable B, for which the canonically conjugate momen-
tum P does not appear in the Hamiltonian. Then oper-
ator expressions for the strain generators can be written
down as before, and the integrated stress tensor is again
the commutator of these with the Hamiltonian. Finally,
the states with which we work are assumed to have small
width in B, so that the results correspond to a fixed mag-
netic field as in conventional approaches.

With this formalism in hand, we are ready to tackle
stress response in Sec. III. One place to start is in the X
variables, in which the time-derivative of the strain (but
not the strain itself) appears linearly in the Hamiltonian,
multiplied by the strain generator, similar to the conduc-
tivity case when using the scalar potential to represent
the external field; there is then no contact term in the re-
sponse. This “stress-strain” form can then be integrated
by parts on time, to obtain the “stress-stress” form which
is similar to what was already discussed above, and in-
cludes a contact term. (It can also be obtained as the
response to a strain by working directly in the x vari-
ables, similar to the vector-potential formulation in the
conductivity case.) A different integration by parts pro-
duces instead the “strain-strain” form, which is a strain-
strain response function, and is useful in making contact
with the adiabatic approach. These three forms have di-
rect parallels with Kubo’s Theorem 2 (there is a typo
in the second line of the stated theorem in Ref. 10; the
dot should be over the second occurrence of φBA, not
the first). There are several variations on these results,
including formulas for the response in the local stress τµν
instead of in the integrated stress, and the use of peri-
odic boundary conditions in some of these formulations,
or of a confining potential that is handled similarly to the
magnetic field. We argue that the inverse compressibility
must be subtracted from the foregoing response to ob-
tain the viscosity tensor as described already above; in a
magnetic field, this becomes the inverse “internal” com-
pressibility, the partial derivative with respect to area
taken with the flux through the system fixed, not the
field strength. We argue that the bulk viscosity is never
diverging at zero frequency (unlike the shear viscosity,

which may), and discuss the form of standard sum rules
and positivity constraints on the spectral density. We
emphasize that these results are for all components of
the viscosity tensor, including Hall viscosity.

Sec. IV is devoted to the relation of the stress response,
and hence viscosity, to the conductivity itself. The rela-
tion is between the stress response at zero wavevector,
and the second derivative of the conductivity with re-
spect to wavevector, and holds for all frequencies. This
has been discussed previously in zero magnetic field, and
is sometimes used to define the viscosity. Our derivation
includes a uniform magnetic field (with zero field as a
special case). This relation may then be studied at low
frequencies, where if the bulk and shear viscosities are
zero, there is a relation between the Hall viscosity, the
second derivative of the Hall conductivity, and the in-
ternal compressibility, which agrees with recent work by
Hoyos and Son8. We find that the relation still holds if
these dissipative viscosity coefficients are non-zero but fi-
nite, and can be generalized to allow for diverging shear
viscosity at zero frequency also.

In Sec. V, we study several simple examples as checks
on our formulation. These include the free (non-
interacting) Fermi gas in zero magnetic field, which pos-
sesses a diverging shear viscosity. Other examples are a
non-interacting Fermi gas in non-zero magnetic field, for
which we can find the full frequency-dependent response
function, and fractional quantum Hall states, for which
we recover the Hall viscosity in agreement with previ-
ous work. Finally, we consider paired states of fermions
for pairing functions with non-zero angular momentum,
for which we recover the Hall viscosity in agreement with
Refs. 4 and 5, for a mean-field model in which the Hamil-
tonian is quadratic in field operators. In each case, we
can verify the relation with conductivity, using results of
some previous authors (who did not consider viscosity).

Finally, in Sec. VI, we show that using macroscopic
electrodynamics, together with the assumption (in the
spirit of an effective theory) that an external perturb-
ing magnetic field couples to the orbital spin −s of each
particle as a magnetization, we again recover the Hall
viscosity result, eq. (1.8).

In Appendix A, we show how a standard expression
for the stress tensor in a rotationally-invariant interact-
ing particle system can be obtained by varying the spatial
metric in the Hamiltonian. In Appendix B, we describe
a formalism for including a confining potential to make a
finite-volume system in an infinite space, and show that
it works in the example of free fermions in a harmonic
potential. In Appendix C, we show that the three forms
of Kubo formula for stress response can be written down
in periodic boundary conditions, using derivatives of the
ground state instead of strain generators. This makes
contact with the adiabatic approach to quantum trans-
port, in which Hall conductivity and Hall viscosity are
written as Berry curvatures (and then as a Chern num-
ber in the case of Hall conductivity) and generalizes it to
non-zero frequency, and to gapless systems. In Appendix
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D, we show that some assumptions of time-translation in-
variance that were used at some points in the derivations
are justified.

II. STRESS TENSOR AND STRAIN

GENERATORS

In this section, we provide background needed for the
viscosity linear response calculation. We discuss Hamil-
tonians with a strain that could be static, and others
(related by a coordinate transformation, implemented by
a unitary transformation) that contain only the time-
derivative of the strain, times a strain generator. The
basic relation giving the integral of the stress tensor as
the time derivative of the strain generator is obtained.
We consider separately the two cases of zero magnetic
field (in Sec. II.1), which is mostly straightforward, and
non-zero magnetic field (in Sec. II.2), which is less so.

II.1. Zero magnetic field

We begin by considering a HamiltonianH0 for a system
of interacting particles in infinite d-dimensional space:

H
(x)
0 =

1

2m

∑

i

piµp
i
µ +

1

2

∑

i6=j

V (xi − xj), (2.1)

where xi are the coordinates of the ith particle (i = 1,
. . . , N), and pi are their momenta, with

[xjµ, p
k
ν ] = iδµνδjk. (2.2)

(Here and in what follows, we use Roman letters i, j, . . . ,
for particle indices.) We could be more general by intro-
ducing an anisotropic mass in the kinetic term; this mod-
ification is simple to make and will not be done explicitly.
In general we do not assume the interaction potential V
is rotationally invariant. Then we introduce a spatially-
uniform strain Λ, that is a linear transformation in the
coordinates (with matrix Λµν), and the corresponding
inverse transformation of the conjugate momenta5. We
then allow Λ to depend on time t. This transformation
is viewed actively, as changing the Hamiltonian of the
system, relative to the same variables xi, pi. The Hamil-
tonian for this system is then

HΛ(t) =
gµν(t)

2m

∑

i

piµp
i
ν +

1

2

∑

i6=j

V
(
ΛT (t)(xi − xj)

)
,

(2.3)
where

gµν(t) = Λµα(t)Λνα(t),

gµν(t) = Λ−1
αµ(t)Λ

−1
αν (t). (2.4)

We also define the matrix λµν by

Λ = eλ (2.5)

as matrices. Here gµν is the metric, and gµν is the inverse
metric. If the Hamiltonian is rotationally invariant, then
the strain enters only through the metric gµν and its
inverse. We shall work primarily in units where ~ =
e = 1, unless otherwise stated.
The strain transformation is canonical (and in fact

does not mix coordinates and momenta), so it can be
implemented by a unitary transformation S(t) for each
t:

HΛ(t) = S(t)H
(x)
0 S−1(t). (2.6)

We can parametrize the strain transformation S(t) in
terms of generators Jµν such that

S(t) = exp(−iλµν(t)Jµν). (2.7)

Inserting this into Eq. (2.6) we find that the self-adjoint
strain generators J must obey

i
[
Jµν , p

j
α

]
= δαµp

j
ν ,

i
[
Jµν , x

j
α

]
= −δανxjµ. (2.8)

It follows that the strain generators must also satisfy

i [Jµν , Jαβ ] = δµβJαν − δναJµβ , (2.9)

which are the commutation relations of the Lie algebra
gl(d,R), associated with the group GL(d,R) of linear co-
ordinate transformations. In particular, the antisymmet-
ric part of Jµν is simply −1/2 times the angular momen-
tum operator; for example in three dimensions,

Lσ = −ǫσµνJµν . (2.10)

We can satisfy Eqs. (2.8) and (2.9) by choosing5

Jµν = −1

2

∑

i

{
xiµ, p

i
ν

}
. (2.11)

With HΛ(t) as the starting point, we now use a similar
strain transformation but with a different point of view.
We make a time-dependent change of variables from xi,
pi (which we term the x variables) to Xi = ΛT (t)xi and
Pi = Λ−1(t)pi (which we term the X variables), which
is again a canonical transformation implemented by the
same S is defined as above: ΛT (t)xi = S(t)xiS−1(t),
and similarly for pi. In the Heisenberg picture, the time-
dependence of operators is determined by the Heisenberg
equation of motion, for example for an operator A in the
x variables

i
dA

dt
= [A,HΛ(t)] + i

∂A

∂t
(2.12)

where ∂A/∂t means the derivative acting on the explicit
time dependence of A. This equation of motion requires
a choice of the canonical variables used (here xi, pi),
which are viewed as having no explicit time dependence.
But then due to the time-dependence of the change of
variables, when the X variables are viewed as having no
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explicit time dependence, the resulting equations of mo-
tion will not agree with simple changing variable unless
an additional term is included in the Hamiltonian. For
an operator B, using the X variables, one has

i
dB

dt
= [B,H ] + i

∂B

∂t
, (2.13)

where

H = H
(X)
0 +H1, (2.14)

H1 = −i
(
∂S

∂t

)

x,p

S−1, (2.15)

in which H
(X)
0 = HΛ(t) is viewed as a function of Xi and

Pi, and so is the same functional form as H
(x)
0 above,

but with xi and pi replaced by Xi and Pi. In the partial
(explicit) time derivative of S, xi and pi are to be viewed
as time-independent. However, one can show that

−i
(
∂S

∂t

)

x,p

S−1(t) = −iS−1(t)

(
∂S

∂t

)

X,P

. (2.16)

S can be expressed in terms of strain generators for the
X variables,

J (X)
µν = − 1

2

∑

i

{X i
µ, P

i
ν}, (2.17)

which are related to Jµν by a linear transformation. The
change of canonical variables is similar to that which
occurs when passing to a rotating frame in mechanics,
which in fact is a particular case of the above derivation.
As we will be interested only in linear response, we can

expand the perturbation −iS−1 ∂S
∂t

to first order in λ to
find that in the X variables the term H1 is

H1 = −∂λµν
∂t

Jµν . (2.18)

(This form of a perturbation to a rate of strain is fairly
common in the literature, see e.g. Ref. 14.) At the same
time, the distinction of x and X can be dropped, and
we usually use x variables to lighten notation. We have
thus mapped the Hamiltonian for a system with a time
varying metric to that of a system in a fixed Euclidean
metric, with a perturbation generating time-dependent
deformations. The viscosity can now be computed as the
response of an appropriately defined stress tensor to this
strain perturbation. This is analogous to the computa-
tion of the conductivity σµν , where one can consider ei-
ther the response of the current to a time-varying vector
potential, or — after an appropriate gauge transforma-
tion — the response of the current to a scalar potential.
To define the stress tensor, let us start with the con-

tinuity equation for momentum density g(x), defined in
zero magnetic field and in the absence of strain (and so

using x variables and Hamiltonian H
(x)
0 ) by

g(x) =
1

2

∑

i

{
pi, δ(x− xi)

}
. (2.19)

In the absence of other external forces, the continuity
equation reads

∂gν(x, t)

∂t
+ ∂µτ

(0)
µν (x, t) = 0, (2.20)

where τ
(0)
µν (x) is the stress tensor operator in the absence

of strain, and ∂µ = ∂/∂xµ. A standard expression for τ
(0)
µν

for the Hamiltonian H
(x)
0 is the Irving-Kirkwood form18

(also used in Refs. 19 and 20); we derive it within our
framework in Appendix A. We note that the continu-

ity equation does not completely determine τ
(0)
µν , because

any operator with vanishing divergence (such as a curl
of something) could be added to τ without violating the
equation. This should not affect physical results, and in
particular will not be an issue when the stress tensor is
integrated over all space, as it often will be when the
viscosity is calculated.
Because we are interested in the long-wavelength be-

havior of the stress tensor, we will examine Eq. (2.20) in
Fourier space. To leading order in wavevector q, we have

∂

∂t


∑

j

(
pjν −

iqµ
2

{
xjµ, p

j
ν

})

+ iqµτ

(0)
µν (q = 0) = 0.

We define T
(0)
µν = τ

(0)
µν (q = 0) or equivalently T

(0)
µν =∫

ddx τ
(0)
µν (x), the integrated stress tensor. Then, because

H
(x)
0 is translationally invariant,

T (0)
µν = −∂Jµν

∂t
= −i [H0, Jµν ] . (2.21)

This relation between the stress and the strain generators
is a central result of this section. (As an example, for non-

interacting particles, T
(0)
µν =

∑
i p

i
µp

i
ν/m, the momentum

flux.) Since the antisymmetric part of Jµν is the angular
momentum, it is clear that the integrated stress tensor

T
(0)
µν is symmetric (that is, the antisymmetric part is zero)

when the Hamiltonian is rotationally invariant. We can
also view the result in another way: referring to eq. (2.6),
we see that

T (0)
µν = − ∂HΛ

∂λµν

∣∣∣∣
Λ=I

. (2.22)

This is consistent with the idea that the stress tensor can
be obtained by varying the Hamiltonian with respect to
the metric, but here is slightly more general as we do
not assume rotational invariance. In the rotationally-
invariant case, we can also write

T (0)
µν = −2

∂HΛ

∂gµν
, (2.23)

which again is clearly symmetric, because gµν is so (we
note that the corresponding expression in Ref. 5 has the
wrong sign).
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Strictly speaking, because the Hamiltonian H0 con-
tains no confining potential, for repulsive or for no inter-
actions, there is no normalizable ground state. We will
nonetheless go ahead somewhat informally (as in many
papers in the literature), and evaluate the response in a
normalizable state in which the particles occupy a region
(or “box”) of volume Ld, and we will treat the state as
if it were an eigenstate. Such expectation values will be
written as 〈. . .〉0. (A similar approach can be used for
non-zero temperature, and most of the following is also
valid for that case.) In a large system (i.e. as L and N
become large with the density remaining fixed—we re-
fer to this as the thermodynamic limit) this procedure
may possibly be justified over intermediate time scales.
In any case, our results will be seen to make sense. More
formally, and completely generally, we can add to HΛ(t)
an explicit “confining” potential term U ,

U =
∑

i

u(xi). (2.24)

The single-particle potential u(x) has no Λ dependence,
and can be used to represent a box (say, by using a hard-
wall potential) the shape of which is fixed in x variables
even as Λ varies. Then in the X variables, the poten-
tial becomes U =

∑
i u(Λ

T−1X), so the shape of the box
varies with Λ (these conventions agree with Ref. 5, ex-
cept that there a periodic boundary condition was used
instead, and the shape was chosen to be a square in the
x variables). The potential modifies the continuity equa-
tion for momentum density by the inclusion of an ex-
ternal force due to the potential, while the stress tensor
remains unchanged. We can also extend our formalism
to include the potential, in such a way that an analog of
eq. (2.21) holds, with H0 + U in place of H0, by modi-
fying the strain generators. In this way, we can justify
all the later results that we present here less formally by
ignoring the potential that confines the system to a finite
volume. This is sketched in Appendix B.
Returning to the original approach without a confining

potential, at zeroth order in strain, we can consider the
expectation of the stress. Then use of eq. (2.22) and the
Hellmann-Feynman theorem gives

〈
T (0)
µν

〉
0
= −

(
∂E(λ)

∂λµν

∣∣∣∣
Λ=I

)

N

, (2.25)

where E(λ) = 〈HΛ〉0 is the energy eigenvalue of the λ-
dependent ground state of HΛ (for time-independent Λ),
and we choose to emphasize that particle number N is
held fixed. By evaluating E in the X variables, in which
a time-independent Λ enters only through the shape and
size of the box, we realize that when the state is a ho-
mogeneous fluid, the ground state energy depends on the
volume of the box but not on its shape (in leading order
in the thermodynamic limit). As −∂E/∂(Ld) = P , the
pressure, we have therefore

〈T (0)
µν 〉0 = PLdδµν , (2.26)

(to leading order) as would be expected from the stan-

dard result, 〈τ (0)µν (x)〉0 = Pδµν . For non-zero tempera-
ture, we obtain the same result, as the derivative of the
expectation of energy is taken with the probabilities held
fixed, in order to use the Hellmann-Feynman theorem
under the thermal average. This implies that the deriva-
tive is taken with the entropy fixed, in agreement with the
thermodynamic definition of pressure. (A similar method
is used to find an expression for the pressure in Ref. 14.)
There are certain subtleties about the argument for this
result (for either zero or non-zero temperature), which we
will briefly discuss later in Sec. III.4, however the result is
still valid. We emphasize that we did not use rotational
invariance to obtain it.
We also point out that if we use eq. (2.21) and then

argue that the ground state is an eigenstate of H0, we

will conclude that all components of 〈T (0)
µν 〉0 vanish. This

is incorrect in general because in the absence of the po-
tential U , the normalizable state that we use is not an
eigenstate of H0 for repulsive or no interactions, while
if the potential U is included, there is a normalizable
ground (energy eigen-) state of H0 + U , but again the
argument is blocked.
In order to derive linear response of the stress to a time-

dependent strain, we will need the stress to next order
in the strain. For this it is convenient to notice that
HΛ is translationally invariant, and so the sum of pi is
conserved. This means that the density of p momentum
obeys a continuity equation, even in the presence of the
time-dependent strain Λ(t):

∂gν(x, t)

∂t
+ ∂µτµν(x, t) = 0. (2.27)

Here τµν depends on Λ; to illustrate the form of this, note
that the momentum flux term part of τµν integrated over
space is

Tµν =
∑

i

Λ−1
αµΛ

−1
αβ

piβp
i
ν

m
+ . . . (2.28)

where the omitted terms refer to interactions. Following
the same derivation as before, we see that

Tµν = −i[HΛ, Jµν ]. (2.29)

Then expanding to order λ, we have

Tµν = −i[H(x)
0 , Jµν ] + λαβ [[H

(x)
0 , Jαβ ], Jµν ] +O(λ2).

(2.30)
However, when we calculate response in the X variables,
we will use the stress tensor in those variables, which is
defined by transformation of tensors, so

T (X)
µν = ΛαµΛ

−1
νβTαβ. (2.31)

In terms of the X variables, this has the form T
(X)
µν =∑

i P
i
µP

i
ν/m+ . . . (where the omitted terms are from in-

teractions), and coincides with T
(0)
µν with Xi and Pi in
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place of xi and pi. In the x variables, it can be expanded
as

T (X)
µν = −i[H(x)

0 , Jµν ] + λαβ [[H
(x)
0 , Jµν ], Jαβ ] +O(λ2),

(2.32)
in which the order in the double commutator is reversed,

compared with Tµν . It is this integrated stress T
(X)
µν that

we believe constitutes a natural starting point for the
calculation of viscosity. However, we will see that in a
homogeneous fluid, the difference in results from using

either Tµν or T
(X)
µν is negligible in the thermodynamic

limit.

II.2. Nonzero magnetic field in two dimensions

We now turn to the problem of generalizing the preced-
ing set-up in the presence of an external magnetic field
B; we concentrate on two dimensions. Most of the work
is in finding the strain generators for this case; we will do
so by considering separately the cases of pure shear defor-
mations (detΛ(t) = 1) and pure dilations (Λµν(t) ∝ δµν).
The unstrained Hamiltonian can be taken to be

H
(x)
0 =

1

2m

∑

i

πi
µπ

i
µ +

1

2

∑

i6=j

V (xi − xj), (2.33)

where

π
i = pi −A(xi),

[
xjµ, π

k
ν

]
= iδjkδµν ,[

πj
µ, π

k
ν

]
= iBδjkǫµν . (2.34)

We usually assume that the interaction V is independent
of the magnetic field. Following the procedure of Sec-
tion II.1 above, we seek strain generators Jµν satisfying

i
[
Jµν , x

j
α

]
= −δανxjµ,

i
[
Jµν , π

j
α

]
= δµαπ

j
ν . (2.35)

First, let us consider the case of pure shear deforma-
tions. The Hamiltonian for the system in the presence of
the time-varying strain with detΛ = 1 is given by

HΛ(t) =
1

2m

∑

i

gµν(t)πi
µπ

i
ν +

1

2

∑

i6=j

V
(
ΛT (t)(xi − xj)

)
.

(2.36)
The condition det Λ = 1 implies that trλ = 0. If we
attempt naively to generalize the generators from zero
magnetic field by taking

J̃ sh
µν = −

∑

i

1

2

{
xiµ, π

i
ν

}
, (2.37)

we find that

i
[
J̃ sh
µν , x

j
α

]
= −δανxjµ,

i
[
J̃ sh
µν , π

j
α

]
= δµαπ

j
ν +Bǫναx

j
µ.

If we define

S̃ = exp
(
−itr(λT J̃ sh)

)
,

then these relations imply that the coordinates xi trans-
form correctly, while the momenta π

i transform as

S̃†πi
µS̃ = πi

µ + λµνπν +Bǫαµλναx
i
ν +O(λ2).

But note that if λµν is traceless, then the curl of the extra
term containing B is 0, and so it is just a λ dependent
gauge transformation. Thus, we see that J̃ generates
the desired strain transformation along with the gauge
transformation

Aµ → Aµ −Bλανǫνµxα.

An integration of this gauge term shows that, since λ is
traceless, the gauge transformation is given by

φ = −B
2
λµνǫναxµxα,

Aµ → Aµ + ∂µφ.

In order to remove this unwanted gauge transformation,
as well as to make this Jµν traceless, we define

J sh
µν = J̃ sh

µν − 1

2
tr(J̃ sh)δµν +

B

2

∑

i

ǫναx
i
µx

i
α (2.38)

=
∑

i

(
−1

2

{
xiµ, π

i
ν

}
+

1

4
δµν

{
xiα, π

i
α

}
+
B

2
ǫναx

i
µx

i
α

)
.

A short calculation shows that J sh
µν defined in this way re-

produces the traceless part of the transformations (2.35),
and therefore it is the desired traceless strain operator.
Next, we consider the case of a pure dilation. We will

soon see that we must define strains of the system so that
they rescale the magnetic field in such a way that the
magnetic flux Φ = L2B through the system stays fixed
while its shape is strained. With a fixed particle number
N , and defining the filling factor for the region of area L2

occupied by the particles as ν = 2πN/(BL2) (as usual),
this has the effect that we consider deformations at fixed
filling factor ν. For a dilation, we have

λµν =
1

2
tr(λ)δµν .

In accordance with Eq. (2.35), we seek a dilation gener-
ator K satisfying

i
[
K,xjµ

]
= −xjµ,

i
[
K,πj

µ

]
= πj

µ. (2.39)

Writing πi
µ = piµ −Aµ(x

i), we see that these imply that

i
[
K,xjµ

]
= −xjµ,

i
[
K, pjµ

]
= pjµ,

i
[
K,Aµ(x

j)
]
= Aµ(x

j). (2.40)



11

At first glance, it appears that we are in a quandary —
the first and third of these equations are inconsistent, un-
less the magnetic field strength B also transforms under
the action of K. To accomplish this, we promote the field
strength B to a dynamical variable, represented by an op-
erator B, whose eigenvalues are values B. This enlarges
the Hilbert space of the system to include states with dif-
ferent magnetic fields; we will continue to consider only
B > 0. At this point, we are naturally motivated to
introduce the momentum P conjugate to B, such that

[B,P ] = i. (2.41)

B and P commute with xi and pi for all i. Note that the
vector potential is now a function of B, but is independent
of P . We then have

πi
µ = piµ −Aµ(x

i,B), (2.42)

and

[
πj
µ, π

k
ν

]
= iBδjkǫµν . (2.43)

For consistency with eq. (2.39), we must also have

i[K,B] = 2B. (2.44)

The Hamiltonian (2.36) now becomes

HΛ(t) =
1

2m

∑

i

gµν(t)(piµ − Aµ(x
i,B))(piν −Aν(x

i,B))

+
1

2

∑

i6=j

V
(
ΛT (t)(xi − xj)

)
, (2.45)

where we have expressed π in terms of the canonical mo-
mentum and vector potential in order to make explicit
the dependence of the Hamiltonian on B. (Again, an
anisotropic mass can be introduced in the kinetic terms
if desired.) Since H is independent of P , states with
given eigenvalues B of B retain those values for all times.
Eigenstates of B are not normalizable, however, instead
we can use normalized packets with very small width in
B to calculate expectations in linear response.
A gauge-invariant dilation generator satisfying the

commutation relations (2.39) and (2.44) is then given by

K = −1

2

∑

i

{
xiµ, π

i
µ

}
+
{
B,Ξ({xi},B)

}
, (2.46)

where we have introduced the “kinetic momentum”
Ξ({xi},B) = P − ∑

i A(xi, B) conjugate to B, and
{xi} = {xi : i = 1, . . . , N} is the set of all xi’s. Under a
gauge transformation generated by some scalar function
φ(x, B) we have

Aµ(x, B) → Aµ + ∂µφ(x, B),

A(x, B) → A+ ∂Bφ(x, B). (2.47)

To complete our definition of K, we specify that if
the gauge choice is the symmetric gauge for all B,

that is Aµ(x) = − 1
2Bǫµνxν (which is preserved by x-

independent gauge transformations), then A is a function
of B only, independent of x. Then

[πj
µ, {B,Ξ({xk},B)}] = iǫµνBxjν , (2.48)

and this result of course is gauge covariant.

Putting it all together, we have thus shown that

Jµν = J sh
µν + 1

2Kδµν

=
∑

i

[
1
2

(
−
{
xiµ, π

i
ν

}
+ Bǫναxiµxiα

)]

+
1

2
δµν

{
B,Ξ({xi},B)

}
(2.49)

gives the strain generators for two dimensional systems in
a magnetic field, which satisfy eqs. (2.35), (2.44). These
generators also satisfy the gl(2,R) commutation rela-
tions (2.9), and the antisymmetric part is −1/2 times
the gauge-invariant rotation generator (“angular momen-
tum”). We note also that we consider only the range
B > 0. It can then be shown that the operator {B,Ξ}
is a bona-fide self-adjoint operator, which is not the case
for the operator Ξ alone, on this range.

As in Section II.1, we can now apply the canonical
transformation S = exp(−iλµνJµν) to transform to the
Hamiltonian in X variables, in which the corresponding
kinetic momenta areΠi (the variables B and P in X vari-
ables should be distinguished from those in the x vari-
ables also, but we will not introduce additional notation
for this; at this point, it should be clear from the con-
text). We find, as in the zero magnetic field case, that
the system with time-varying strain is equivalent to one
with Hamiltonian

H =
1

2m

∑

i

Πi
µΠ

i
µ +

∑

i6=j

V (Xi −Xj)− ∂λµν
∂t

Jµν

= H
(X)
0 +H1, (2.50)

to first order in λ.

As above, we can obtain an expression for the stress
tensor in the presence of a magnetic field by considering
the continuity equation for the kinetic momentum den-

sity (with time-dependence obtained from H
(x)
0 , which is

now generalized to include B), which reads

∂gν(x)

∂t
+ ∂µτ

(0)
µν (x) =

B
m
ǫναgα(x), (2.51)

with the kinetic momentum density given by

g(x) =
1

2

∑

i

{
π

i, δ(x− xi)
}
. (2.52)

As in the previous section, we Fourier transform this
equation, and to first order in wavevector q we find
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(again, T
(0)
µν =

∫
d2x τ

(0)
µν (x))

∂

∂t


∑

j

(
πj
ν − iqµ

2

{
xjµ, π

j
ν

})

+ iqµT

(0)
µν =

=
B
m
ǫνα

∑

j

(
πj
µ − iqµ

2

{
xjµ, π

j
α

})
. (2.53)

Now, the first term on either side cancels since only the
Lorentz force breaks conservation of total kinetic momen-
tum. Thus

T (0)
µν =

1

2

∑

i

(
∂

∂t

{
xiµ, π

i
ν

}
− B
m
ǫνα

{
xiµ, π

i
α

})
. (2.54)

We see that the term in the time derivative matches the
first term in Eq. (2.49) for the strain generator. Then we
have

∂

∂t

(
Jµν +

1

2

∑

i

{
xiµ, π

i
ν

}
)

=

=
B
2m

∑

i

(
ǫνα

(
πi
µx

i
α + xiµπ

i
α

)
+ δµνǫβαx

i
βπ

i
α

)

=
B
2m

ǫνα
∑

i

{
xiµ, π

i
α

}
. (2.55)

Thus finally

T (0)
µν = −∂Jµν

∂t
= −i

[
H

(x)
0 , Jµν

]
, (2.56)

just as in Eq. (2.21) above. The definitions for Tµν and

for T
(X)
µν and their expansions to order Λ in x variables

are the same as in zero magnetic field.
Again, at zeroth order in the strain, we can express

the expectation of the stress in terms of thermodynamic
properties, if we assume the state is a normalizable
ground (and eigen-) state of H0 for each value of B, and
as a function of B is concentrated near a value B. In
the case of a two-dimensional system with a magnetic
field, the field itself provides confinement, so normaliz-
able eigenstates exist for given B, and we may consider
a disk of fluid that covers an area L2. Then we expect

that the average total stress 〈T (0)
µν 〉0 can be decomposed

into a pressure term and a magnetization term20 as

〈T (0)
µν 〉0 = δµν(PL

2 −MB), (2.57)

where P = −(∂E/∂(L2))N,B is the pressure, and M =
−(∂E/∂B)N,L2 is the total magnetization. We define the
internal pressure20 as

Pint = P − MB

L2
(2.58)

or as

Pint = −
(

∂E

∂(L2)

)

ν,N

, (2.59)

where the partial derivative is at fixed N and fixed filling
factor, as we specified before. As pointed out by Cooper
et. al.20, in a homogeneous fluid, the usual pressure P is
the change in energy under a change in the size of the
box (at fixed B), and so includes a contribution from
the Lorentz force acting on the boundary current that
is related to the magnetization. This part is removed
by defining the internal pressure, or equivalently by tak-
ing the derivative with the flux through the system held
fixed.
In our framework, derivatives with respect to strain are

taken in exactly that way. If we calculate the expectation
of the stress using eq. (2.56), then we must be careful
to recall that the state is a wavepacket in B, and so
not an energy eigenstate of H0, because the energy for
given B generally depends on B. Now when calculating
the expectation of an operator that may depend on B,
but not on P (i.e. does not contain P), we can take the
expectation in the H0 eigenstate for each B, and then
average the result over B using the dependence of the
wavefunction on B. For the traceless (or shear) part of
Jµν , P does not appear, and so the fact that the state is
an eigenstate of H0 for each B can be used to conclude

that the expectation of T
(0)
µν is zero. This cannot be done

for the trace, so the result can be non-zero. On the other
hand, the stress, including its trace, is itself independent
of P , and so the result is the average over a small range of
B of the result for each B, and the latter can be related
to the derivative of energy with the strain (holding ν
and N fixed) using the Hellmann-Feynman theorem just
as in the zero magnetic field case. (This is done in x

variables, usingHΛ, and we emphasize that then xi and B
are viewed as fixed when taking derivatives with respect
to strain λ.) Then by averaging over a sufficiently small
range of B, the result for the trace is just the internal
pressure. Then the full result is

〈
T (0)
µν

〉
0
= δµνPint(L)L

2, (2.60)

and this result can be considered as exact, rather than
just as the order L2 part as the size goes to infinity, if
Pint(L) is defined in this way at finite L, but tends to the
thermodynamic Pint as L → ∞. For non-zero tempera-
ture, we should include all energy eigenstates, weighted
by their Gibbs weight, but then a similar difficulty as
in the zero magnetic field case in infinite size reappears:
most states are spread over arbitrarily large volumes. We
may deal with this in the same way as in Sec. II.1, or by
including a confining potential as in Appendix B. The
result takes the same form as in eq. (2.60).

III. KUBO FORMULAS FOR VISCOSITY

In this section, to calculate the viscosity, we first com-
pute the retarded response function Xµναβ of the inte-
grated stress tensor Tµν to the perturbation H1 in Sec.
III.1. Initially, we consider separately the zero magnetic
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field case in any dimension and the case of nonzero mag-
netic field in two dimensions. In Sec. III.2, we give the
response in the form of an intensive response function
χ, which can be defined in periodic boundary conditions
also. Then in Sec. III.3 we relateX and χ to the viscosity
tensor. We show in Sec. III.4 that a leading part of χ at
low frequency is the inverse compressibility, and finally
in Sec. III.5 discuss sum rules and positivity properties
of X and χ.

III.1. The response function from strain generators

We work in the X variables, and calculate the response

of the integrated stress T
(X)
µν to the perturbation H1, us-

ing linear response theory. Dropping the superscript (X),
the change in the stress tensor to first order is given by

〈Tµν〉 (t)− 〈Tµν〉0 = −
∫ t

−∞

dt′Xµναβ(t− t′)
∂λαβ(t

′)

∂t′
,

(3.1)
where the retarded response function X is given by

Xµναβ(t) = − lim
ǫ→0+

iΘ(t) 〈[Tµν(t), Jαβ(0)]〉0 e−ǫt. (3.2)

These expressions are to be evaluated with λ = 0, so
we may now drop the distinction between X and x, and
corresponding superscripts. The time evolution here is
taken with respect to H0, and the expectation is taken
in the unperturbed ground state of H0 (in zero magnetic
field, it is again subject to the same caveats as in sec-
tion II.1, which are addressed further in Appendix B).
The exponential damping ensures that the system was
unperturbed infinitely far in the past. Fourier transform-
ing Eq. (3.2), we find that in the frequency domain

Xµναβ(ω) = − lim
ǫ→0+

i

∫ ∞

0

dt eiω
+t 〈[Tµν(t), Jαβ(0)]〉0,

(3.3)
where ω+ = ω+ iǫ (the ǫ→ 0+ limit will be left implicit
from here on). We call this the stress-strain form of the
response function. It corresponds directly to the response
of the stress to an applied spatially-uniform rate of strain
∂λαβ/∂t. No rotational invariance has been assumed in
the derivation.
Using the relation (2.21), we can express Eq. (3.3) in

two additional equivalent forms. The second form of the
Kubo formula is the stress-stress form

Xµναβ(ω) =
1

ω+

(
〈[Tµν(0), Jαβ(0)]〉0

+

∫ ∞

0

dt eiω
+t 〈[Tµν(t), Tαβ(0)]〉0

)
. (3.4)

(In obtaining this, we had to use time-translation invari-
ance of the correlation function in eq. (3.3) to shift the
time dependence onto the operator Jαβ , and then back
after using the identity (2.21) and integrating by parts

on t.) The time-integral term is what one might have
expected for the response function, as the deformation
of shape couples directly to the stress tensor through
the metric. In the additional contact term (the equal-
time commutator term), the coefficient of 1/ω+ is purely
imaginary, because it is the expectation of a commutator
of self-adjoint operators. The complete expression is di-
rectly analogous to the standard Kubo formula for con-
ductivity in terms of the current-current response, and
the contact term in eq. (3.4) is analogous to the diamag-
netic conductivity. The latter will be discussed further
in Sec. III.2 below.
Lastly, we have the strain-strain form of the response

function

Xµναβ(ω) =− i 〈[Jµν(0), Jαβ(0)]〉0
+ ω+

∫ ∞

0

dt eiω
+t 〈[Jµν(t), Jαβ(0)]〉0. (3.5)

(In this case, the identity (2.21) and integration by parts
was used on the operator Tµν in eq. (3.3), and time-
translation invariance was not invoked.) This form of
the response function is closely connected with the adi-
abatic formalism for viscosity3–5. For systems with non-
degenerate ground states and an energy gap, the contact
term (the equal-time strain-strain commutator term) is
the adiabatic curvature associated with deformation of
the metric, and gives the full response as ω → 0. Note
this part is real and is manifestly antisymmetric under
exchanging the pair µν with αβ. It gives the simplest
way to see that the Hall viscosity is connected with the
orbital spin density in these cases5. See also Appendix
C.
A similar analysis applies in the magnetic field case.

Because the equations of motion Eqs. (2.21) and (2.56)
are functionally identical, the same three forms of Kubo
formula Eqs. (3.2-3.5) for the response of T to H1 hold
even in the presence of a magnetic field, provided one uses
the appropriate strain generator as given in Eq. (2.49).
The different forms of the Kubo formula can be viewed

as related by use of Ward identities. Generally, Ward
identities are the consequences of symmetries or conser-
vation laws for response or correlation functions. In our
case, the key relation, Eq. (2.21) or (2.56), was obtained
by expanding the Fourier-transformed continuity equa-
tion to first order in wavevector.
There are some technical points about the derivation

to discuss. These center around the assumption of time-
translation invariance, which is usually assumed to hold
for response functions such as eq. (3.2), on the basis
that the unperturbed ground state is an eigenstate of
the unperturbed Hamiltonian (or similarly at non-zero
temperature, because the thermal weighting is station-
ary). As we have mentioned already, for the systems we
consider, in zero magnetic field a normalizable ground
state is generally not available unless a confining poten-
tial is included; this is because the system is in infinite
volume, so that the strain generators can be defined. In
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Appendix D, we show that the preceding Kubo formulas
are certainly valid as written in the presence of non-zero
magnetic field, using the formalism of Sec. II.2, and also
more generally using the formalism of Appendix B.

For rotationally-invariant systems, in which H0 com-
mutes with angular momentum (the antisymmetric part
of Jµν), the symmetries of X can be read off from the
formulas. First, Tµν is symmetric, and therefore Xµναβ

is symmetric under µ ↔ ν. Next, in the stress-strain
and stress-stress forms the part of X antisymmetric un-
der α ↔ β also vanishes, using the assumption that the
ground state is an H0 eigenstate (more detailed or care-
ful arguments can be given along lines discussed at the
end of Sec. III.5 and in Appendix D below). This holds
without assuming the ground state is an angular mo-
mentum eigenstate. Finally, for the strain-strain form,
at first sight it may be less obvious that the part of X
that is antisymmetric under µ ↔ ν vanishes. However,
for these components one can see that the time-integral
term cancels the contact term (and similarly for the part
antisymmetric under α ↔ β), again without assuming
the ground state is an angular momentum eigenstate.

III.2. Intensive form of the response and periodic

boundary conditions

The stress-stress form, eq. (3.4), of the response
Xµναβ(ω), which is an extensive quantity, can also be
understood in another way, as the response to a change
in λ using the Hamiltonian HΛ in the x variables. In
the rotationally-invariant case, this is the same as the re-
sponse to a change in metric, and this point of view may
be familiar to some readers. Using this approach, we can
also obtain a Kubo formula in terms of intensive quan-
tities only, which is compatible with periodic boundary
conditions, and will be useful later.
To rederive eq. (3.4), we work in x variables, and recall

that the integrated stress tensor we are using is T
(X)
µν , eq.

(2.31), and its expansion to order λ in the x variables was
given in eq. (2.32) (and the same forms are valid with a

magnetic field). Then the linear response of T
(X)
µν to the

strain, divided by −iω+ so that this is actually the re-
sponse to dλαβ/dt, and finally dropping the distinction
between x and X variables (as we require only the linear
response), gives exactly eq. (3.4). The contact term came
from the expansion of the stress to order λ in eq. (2.32),
just like the familiar diamagnetic term in the conductiv-
ity response comes from expanding the current operator
to order Aµ (Aµ being the perturbing vector potential,
the response to which is conductivity).
A similar approach works for the linear response of the

local stress tensor τ
(X)
µν (X) = (det Λ)−1ΛαµΛ

−1
νβ ταβ(x) to

the uniform strain [the (detΛ)−1 factor is present be-
cause this transforms as a density, or formally because
the δ-function should be written inX space rather than x

space]; the result is the same as eq. (3.4), but with τµν(0)

in place of Tµν . Here we have used the same boundary
conditions as for the previous derivation, that is, a sys-
tem in an infinite volume. But a similar derivation also
works for periodic boundary conditions. These are de-
fined in x variables as periodic boundary conditions on
a box (or “unit cell”) of fixed shape and size (indepen-
dent of Λ), say a cube. The Hamiltonian is HΛ as before,
except for the different boundary conditions, and unin-
teresting changes to the interaction potential to ensure
it is periodic. When a magnetic field is present (in two
dimensions), the flux through the unit cell is fixed in-
dependent of Λ also, and must be an integer number of
flux quanta (the flux quantum is 2π in our units); use
of the operator B is not required here. In X variables,
the box has periodic boundary conditions described by

Λ, as X = ΛTx, while the Hamiltonian H
(X)
0 is indepen-

dent of Λ, except possibly through the interaction po-
tential, the boundary conditions, and also the magnetic
field strength varies with Λ so that the flux through the
unit cell stays fixed. We note that with these boundary
conditions, translational invariance holds strictly. Eq.
(2.32) does not hold due to the non-existence of Jµν in
a finite-size system with these boundary conditions, but

there is still an expansion of τ
(X)
µν (X) to order λ in the x

variables:

τ (X)
µν (X) = τ (0)µν (x) +

∂τ
(X)
µν (X)

∂λαβ

∣∣∣∣∣
λ=0

λαβ +O(λ2). (3.6)

Another benefit of these boundary conditions is that
normalizable energy eigenstates always exist. Then the
Kubo formalism, working in x variables, leads to the re-
sult for linear response of the stress at x = 0 in the
ground state (or at nonzero temperature) to a uniform
rate of strain, which we call χ:

χµναβ(ω) =
1

iω+

{〈
∂τ

(X)
µν (0)

∂λαβ

∣∣∣∣∣
λ=0

〉

0

+i

∫ ∞

0

dt

∫
ddx eiω

+t
〈[
τ (0)µν (0, t), τ

(0)
αβ (x, 0)

]〉
0

}
;(3.7)

the integral over x is restricted to the box. (There is of
course also a similar formula for X with these boundary
conditions; one expects the leading, extensive part of X
to be independent of the choice of boundary conditions.)
Now we can take the infinite size limit (with particle den-

sity held fixed, as always). In the limit, because τ
(X)
µν (0)

is a local operator, its expansion to order λαβ in terms
of the commutator with Jαβ is again valid. Then finally
we have [dropping the superscript (0)]

χµναβ(ω) =
1

ω+

{
〈[τµν(0), Jαβ ]〉0

+

∫ ∞

0

dt

∫
ddx eiω

+t 〈[τµν(0, t), ταβ(x, 0)]〉0
}
.(3.8)

This agrees with the argument sketched just above, which
began with N particles in infinite space.
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We can also transform this stress-stress expression into
a stress-strain form. As we have already passed to the
infinite system, we can use the relation eq. (2.21) and
integration by parts again, to obtain

χµναβ(ω) = −i
∫ ∞

0

dt eiω
+t〈[τµν(0, t), Jαβ(0)]〉0. (3.9)

Note that a strain-strain form for the response is not
available in terms of intensive quantities.

III.3. Viscosity from the response function

It is natural to ask how the extensive and intensive
forms are related. χµναβ(ω) is not simply Xµναβ(ω)/L

d,
because of the following simple point. Recall that X is

the response of 〈T (X)
µν 〉 to strain, while χ is the response of

〈τ (X)
µν (0)〉 instead. Assuming a homogeneous fluid state,

these should be related by

〈T (X)
µν 〉 = Ld〈τ (X)

µν (0)〉, (3.10)

where Ld means the volume of the system, which is the
Λ-dependent volume of the box, Ld = Ld|Λ=I detΛ, cal-
culated either in the X variables as the volume of the
Λ-dependent box using the fixed, standard Euclidean
metric, or in x variables for a fixed box but with the
Λ-dependent metric. (Actually, without rotation invari-
ance, these metrics might not be uniquely defined by our
models, however the formula is still correct, because the
important point is how the volume varies with Λ, which
is always through detΛ only.) Then for the response at
first order, we obtain

Xµναβ(ω)/L
d = χµναβ(ω)−

i

ω+
δµνδαβP, (3.11)

where in the last term we use the result at zeroth or-
der in the strain, that in the thermodynamic limit the
expectation of the local stress is

〈τ (0)µν (0)〉 = δµνP, (3.12)

and this becomes δµνPint in the presence of a magnetic
field in two dimensions.
The response function χ is almost exactly what we

need to obtain the viscosity, which is supposed to be the
local stress response to a uniform ∂λµν/∂t, and so is an
intensive quantity. However, the expectation value of the
stress that we just discussed will respond to static (time-
independent) strains—see for example the hydrodynamic
forms (response local in space and time) in eq. (1.2). As
χ is the response to the time-derivative of the strain,
these elastic moduli at zero frequency will show up as
the coefficients of singularities ∼ i/ω+ in χ. If non-zero,
they might be confused with viscosity coefficients that
happen to diverge at ω = 0.
To deal with this and obtain expressions for the vis-

cosity tensor at all frequencies, we will remove from χ

these static, and thus equilibrium, elastic coefficients, by
subtracting the zero-frequency value of the response to
strain, that is the elastic moduli divided by iω+, and
call the remainder the viscosity tensor. For the homo-
geneous fluids we consider, the expectation of the stress
obeys eq. (3.12), which has an obvious generalization in
the presence of a static strain, and is affected only by a
dilation. Then we arrive at our definition for the viscosity
tensor at frequency ω in zero magnetic field,

ηµναβ(ω) = χµναβ(ω) +
i

ω+
δµνδαβL

d

(
∂P

∂(Ld)

)

N

,

(3.13)

or, in terms of the inverse compressibility κ−1 =
−Ld

(
∂P/∂(Ld)

)
N
,

ηµναβ(ω) = χµναβ(ω)−
iκ−1

ω+
δµνδαβ . (3.14)

This, along with Eqs. (3.3-3.5) and (3.11), or Eqs. (3.8)
and (3.9), give the Kubo formulas for viscosity in the
absence of magnetic field.
The case of two dimensions with a magnetic field is

similar, but the dilations involve a rescaling of magnetic
field, as we have seen. Then we arrive at

ηµναβ(ω) = χµναβ(ω) +
i

ω+
δµνδαβL

2

(
∂Pint

∂(L2)

)

ν,N

= χµναβ(ω)−
iκ−1

int

ω+
δµνδαβ , (3.15)

where κ−1
int = −L2

(
∂Pint/∂(L

2)
)
ν,N

is the “inverse in-

ternal compressibility”, with the second partial deriva-
tive taken with BL2 (or the filling factor) held fixed.
If we write the energy of the system as E(N,L2, B) =
L2ε(ν,B), where ε(ν,B) is the energy density as a func-
tion of Landau level filling factor ν = nφ0/B, where
n = N/L2 is the particle density and φ0 = hc/e is the
flux quantum (φ0 = 2π in our units), then

Pint(ν,B) = B

(
∂ε(ν,B)

∂B

)

ν

− ε(ν,B), (3.16)

κ−1
int(ν,B) = B2

(
∂2ε(ν,B)

∂B2

)

ν

. (3.17)

In the fractional quantum Hall effect, one encounters
incompressible fluids, which have vanishing compressibil-
ity at zero temperature. This refers to the usual com-
pressibility, which can be related to the change in den-
sity with chemical potential with the magnetic field fixed,
and so differs from the internal compressibility consid-
ered here, which is well-defined and usually non-zero and
finite. (Later, we will see that the latter can be extracted
from the q2 part of the conductivity.)
Further, there are similar results at non-zero tempera-

ture. For the (internal) compressibility, there is the ques-
tion of what is held fixed in taking the partial derivative
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of the pressure: the temperature or the entropy. We will
discuss this point in Sec. III.4, and argue that it is the
entropy, as mentioned in Ref. 14. After this point, our
discussion applies to both zero and non-zero temperature,
unless otherwise noted.

III.4. Non-divergence of bulk viscosity

Next we comment on the subtraction of terms contain-
ing the thermodynamic inverse (internal) compressibility
in the expressions for the viscosity in terms of the re-
sponse function, Eqs. (3.14) and (3.15), in either the ex-
tensive or intensive forms. We will be led to the striking
conclusion that the bulk viscosity is finite, not infinite.
Consider first the case of zero magnetic field in d dimen-
sions, and the extensive response X in finite size. We
can show in general that the leading contribution to the
diagonal or trace part Xd ≡ Xµµνν/d

2 of the response
function as ω → 0 is given by the derivative of PLd with
λ. In the stress-stress form, Xd is

Xd(ω) =
1

dω+
〈[T (0),K(0)]〉0

+
1

ω+

∫ ∞

0

dteiω
+t 〈[T (t), T (0)]〉0, (3.18)

where we have defined T ≡ Tµµ/d with d the dimension
of space. Asymptotically as ω → 0,

ω+Xd ∼ 1

d
〈[T (0),K(0)]〉0

+ lim
ω→0

∫ ∞

0

dt eiω
+t 〈[T (t), T (0)]〉0 . (3.19)

This is the response of the system to a static dilation at
zero wavevector. By inserting a complete set of energy
eigenstates |e〉 of H0 into the commutator in the second
line, we obtain

ω+Xd ∼ 1

d
〈[T (0),K(0)]〉0 + 2i

∑

e:Ee 6=E0

|〈0|T |e〉|2
E0 − Ee

(3.20)
(the restricted sum over states is really a principal part,
arising from careful use of ǫ → 0). As explained already
in Sec. III.2, working in the x variables the first term on
right-hand side is the expectation of the change in the
operator T (X) under a dilation. Then time-independent
perturbation theory using the x variables shows that the
right-hand side is the change in the expectation of T (X)

due to the dilation, the second term being due to the
change of the ground state. Thus

ω+Xd ∼ −i
(
∂ 〈T 〉
∂(Ld)

)

N

= −i
(
∂(PLd)

∂(Ld)

)

N

= i(κ−1 − P )Ld, (3.21)

showing that the response to a dilation at leading order as
ω → 0 is given by the difference between the inverse com-
pressibility and the pressure — it is an elastic response.

This is precisely the term we subtract from X to get the
viscosity in Eq. (3.13). We conclude that there can be no
divergent bulk viscosity at zero frequency. The argument
goes through similarly in the presence of a magnetic field
in d = 2, with P and κ−1 replaced by Pint and κ−1

int re-
spectively. It also goes through similarly for the intensive
formulation of viscosity in terms of χ, eq. (3.7).

This argument may give rise to some unease. The shear
modulus of a fluid is of course zero, while the preced-
ing argument may lead us to expect that it is given by
a similar time-independent perturbation theory expres-
sion, which (as we will see) is non-zero in some cases.
This must be related to the fact that the conventional
way to obtain the elastic moduli (including the inverse
compressibility or bulk modulus), which are susceptibil-
ities, from the stress-stress response function, would be
by taking the thermodynamic limit of the (intensive) re-
sponse first, then taking ω → 0 before q → 0. But we
have q = 0, then took ω → 0, and finally the thermody-
namic limit.

One can find susceptibilities directly at q = 0, pro-
vided one is careful with the order in which one takes the
derivative with respect to strain and the thermodynamic
limit. The usual “thermodynamic” formulas involve fi-
nite size, but the size is treated as large and discreteness
effects are ignored when differentiating the ground state
energy, which corresponds to taking the limit first. (Here
and in the remainder of this section we concentrate on
the case of zero temperature.) The perturbation theory
formula for the derivative (in finite size), as in the right-
hand side of eq. (3.20), takes the derivative of the ex-
pectation in a state that varies continuously with strain.
If the ground state energy level does not cross others as
the strain is varied, the result is most likely independent
of the order of the limit and the derivative. We expect
this is the case for pure dilations, leading to the pressure
and inverse compressibility. But perturbation theory can
break down if energy levels cross, especially if they do so
on a set in λ space that becomes dense as the size goes to
infinity. Then if by “ground state” we mean the lowest
energy state for given strain (as in the thermodynamic
formulas), this state vector changes discontinuously with
strain, and this effect cannot be picked up in perturba-
tion theory. Taking the derivative after the limit will
give a different result from taking it before, at whatever
strain it is taken. This is the case for shear strains, in
some gapless systems.

As an example, consider the free Fermi gas. Using pe-
riodic boundary conditions on a rhomboid-shaped box,
we can examine the expectation of H0 and of Tµν , and
their variation with shape to first order. InX variables, Λ
describes the shape of the box, and the metric in H0 and
in Tµν is the standard one. Then as is well-known, the
many-particle ground state for a given box is constructed
by occupying all single-particle plane-wave states with
wavevectors k inside the Fermi sphere; the radius of the
sphere is chosen to obtain the correct particle number N .
Under shear and dilation, the k points move around, and
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every so often points enter or leave the Fermi sphere.
Under a pure dilation, the volume of the Fermi sphere
changes so that exactly the “same” set of k points (up to
a rescaling) is always occupied, and no levels cross. But
during a nonzero shear (or shear and dilation together),
k points do enter or leave the Fermi sphere, and so the
ground state energy levels cross. In the limit, the ground
state energy density depends on the particle density in
the system, but not on its shape. Hence derivatives of
this energy density with respect to shear vanish, as ex-
pected. Derivatives with respect to dilations give the
pressure and inverse compressibility, and because no lev-
els cross as the scale factor detΛ is varied, the same result
would be obtained by differentiating the energy of the fi-
nite volume system, and taking the limit afterwards. But
for derivatives with respect to shear, in finite size the sec-
ond derivative is nonzero, though it becomes undefined
on a set of measure zero at which ground state levels
cross. Through the above formulas, this leads to an in-
finite shear viscosity, while the bulk viscosity is zero (we
give further details for the free Fermi gas in Section V.1
below). We expect, though we do not have a rigorous
proof, similar behavior for an interacting Fermi gas in a
Fermi-liquid phase, so that the pressure and compress-
ibility can be obtained by using dilations either before
or after the thermodynamic limit. This means the i/ω+

terms in Xd/L
d or the corresponding part of χ are can-

celed by the subtraction, and the bulk viscosity cannot
be infinite. But the shear viscosity will be infinite at
zero temperature, in agreement with calculations of its
temperature dependence21.

For the first derivative of ground state energy with re-
spect to shear, that is for the traceless part of the expec-
tation of the stress, the situation is slightly different from
that for the second derivative. Taking the limit first, the
ground state energy density will be independent of shear.
If, as an interval of a path in λ space is traversed (with
tr λ fixed), there are no level crossings, then the limit of
the first derivative along the path will also be zero. But
suppose there are level crossings on this path, and the
spacing of them goes to zero in the limit, so that the
set of positions of level crossings is dense (as for the free
Fermi gas). As the derivative taken after the limit is zero,
the lowest energy levels as a function of position on the
path must be close to a sequence of overlapping parabo-
las, with the minimum of each at the same energy. We
have seen that the second derivative is of order one, and
so the first derivative on any of these curves, anywhere
within the interval in which it is the lowest, will tend to
zero in the limit, because the distance in λ from the min-
imum of that curve goes to zero, as the level crossings
become dense. So (except on a set of measure zero in λ
on which the first derivative is not defined) the traceless
local (or intensive) stress in a fluid state does go to zero
in the thermodynamic limit, as claimed earlier.

At non-zero temperature, one can make different but
related arguments. In particular, the trace part ω+Xd

is now identified as −i(P − κ−1
S )Ld, or similarly with a

magnetic field in two dimensions, where the inverse isen-
tropic compressibility, κ−1

S , is κ−1
S = −Ld(∂P/∂(Ld))N,S

at fixed entropy S (and also fixed ν for the isentropic in-
ternal compressibility). This is because, as for the pres-
sure, the response function can be identified as the par-
tial derivative taken under the thermal average, with the
probabilities and hence the entropy, held fixed. These
compressibilities must be non-negative for stability. The
appearance of the isentropic compressibility in this limit
of the response is frequently obtained from hydrodynamic
considerations, rather than directly from the stress-stress
response, as here.
In the preceding arguments, we have taken the fre-

quency to zero in the response function before the ther-
modynamic limit. However, we will be using the intensive
functionsX/Ld, χ and η in the thermodynamic limit, and
the behavior of these as the frequency tends to zero sub-
sequently. The different order of limits does not appear
to be a problem. For example, in the zero-temperature
case, we can use the intensive form in x variables to study
the response of the trace of τ to a low-frequency dilation.
The leading part comes from the ground state adiabat-
ically following the dilation, and gives the inverse com-
pressibility. The real part of the bulk viscosity involves
transitions to excited states of the unperturbed system,
for which the available phase space is usually small (as
in a Fermi liquid, for example) or zero. Hence we expect
that at zero temperature, in general the real part of the
bulk viscosity actually goes to zero at zero frequency.

III.5. Spectral density, sum rules, and positivity

We can derive a spectral density for the viscosity ten-
sor, and a sum rule for it, by following a standard
method, starting from the convenient stress-strain for-
mulation, in either extensive or intensive forms. For the
extensive form, using Eqs. (3.3), we define the spectral
density function by19

X ′′
µναβ(ω) = − 1

2 i

∫ ∞

−∞

dt eiωt〈[Tµν(t), Jαβ(0)]〉. (3.22)

In many cases of linear response theory, such a func-
tion would be the imaginary part of the corresponding
retarded response function, although for transport func-
tions, such as conductivity as well as viscosity, the divi-
sion by −iω (in the current-current, respectively stress-
stress, forms) means that the spectral density is propor-
tional to the real part of the conductivity, if certain sym-
metries such as time-reversal and reflection symmetry are
unbroken. But this is not generally the case: X ′′ is not in
general real19, but does consist (in a finite size system) of
a sum of δ-functions in ω, with tensor-valued coefficients.
There is a spectral representation,

Xµναβ(ω) =
i

π

∫ ∞

−∞

dω′
X ′′

µναβ(ω
′)

ω+ − ω′
. (3.23)
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This shows that if X ′′ is real, it is the real part of X , as
expected. Xµναβ(ω) is analytic in the upper-half com-
plex ω plane, and there are also corresponding Kramers-
Kronig relations between X ′′ and the complementary
part X ′

µναβ(ω) = [Xµναβ(ω) −X ′′
µναβ(ω)]/i (for real ω),

which is the imaginary part of X when X ′′ is real. Fi-
nally, the definition leads immediately to a sum rule for
the total spectral density,

∫ ∞

−∞

dω

π
X ′′

µναβ(ω) = −i〈[Tµν(0), Jαβ(0)]〉. (3.24)

The “sum” on the right-hand side is real, because the
expectation of a commutator of self-adjoint operators is
imaginary. The sum rule can also be viewed as describ-
ing the ω → ∞ limit of Xµναβ(ω), using the spectral
representation on the one hand, and integration by parts
from the stress-strain definition of X , together with the
Riemann-Lebesgue lemma, on the other; this explains its
relation with the contact term in the stress-stress form.
There are related results for χµναβ and for ηµναβ . (Sim-
ilar sum rules were also discussed in Ref. 14, but only in
the absence of Hall viscosity.) One would expect that the
right-hand side is symmetric under µν ↔ αβ, which can
be shown in certain limits, as we discuss below. That is,
the Hall viscosity cancels from the sum rule. This would
then be similar to the case of conductivity, in which the
Hall conductivity cancels from the sum rule.
For further arguments, the stress-stress form of the

spectral density is most convenient. The only complica-
tion here is the factor 1/ω+ in the formula for X , which
causes the appearance of δ(ω) terms in the spectral den-
sity, in addition to δ-functions that come from the stress-
stress time-integral term. The former correspond to the
terms discussed in Sec. III.4. We can obtain the spec-
tral density by multiplying X ′′ in eq. (3.22) by iω, which
means differentiating with respect to t under the integral,
and then using relation (2.21) once again (after shifting
the t-dependence onto Jαβ). This has the effect of remov-
ing any δ(ω) terms from X ′′, one of which we know is the
inverse compressibility term. Reinstating these terms,
one has

X ′′
µναβ(ω) = πCµναβδ(ω)

+
1

2ω

∫ ∞

−∞

dt eiωt〈[Tµν(t), Tαβ(0)]〉 (3.25)

(in finite size, the time-integral expression should not
produce any δ-function at ω = 0), where the constant
tensor Cµναβ is

Cµναβ =− i 〈[Tµν(0), Jαβ(0)]〉0

− i

∫ ∞

0

dt e−ǫt 〈[Tµν(t), Tαβ(0)]〉0, (3.26)

and is real. Then, using arguments presented in e.g. Ref.
19, one can almost conclude that X ′′(ω), viewed as a
matrix with rows and columns indexed by the pairs µν

and αβ, respectively, should be Hermitian, and also pos-
itive semidefinite, for all ω, and that at zero frequency
it (i.e. Cµναβ) should be real. We say “almost” because
Forster’s discussion19 does not include the contact terms
in our stress-stress form, which contribute to X ′′ only
at zero frequency. Hermiticity holds at non-zero fre-
quencies, and the time-integral term in Cµναβ is real
and symmetric, so to obtain symmetry of the matrix at
zero frequency, we would need the contact term coeffi-
cient −i〈[Tµν , Jαβ ]〉 to be symmetric under the exchange
µν ↔ αβ. This is not yet obvious in general, and we dis-
cuss it further below. For positivity, the energy absorp-
tion argument19 does allow for contact terms, and those
that occur in the positivity statement at zero frequency
are automatically symmetrized, as they arise from the
second derivative of the Hamiltonian with respect to the
perturbing field, in our case of HΛ with respect to λ. The
part of Cµναβδ(ω) that vanishes on taking the trace on
µν and on αβ would either be zero, or would represent
an infinite shear viscosity, as discussed in Sec. III.4. At
zero frequency, the infinite shear viscosity (if any) must
be positive. For arbitrary frequencies, in simple cases
such as with time-reversal and reflection symmetries, in
which case the X ′′ matrix is symmetric, these conditions
imply that the real parts of the shear and bulk viscosi-
ties must be positive (like the real part of the symmetric
conductivity tensor). In general, at non-zero frequency,
the condition that the Hermitian matrix X ′′ be positive
semidefinite involves the imaginary part of the Hall vis-
cosity, and not only the shear and bulk viscosities (just
like the case of conductivity, in which the imaginary part
of the Hall conductivity enters); note that the discussion
in Sec. I was for frequency-independent or zero-frequency
viscosity coefficients only. At zero frequency, one state-
ment of positivity is for the intensive function χ′′(ω),
which differs from X ′′ by the pressure term in the trace
part; it implies that the inverse (internal) compressibility
should be non-negative, in agreement with a consequence
of thermodynamic stability. On the other hand, positiv-
ity of the trace part of X ′′ implies that κ−1

int − P ≥ 0
as well. This can also be viewed as a consequence of
thermodynamic stability, by using trλ as a “generalized
coordinate”, rather than the volume Ld.

If the zero-temperature real part of the shear viscos-
ity is a δ-function (that results in part from the contact
term), then at non-zero temperature in an interacting
system in the thermodynamic limit, the shear viscosity
at zero frequency will generally be neither zero nor infin-
ity, and as a function of frequency the δ-function becomes
broadened. In this case the δ-function is cancelled by a
contribution from the time-integral term, which also pro-
duces the broadened peak (which tends to a δ-function
at zero temperature). For such cases, the spectral rep-
resentation above for finite size should be rearranged so
there is no δ-function in the traceless part.

The symmetry of the contact-term coefficient

−i〈[Tµν , Jαβ ]〉 (3.27)
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under µν ↔ αβ can be shown under some conditions or
in some limits. Using relation (2.21) again, the antisym-
metric part is − 1

2 times the expectation value of

[[H0, Jµν ], Jαβ ]− [[H0, Jαβ ], Jµν ] = [H0, [Jµν , Jαβ ]]
(3.28)

(this also gives the difference between the contact terms
that would result in the x variables from use of Tµν ver-

sus T
(X)
µν at the end of Sec. II.1). The commutator of

the two J ’s always contains only traceless parts, as the
commutation relations can be rewritten

i [Jµν , Jαβ ] = δµβJαν − δναJµβ ,

= δµβ(Jαν − 1

d
δανJγγ)− δνα(Jµβ − 1

d
δµβJγγ).

(3.29)

Taking the expectation value, and using the relation
(2.21), we arrive at two expectations of traceless parts of
Tµν , which we have argued are small compared with Ld in
the thermodynamic limit (or zero, in the magnetic field
case in two dimensions). (In the rotationally-invariant
case, we look at parts symmetric under µ↔ ν and under
α ↔ β only, and then the commutator gives the angu-
lar momentum, and the expectation is zero even in finite
size.) Hence, if we are interested in the viscosity of the in-
finite (thermodynamic limit) system, then the symmetry
under µν ↔ αβ does hold, and has the pleasing conse-
quences mentioned above.

One might wish for more in the finite-size case. Our
basic definitions can, and perhaps should, be modified to
make the contact term in the stress-stress form symmet-
ric, by taking its symmetric part. It is not clear to us
fundamentally why that would have to be done, but it
would be useful anyway when performing numerical cal-

culations at finite size, to remove the antisymmetric part
that should not be present in the limit. Alternatively,
perhaps there is some physical meaning to the antisym-
metric part of the coefficient of δ(ω) in X ′′, even though
it does not contribute to energy absorption, or to the
physical (infinite-size) viscosity.

IV. RELATION BETWEEN VISCOSITY AND

CONDUCTIVITY

In a Galilean-invariant system with particles that all
have the same charge (which is one in our units) and
mass m, the momentum density is m times the number
current density. We will now use the intensive form of the
stress-strain response function to derive a general relation
between viscosity and conductivity for this case. We note
that this does not require rotational invariance, provided
that the inverse mass tensor is the same for each particle.
In this section we will usually treat the zero and nonzero
magnetic field case together, and so specialize to d = 2
dimensions; other cases are handled similarly.
We begin by using the translation-invariant system in

a box of volume (area) L2 with periodic boundary con-
ditions, with Hamiltonian H0. The continuity equation
for momentum density, eq. (2.51), can be written as

(
−δνλ

∂

∂t
+ ωcǫνλ

)
gλ(x, t) = ∂µτµν(x, t), (4.1)

where ωc = B/m is the cyclotron frequency. (For
B > 0, the following derivation still holds if there is an
anisotropic mass tensor, by making a suitable modifica-
tion of ωcǫνλ to a different tensor.) Due to the uniformity
of the magnetic field, we can use this to derive additional
modified Ward identities, in particular starting from the
stress-stress retarded response function:

qλqρ

∫ ∞

0

dt eiω
+t

∫
d2x e−iq·x 〈[τλν(x, t), τρβ(0, 0)]〉0 =

(iωδνλ + ωcǫνλ) (−iωδβρ + ωcǫβρ)

∫ ∞

0

dt eiω
+t

∫
d2x e−iq·x 〈[gλ(x, t), gρ(0, 0)]〉0

− iqγ

∫
d2x e−iq·x 〈[τγν(x), gβ(0)]〉0

− (iωδβρ − ωcǫβρ)

∫
d2x e−iq·x 〈[gν(x), gρ(0)]〉0 . (4.2)

Expressions similar to this have been used for zero mag-
netic field (ωc = 0) by many authors, in particular Taylor
and Randeria14, however even in that case our approach
differs in some of the details.

Assuming Galilean invariance, the number current
density j(x, t) is related to the momentum density by

j(x, t) = g(x, t)/m. Hence, the retarded function on the
right-hand side of Eq. (4.2) is the same as the one appear-
ing in the Kubo formula for the electrical conductivity
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(current-current response function),

σνβ(q, ω) =
in

mω+
δνβ

+
1

ω+

∫ ∞

0

dt eiω
+t

∫
d2x e−iq·x 〈[jν(x, t), jβ(0, 0)]〉0 .

(4.3)

Meanwhile, the left-hand side of Eq. (4.2) includes the
time-integral part of the intensive form of the response
function for viscosity, with two factors of q contracted
into it, presently in finite size, as in eq. (3.7). We will
now account for the remaining terms on the right-hand
side, and aim to take the thermodynamic limit and only
then expand in powers of q to second order, to obtain
the response function χµναβ(ω) from the conductivity.
It follows from the preceding derivation that, as the left-
hand side of Eq. (4.2) is of order q2, all terms of order
one and of order q on the right-hand side must cancel.
First, still in finite size, in the last term on the right-

hand side of Eq. (4.2), we can use translation invariance
to introduce integration over a variable x′, divide by L2,
and then evaluate, giving

1

L2

∫
d2x d2x′ e−iq·(x−x′) 〈[gν(x), gρ(x′)]〉0

=
1

L2

∑

i

1

4

〈[{
πi
ν , e

−iq·xi
}
,
{
πi
ρ, e

iq·xi
}]〉

0

=
1

L2

(
iNBǫνρ − qν 〈Gρ〉0 − qρ 〈Gν〉0

)
,

where G =
∑

i π
i is the total momentum. The ther-

modynamic limit of this exists, and contains no term of

order higher than q as q → 0.
Next, the second term on the right-hand side of

Eq. (4.2) can be manipulated to produce the contact term
in χ. First, we take the thermodynamic limit, and then
the part quadratic in q, by expanding the exponential
e−iq·x to first order. We also use translation invariance
again, so that the expression contains [τµν(0), gβ(−x)].
Then we recognize the occurrence of the first term of the
strain generator, if we write Eq. (2.49) in the form

Jµν = −
∫
d2xxµgν(x) +

∑

i

1
2Bǫναx

i
µx

i
α

+
1

2
δµν

{
B,Ξ({xi},B)

}
(4.4)

(or similarly without the terms containing B, if B = 0).
Then we can cast the contact term from Eq. (3.8) in the
form,

1

ω+
〈[τµν(0), Jαβ ]〉0 = − 1

ω+

∫
d2x 〈[τµν(0), xαgβ(x)]〉0 ,

(4.5)
where for B 6= 0 the last two terms in Eq. (4.4) do not
contribute, because they fail to commute only with the
kinetic part of the stress tensor, and the result of that
commutator always contains a product of a particle co-
ordinate with a delta function of that coordinate at the
origin. This means that the term in question can be ab-
sorbed into the time-integral term on the left to produce
precisely χ contracted with two qs.
Hence, Eq. (4.2) turns into a relation between the

conductivity and a symmetrized part of the intensive
strain-stress response function; we define χµναβ(ω) =
1
2 [χµναβ(ω) + χανµβ(ω)], then

χµναβ(ω) =
1
2m

2 (ωδνλ − iωcǫνλ)
∂2σλρ(q, ω)

∂qµ∂qα

∣∣∣∣
q=0

(ωδρβ − iωcǫρβ) . (4.6)

This is the central result of this section. When the magnetic field is zero, one can simply substitute ωc = 0 in the
above equations. Let us note that a similar relation holds in three dimensions:

χµναβ(ω) =
1
2m

2 (ωδνλ − iωcbγǫγνλ)
∂2σλρ(q, ω)

∂qµ∂qα

∣∣∣∣
q=0

(ωδρβ − iωcbδǫδρβ) , (4.7)

where b = B/|B| is a unit vector in the direction of the
magnetic field.

These results lend themselves to a simple interpreta-
tion. For simplicity, we will concentrate on two dimen-
sions. If we expand the wavevector-dependent conduc-
tivity in powers of the wavevector q,

σλρ(q, ω) = σ
(0)
λρ (ω) + σ

(2)
λρ (q, ω) + · · · , (4.8)

then the zeroth order term (the response to a uniform

electric field) is fixed by Galilean invariance to be

σ
(0)
λρ (ω) = − n

m

(
iω+δλρ + ωcǫλρ

)−1

=
n

m (ω+2 − ω2
c )
(iω+δλρ − ωcǫλρ) (4.9)

By Eqs. (4.6) and (4.9), the second order in q term is
related to the viscosity through

σ
(2)
λρ (q, ω) = −σ(0)

λν (ω)
1

n
qµχµναβ(ω)

1

n
qασ

(0)
βρ (ω). (4.10)
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One can intuitively understand this expression as follows:
in the presence of a nonuniform electric field E(q, ω), to
the leading order the system responds with a nonuniform

current, 〈jβ(q, ω)〉 = σ
(0)
βλ (ω)Eλ(q, ω), which implies a

strain rate u̇αβ(q, ω) = (iqα)σ
(0)
βλ (ω)Eλ(q, ω)/n (sym-

metrization over α and β is not important, as χµναβ(ω)

is symmetric with respect to these two indices). The
strain rate results in an average stress 〈τµν(q, ω)〉 =
−χµναβ(ω)u̇αβ(q, ω), whose spatial derivative gives a
contribution to the effective electric field acting on the
particles, Eeff

ν (q, ω) = −iqµ〈τµν(q, ω)〉/n, which then af-

fects the current (and the conductivity) via σ
(0)
λν (ω), re-

sulting in Eq. (4.10).

By Eq. (3.14) or (3.15), to arrive at the viscosity one should subtract the inverse (internal) compressibility contri-
bution from χµναβ(ω). Defining ηµναβ(ω) =

1
2 [ηµναβ(ω) + ηανµβ(ω)], we have

ηµναβ(ω) =
1
2m

2 (ωδνλ − iωcǫνλ)
∂2σλρ(q, ω)

∂qµ∂qα

∣∣∣∣
q=0

(ωδρβ − iωcǫρβ)−
iκ−1

int

2ω+
(δµνδαβ + δµβδνα) . (4.11)

For rotationally-invariant two-dimensional systems, there are only three independent (frequency-dependent) co-
efficients of viscosity: the bulk viscosity ζ, shear viscosity ηsh, and Hall viscosity ηH [cf. Eqs. (1.6)–(1.7)]. The
relation (4.6) can be used to extract the viscosity coefficients at all frequencies from the conductivity [taking q in the
x- (i.e. 1-) direction without loss of generality],

ζ(ω) +
iκ−1

int

ω+
= χ1111(ω)− χ1212(ω) =

m2

2

∂2

∂q2x

{(
ω2 − ω2

c

)
[σ11(q, ω)− σ22(q, ω)]

}∣∣∣∣
q=0

, (4.12)

ηsh(ω) = χ1212(ω) =
m2

2

∂2

∂q2x

{
ω2σ22(q, ω) + ω2

cσ11(q, ω) + 2iωωcσ
H(q, ω)

}∣∣∣∣
q=0

, (4.13)

ηH(ω) =
χ1112(ω)− χ1211(ω)

2
=
m2

2

∂2

∂q2x

{(
ω2 + ω2

c

)
σH(q, ω)− iωωc [σ11(q, ω) + σ22(q, ω)]

}∣∣∣∣
q=0

, (4.14)

where σH(q, ω) = [σ12(q, ω) − σ21(q, ω)]/2 is the Hall conductivity. Here we have separated ζ(ω) from iκ−1
int/ω,

according to our analysis of the trace part of the viscosity tensor in Sec. III.4. For zero magnetic field (ωc = 0, and
κ−1
int = κ−1), relations similar to the first two are fairly well known, but often are written in terms of the transverse

and longitudinal parts of σλρ; see for example Ref. 14, in which however the κ−1 term is absent. The Hall viscosity
decouples in this case.
Alternatively, again for a rotationally-invariant system in two dimensions, we can invert Eq. (4.6) to obtain the q2

part of the conductivity tensor, σ
(2)
λρ (q, ω). For vanishing magnetic field we find:

σ
(2)
λρ (q, ω) =

1

m2ω+2

[(
ζ(ω) +

iκ−1

ω+

)
qλqρ + ηsh(ω)q2δλρ + ηH(ω)q2ǫλρ

]
. (4.15)

For zero magnetic field, we see that the Hall viscosity can be obtained just from the q2 part of the Hall conductivity,
at all frequencies.
In the presence of a magnetic field, the expressions are more complicated, and for later use we retain only terms

that are non-vanishing at zero frequency, assuming that ζ and ηH do not diverge as ω → 0, and that ηsh does not
diverge more rapidly than 1/ω+. Then we have as ω → 0

σ
(2)
λρ (q, ω) ∼

1

m2ω2
c

[(
ζ(ω = 0) +

iκ−1
int

ω+

)
qµǫµλqαǫαρ + ηsh(ω)q2δλρ +

(
ηH(ω = 0)− κ−1

int

ωc

+
2iω

ωc

ηsh(ω)

)
q2ǫλρ

]
.

(4.16)
This can be used to obtain ηH(ω = 0) from the q2 part of the conductivity at ω → 0. If ηsh is non-diverging as ω → 0,
the antisymmetric part of the equation reduces to the relation found by Hoyos and Son8 between the Hall viscosity,
internal compressibility, and q2 part of the Hall conductivity at zero frequency in the presence of a magnetic field,
which they obtained for a gapped quantum Hall system at zero temperature (see eq. (3.17) for the equivalence of κ−1

int
with their expression). That relation is now seen to hold even when ζ(ω = 0) and ηsh(ω = 0) are non-zero but finite,
with a generalization for the case of diverging ηsh. Our formulas above give the generalization to all frequencies as
well.

V. EXAMPLES OF THE KUBO FORMULAS

AND CONDUCTIVITY RELATION

In this section, we consider applications of the Kubo
formulas to various simple model examples with rota-

tional invariance, at zero temperature except where oth-
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erwise stated.

V.1. The free Fermi and Bose gases

As a first application of our Kubo formula, let us com-
pute the viscosity of the free Fermi gas in d dimensions
at zero temperature and zero magnetic field. The unper-
turbed Hamiltonian for this system is

H0 =
1

2m

∑

i

piµp
i
µ. (5.1)

For a system of N particles enclosed in a very large box,
the ground state energy E0 has the form

E0 = 〈H0〉0 ∝ (Ld)−
2
d . (5.2)

From Eq. (2.21), the stress tensor is given by

Tµν = −i [H0, Jµν ] =
1

m

∑

i

piµp
i
ν . (5.3)

Because Tµν is independent of time, the time-integral
term in the stress-stress form of the Kubo formula (3.4)
vanishes, and we easily find

Xµναβ(ω) =
1

ω+
〈[Tµν(0), Jαβ(0)]〉

=
i

ω+

(
δµβ 〈Tνα〉0 + δµα 〈Tνβ〉0

)

=
2i

dω+
E0 (δµβδνα + δµαδνβ) , (5.4)

where we have used rotational invariance to express
〈Tµν〉0 in terms of E0: P = 2E0/(dL

d). Lastly, we have
that

P − κ−1 = −
(
∂E0

∂(Ld)

)

N

−Ld

(
∂2E0

∂(Ld)2

)

N

= − 4

d2Ld
E0,

(5.5)
and so from Eq. (3.14), we see that the zero-temperature
viscosity tensor of the free Fermi gas is given by

2i

dω+

E0

Ld

(
δµβδνα + δµαδνβ − 2

d
δµνδαβ

)
. (5.6)

This is purely a shear viscosity — the bulk viscosity of
the free Fermi gas is not only not infinite, as anticipated,
but identically zero at zero temperature. Furthermore,
the dissipative shear viscosity coefficient ηsh, given by the
real part of the scalar prefactor of ηµναβ , is

ηsh(ω) =
2πE0

dLd
δ(ω), (5.7)

which is zero for all ω 6= 0, and infinite at ω = 0. Such
delta-function divergences in response functions are char-
acteristic of noninteracting systems, and indicate that in
response to shear strains, the free Fermi gas accelerates

without bound. In an interacting Fermi gas at non-zero
temperature, the δ-function is broadened and the zero-
frequency shear viscosity is finite. As the temperature
tends to zero, it approaches a δ-function; the limit is
continuous in the space of distributions.
We note that one can derive the same result by first

finding the q-dependent conductivity through elementary
Green function techniques,

σνβ(q, ω) =
in

mω+
δνβ +

2i

dm2ω+3

E0

Ld

(
δνβq

2 + 2qνqβ
)

+O(q4), (5.8)

and substituting this expression into the zero mag-
netic field version of the viscosity-conductivity relation,
Eq. (4.11) [or, equivalently, comparing it with Eq. (4.15)].
For the free Bose gas, the calculations are very similar,

except of course that the Bose distribution must be used
in place of the Fermi distribution. In particular, at zero
temperature, the ground state is a Bose condensate with
all particles in the p = 0 state, instead of filling a Fermi
sea. In this case, the ground state energy E0, pressure P ,
and inverse compressibility κ−1, are all zero. Then using
similar arguments as above, the viscosity response tensor
vanishes identically. At positive temperature, the results
take the same form as above, but E0 is replaced by the
average energy E = 〈H0〉0. Then a δ-function real shear
viscosity, with coefficient proportional to E/Ld, again
appears; the bulk viscosity remains zero.

V.2. The integer and fractional quantum Hall fluids

Let us now compute the viscosity for non-interacting
electrons in an external magnetic field. The Hamiltonian
H0 is

H0 =
1

2m

∑

i

πi
µπ

i
µ. (5.9)

We can take our unperturbed state to have the lowest ν
Landau levels occupied, in a region of area L2, and so
the ground state energy is

E0 = nsωcL
2 =

ν2

2mφ0
B2L2, (5.10)

where as before s = ν/2 is minus the average orbital spin
per particle. However, this is unnecessarily restrictive
here, and at any temperature and any average filling fac-
tor ν the average energy is again 〈H0〉0 = nsωcL

2. From
Eq. (2.56), we have that

Tµν = −i [H0, Jµν ] =
1

2m

∑

j

{
πj
µ, π

j
ν

}
. (5.11)

We will calculate X using both the strain-strain and
stress-stress Kubo formulas. It will be convenient to work
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in the symmetric gauge, where the dilation generator K
takes the simple form

K = −1

2

∑

i

{
xiµ, π

i
µ

}
+ {B,P} . (5.12)

We can diagonalize the Hamiltonian H0 with two sets of
creation annihilation operators. Writing zj = xj + iyj

and z̄j = xj − iyj , these are (see e.g. Ref. 5)

bj =
1√
2B
(
πj
x + iπj

y

)
, (5.13)

aj = bj
† − i

√
B
2
z̄j, (5.14)

satisfying

[
bi, bj

†
]
=
[
ai, aj

†
]
= δij , (5.15)

[
bi, aj

†
]
=
[
bi, aj

]
= 0. (5.16)

In terms of these operators, the Hamiltonian takes the
simple form

H0 =
B
m

∑

i

(
bi

†
bi +

1

2

)
. (5.17)

The stress tensor can be written as

Tµν = δµνH0+
B
2m

∑

i

(
(bi

†2
+ bi

2
)τzµν + (bi

†2 − bi
2
)τxµν

)
,

(5.18)
where τx and τz are the standard x and z Pauli matrices.
The shear generator J sh

µν from Eq. (2.38) takes the form

J sh
µν =

∑

j

i

4

(
bj

†2 − bj
2 − aj

2
+ aj

†2
)
τzµν

−
∑

j

1

4

(
bj

2
+ bj

†2 − aj
2 − aj

†2
)
τxµν

+
∑

j

1

2

(
bj

†
bj − aj

†
aj
)
ǫµν (5.19)

(note we could have written ǫµν = iτyµν), and the dilation
generator K can be written

K = {B,P}+ i
∑

j

(
aj

†
bj

† − ajbj
)
. (5.20)

The shear generators agree with those presented by Read
and Rezayi5. The last ingredient we need is the commu-
tation relations between P and the creation and annihi-
lation operators. A computation shows that these are

[
P , bj

]
=

i

2Ba
j†, (5.21)

[
P , aj

]
=

i

2B b
j†. (5.22)

It is worth noticing also that

[K, ai] = [K, bi] = 0. (5.23)

Now, using the stress-stress Kubo formula (3.4), we
find rather directly that

Xµναβ(ω) =
E0

ω+2 − 4ω2
c

[
iω+(δµβδνα − ǫµβǫνα)

−2ωc(δναǫµβ − δµβǫαν)] +
iE0

ω+
δµνδαβ ,

(5.24)

where in ωc = B/m, B is again the value at the center of
the narrow wavepacket over B values. Finally, applying
Eqs. (3.16) and (3.17), we have

Pint = nsωc =
E0

L2
(5.25)

κ−1
int = 2nsωc = 2

E0

L2
(5.26)

and hence

ηµναβ(ω) =
E0

L2(ω+2 − 4ω2
c)

[
iω+(δµβδνα − ǫµβǫνα)

−2ωc(δναǫµβ − δµβǫαν)] . (5.27)

At non-zero temperature, the result is the same, with
the ground state energy density E0/L

2 replaced by
〈H0〉0/L2. We notice that the trace on µν or on αβ
vanishes at all frequencies—the bulk viscosity is identi-
cally zero. In the remainder, the spectral density consists
solely of δ-functions at the frequencies±2ωc, which repre-
sent transitions in which the Landau level index changes
by ±2. This is because of the quadrupolar nature of the
stress, and the fact that only the operators bi appear in
Tµν . In the ω → 0 limit, the viscosity reduces to the Hall
viscosity

ηµναβ(ω = 0) = 1
2n s (δναǫµβ − δµβǫαν) , (5.28)

in agreement with known results3,4,22. It is not surprising
that the zero-frequency bulk and shear viscosities vanish
when the temperature is zero and there is a gap in the
spectrum; that they do so in other cases as well is due to
the non-interacting nature of the system.
To make contact with the adiabatic calculation of the

Hall viscosity3–5,22, we can also calculate the viscosity
from the strain-strain formula (3.5). Naturally, this must
give the same result as Eq. (5.27), however it is enlight-
ening to see how this comes about. If we evaluate just
the equal-time contact term, we find

−i 〈[Jµν , Jαβ ]〉0 = 1
2


E0

ωc

−
∑

j

〈
aj

†
aj + 1

2

〉
0




× (δναǫµβ − δµβǫαν). (5.29)
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The intra-Landau level 〈a†a〉 term is larger than O(N),
but we know that it must cancel. On calculating the
time-integral contribution, we find as ω → 0

ω+

∫ ∞

0

dt eiω
+t 〈[Jµν(t), Jαβ(0)]〉0 ∼

iE0

ω+
δµνδαβ +

∑
j

〈
aj†aj + 1

2

〉
0

2
(δναǫµβ − δµβǫαν).

(5.30)

Here the i/ω+ term arose because there is a part of the
correlation function that is linear in t for large t. That
is present because the trace K = Jµµ has time derivative
−i[K,H0] = −Tµµ = −2H0, which is time independent.
Combining these, we see that the intra-Landau level con-
tributions to X exactly cancel in the final result. The
traceless part of this result was obtained previously by
considering the transport of degenerate subspaces in the
disk geometry in the infinite plane in the adiabatic trans-
port formulation of viscosity5.
We can also use the strain-strain form of the Kubo

formula (3.5) to calculate the ω → 0 traceless viscosity
of a fractional quantum Hall fluid in the lowest Landau
level. Although the presence of interactions makes ma-
nipulating the stress tensor rather cumbersome, we can
calculate the necessary matrix elements of the traceless
strain generators (5.19) for certain trial states. Because
of the non-standard time dependence of the dilation gen-
erator K, we avoid computation of the diagonal response
function.
Let us consider a fractional quantum Hall system in

the lowest Landau level. We assume that the interaction
is rotationally invariant, and commutes with all the Lan-

dau level raising and lowering operators bi
†
, bi. Further,

we assume it is one of the “special” Hamiltonians for
which exact zero-interaction-energy ground (and edge,
and quasihole) states lying in the lowest Landau level are
known (for more details on these, see Ref. 5). Since we
are only concerned with the traceless strain generators,
we are free to work with states with a fixed magnetic field
B. We denote by |0〉 the unique minimum angular mo-
mentum ground state of the fluid. Using the strain-strain
form of the traceless response function Xsh in Eq. (3.5),
along with the commutation relations Eq. (2.9), we have

Xsh
µναβ(ω) = δνα

〈
0|J sh

µβ |0
〉
− δµβ

〈
0|J sh

αν |0
〉

+ ω+

∫ ∞

0

dt eiω
+t
〈
0|
[
J sh
µν(t), J

sh
αβ(0)

]
|0
〉
.

(5.31)

Using the fact that the system is in the lowest Landau
level, we can evaluate the first term above to get

Xsh
µναβ(ω) =− 1

2

∑

j

〈0| aj†aj |0〉 (δναǫµβ − δµβǫαν)

+ ω+

∫ ∞

0

dt eiω
+t 〈0|

[
J sh
µν(t), J

sh
αβ(0)

]
|0〉 .
(5.32)

In the limit ω → 0, we can evaluate the time-integral
term. Note that in this limit, the only nonzero con-
tributions come from elements of the expectation value
which are independent of time (there is no other kind of
non-oscillatory time-dependence for these traceless com-
ponents). Let {|D〉 : D = 0, 1, . . .} be an orthonormal
basis for the subspace degenerate with the ground state
(including the ground state |0〉), and {|e〉 : e = 1, 2 . . .}
an orthonormal basis for the space of all eigenstates with
energy larger than that of the ground state (thus we are
assuming a discrete spectrum, as in a finite system). Now
we use the following fact: Given a system with a discrete
spectrum, and denoting by P0 =

∑
D |D〉 〈D| the projec-

tion operator onto the lowest-energy subspace, we have

lim
ω→0

ω+

∫ ∞

0

dt eiω
+t 〈0|A(t)B(0) |0〉 = i 〈0|A(0)P0B(0) |0〉

(5.33)

for any operators A and B. (In fact, the identity contin-
ues to hold if |0〉 is replaced by any state in the degenerate
subspace.) Using this in Xsh

µναβ(ω → 0), we obtain ex-
actly the expression that results from adiabatic transport
of a degenerate subspace as in Ref. 5:

Xsh
µναβ(ω = 0) = −i〈0|JµνP⊥Jαβ |0〉+ i〈0|JαβP⊥Jµν |0〉,

(5.34)
where P⊥ = 1 − P0. Thus it is the expectation of the
commutator of J ’s, as in the contact term, but in the
intermediate-state sum, the states degenerate with the
ground state are omitted. (The noninteracting system
considered above is a particular case, in which all intra-
Landau level effects cancel; this does not occur in frac-
tional quantum Hall states in interacting systems.)

In the present case, using Eq. (5.19) and noting that∑
i a

i†2 leaves the ground state in the degenerate sub-
space while

∑
i a

i2 takes it out of that subspace5, we
have

〈0|J sh
µνP0J

sh
αβ |0〉 − 〈0|J sh

αβP0J
sh
µν |0〉 =

i

8

∑

ij

〈0| ai2a†j
2 |0〉 (δµβǫαν − δανǫµβ) . (5.35)

Inserting Eq. (5.35) into the Kubo formula (3.5), we find

Xsh
µναβ(ω → 0)

= − 1
2 (δναǫµβ − δµβǫαν)

〈∑

i

ai
†
ai − 1

4

∑

ij

ai
2
aj

†2

〉

0

= 1
2sN (δναǫµβ − δµβǫαν) , (5.36)

(at leading order in the thermodynamic limit) where the
second line follows from the matrix elements computed
in Ref. 5. Thus again we obtain for the viscosity

ηµναβ(ω → 0) = 1
2sn (δναǫµβ − δµβǫαν) . (5.37)
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V.3. The viscosity-conductivity relation for

quantum Hall systems

In Sec. IV, we obtained a general relation between the
viscosity and the q2 part of the conductivity for a system
in a magnetic field. We have already commented there
that as ω → 0 we obtain a relation

1
2B

2 ∂
2

∂q2x
σH(q, ω = 0)|q=0 = ηH(ω = 0)−κ

−1
int

ωc

+
2iω

ωc

ηsh(ω)

(5.38)
which is more general than that of Hoyos and Son8, but
which reduces to theirs [using eq. (3.17)] when the shear
viscosity is non-diverging at ω → 0.
It is interesting to compare the full frequency-

dependent relation with an exact calculation for the in-
teger quantum Hall state at filling factor ν, based on
the results of Chen et al.23 for σµν(q, ω). Extracting the
quadratic in q terms in the conductivity from their cal-
culations we find:

∂2σ11(q, ω)

∂q2x

∣∣∣∣
q=0

=i
ω

ωc

ν2ℓ2

2π

(
ω2
c

ω+2 − 4ω2
c

− ω2
c

ω+2 − ω2
c

)
,

(5.39)

∂2σ22(q, ω)

∂q2x

∣∣∣∣
q=0

=− ωc

iω+

ν2ℓ2

2π

(
4ω2

c

ω+2 − 4ω2
c

− 3ω2
c

ω+2 − ω2
c

)
,

(5.40)

∂2σH(q, ω)

∂q2x

∣∣∣∣
q=0

=− 2
ν2ℓ2

2π

(
ω2
c

ω+2 − 4ω2
c

− ω2
c

ω+2 − ω2
c

)
,

(5.41)

where ℓ = 1/
√
B is the magnetic length. Substituting

these expressions into Eqs. (4.12)–(4.14) we arrive at (us-
ing again κ−1

int = νnωc, s = ν/2):

ζ(ω) =0, (5.42)

ηsh(ω) =ns
iωcω

4ω2
c − ω+2

, (5.43)

ηH(ω) =ns
2ω2

c

4ω2
c − ω+2

, (5.44)

in full agreement with Eq. (5.27).

V.4. Complex ℓ-wave paired superfluids in two

dimensions

Lastly, we shall consider a complex ℓ-wave paired su-
perfluid of fermions in two dimensions. The model mean-
field Hamiltonian we shall consider takes the form

H0 =

∫
d2xψ†(x)

(
− 1

2m
∇2 − µ

)
ψ(x)

+
1

2

∫ ∫
d2x d2x′ ∆(x− x′)ψ†(x)ψ†(x′) + h.c.,

(5.45)

where the pairing function ∆ transforms as an ℓ-wave
under rotations. We note that we are now working with
a number-non-conserving system, in which the chemical
potential appears as a parameter. Previously we worked
with systems at fixed number, however, generalizations
to fixed chemical potential (the grand canoncial ensem-
ble), or even as here to systems in which particle number
is not conserved, should be reasonably self-evident. The
terms in the Hamiltonian that violate number conser-
vation also violate angular momentum conservation; the
system is not rotationally invariant. However, the opera-
tor Θ = ǫνµJµν− 1

2ℓN̂ is still a conserved quantity, where

ǫνµJµν is the angular momentum operator, and N̂ is the
number operator.
Using the continuity equation (2.20), we find that the

second-quantized strain generator is given by

Jµν = −
∫
d2xxµgν(x)

=
i

2

∫
d2xxµ

(
ψ†(x)

∂ψ(x)

∂xν
− ∂ψ†(x)

∂xν
ψ(x)

)
.

(5.46)

The general relations such as eq. (2.21) between stress
and strain generators still hold, as do the Ward identities
for the response function, and their consequences. We
should view the system as a non-rotationally-invariant
case, and we commented on these as we went along. To
compute the viscosity, we shall use the strain-strain form
of the Kubo formula, and specialize only to the ω → 0
limit. From Eqs. (2.9) and (3.5), the response function
X is given by

Xµναβ(ω → 0) =
(
δνα 〈Jµβ〉0 − δµβ 〈Jαν〉0

)

+ lim
ω→0

ω+

∫ ∞

0

dt eiω
+t 〈[Jµν(t), Jαβ(0)]〉0 ,

(5.47)

with averages taken with respect to the ground state of
the system in the plane geometry.
We now proceed to evaluate this expression. Introduc-

ing momentum space creation and annihilation operators

ck and c†k, Eq. (5.46) for the strain generators becomes

Jµν = − 1

2L2

∑

kk′

∫
d2xxµ(kν + k′ν)c

†
k′cke

i(k−k′)·x,

(5.48)
and in the limit of large system size L→ ∞

Jµν =
iL2

4(2π)2

∫
d2k d2k′ (kν + k′ν)c

†
k′ck×

×
(

∂

∂kµ
− ∂

∂k′µ

)
δ(k− k′). (5.49)

(This clearly has the form of a strain generator in mo-
mentum space.)
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To proceed further, we use the Bogoliubov transforma-
tion

ck = u∗kαk − v−kα
†
−k,

c†k = ukα
†
k − v∗−kα−k, (5.50)

where {
αk, α

†
k′

}
= δkk′ (5.51)

and other anticommutators vanish. We have a gauge
freedom in choosing the phases of uk and vk, and for
convenience we shall work in the gauge where uk is real.
This implies that vk transforms as an ℓ-wave under rota-
tions. The explicit forms of uk and vk will not be needed.
The Hamiltonian then takes form (see e.g. Ref. 24)

H0 = E0 +
∑

k

εkα
†
kαk, (5.52)

where E0 is the ground state energy, and

εk =

√(
k2

2m
− µ

)2

+ |∆k|2 (5.53)

is the quasiparticle dispersion relation. We work at pa-
rameters for which εk > 0 (gapped) at all k.
We turn first to the contact term in Eq. (3.5). Using

the properties of the αk operators, we find

〈Jµν〉0 = − iL2

4(2π)2

∫
d2k kν

(
vk
∂v∗k
∂kµ

− v∗k
∂vk
∂kµ

)

(5.54)

This is the continuum limit of the expression given in
Ref. 5. From rotational covariance, it follows that this
term is purely antisymmetric. Writing

vk = |vk| eiφk , (5.55)

we have

〈Jµν〉0 =
1

2
ǫµν 〈Jxy − Jyx〉0

=
L2

4(2π2)
ǫµν

∫
d2k |vk|2

(
ky

∂

∂kx
− kx

∂

∂ky

)
φk

= − L2

4(2π)2
ǫµν

∫
kdk dθ |vk|2

∂φk
∂θ

= − L2

4(2π)2
ǫµν

∫
kdk |vk|2 (φk(θ = 2π)− φk(θ = 0)).

But since vk transforms as an ℓ-pole under rotations, we
have

φk(θ = 2π)− φk(θ = 0) = 2πℓ,

and hence

〈Jµν〉0 = − L2

4(2π)
ℓǫµν

∫
kdk |vk|2 (5.56)

= −〈N〉0 ℓ
4

ǫµν (5.57)

=
1

2
L2nsǫµν . (5.58)

Thus, the contact term gives the expected Hall viscosity
ηH = 1

2sn.
Next, we must consider the time integral term in the

response function X . Because of the non-degenerate
ground state, and the gap in the excitation spectrum,
we expect that at low frequency, the only terms will be
the pressure and κ−1 terms that go as 1/ω+. But κ−1

here will be the derivative of the pressure with respect to
size at fixed chemical potential µ, not fixed number N ,
and will vanish. The pressure itself is minus the deriva-
tive of the ground state energy with volume, at fixed
chemical potential, as usual (this “energy” is really the
grand thermodynamic potential), and is not expected to
vanish (nor does the usual inverse compressibility, which
is defined using a derivative of pressure with volume at
fixed particle number, not fixed chemical potential). We
have some difficulty with the formal calculation, because
k space was most convenient to diagonalize the Hamil-
tonian, but to make sense of the size dependence of the
energy, we need the formalism of Appendix B, with a
confining potential (the use of periodic boundary condi-
tions does not fit with the strain generators, though we
could use the approach of Appendix C)). But we have
seen in previous sections how the pressure term emerges
in the stress-stress form, and thanks to the formalism,
this is equivalent to the strain-strain form we wanted to
use. Hence we will not pursue this further.
Finally, let us apply the viscosity-conductivity rela-

tion (4.6), which is still valid in the present situation,
even though number is not conserved. We consider only
the ℓ = 1, or px+ ipy, spinless superconductor. The con-
ductivity in that case was calculated by Lutchyn et al.25.
The result for the Hall conductivity (the antisymmetric
part) in the 2D limit to order q2 reads [cf. Eqs. (103) and
(72) in that paper]:

σH(q, ω) = I(ω)
e2

4π~

v2F q
2

2ω+2
, (5.59)

where vF is the Fermi velocity and I(ω) is a dimensionless
factor obeying I(0)=1. Substituting this result into the
viscosity-conductivity relation (4.11), taking ω to zero,
and remembering that the particle number density is re-
lated to the Fermi wavevector kF by n = k2F /(2π) in
2D, we find that the Hall viscosity is ηH = ~ns/2, with
s = 1/2, in accordance with the discussion above, except
for an apparent sign discrepancy: for p+ ip, s should be
−1/2, not +1/2.

VI. HALL VISCOSITY FROM

ELECTRODYNAMICS OF A FLUID WITH

ORBITAL SPIN

In this section we present an alternative derivation
of Eqs. (1.7)-(1.8) by examining the electrodynamics at
small q and ω of a Galilean- and rotationally-invariant
fluid in the spirit of a low-energy effective description, in
which we assume there is an orbital spin −s per particle;
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we neglect bulk and shear viscosity. We find the orbital
spin contribution to the conductivity, and hence to the
viscosity.
When one applies an electric field to such a fluid,

to lowest order in q the electric current response is

〈jα(q, ω)〉(0) = σ
(0)
αβ (ω)Eβ(q, ω); by the continuity equa-

tion, the corresponding change in the particle number
density is δ〈n(q, ω)〉(1) = qα〈jα(q, ω)〉(0)/ω+. Since
each particle carries orbital spin −s, this leads to
a change in the magnetization density, δµ(q, ω) =
−sδ〈n(q, ω)〉(1)/(2m). Finally, this feeds into the elec-

tric current, 〈jν(q, ω)〉(2)M = ǫνµiqµδµ(q, ω), and gives the
following order q2 contribution to the conductivity:

σ
(2),M
νβ (q, ω) = −i s

2

qαqµ
mω+

ǫνµσ
(0)
αβ (ω). (6.1)

This contribution was previously discussed by Lutchyn
et al.25 in the zero magnetic field case.
A similar contribution comes from the fact that

by Maxwell’s equations, a curl of the electric field
implies a time-dependent magnetic field, B(q, ω) =
ǫαβqαEβ(q, ω)/ω. The magnetic field couples to the mag-
netization density, which is −s times the particle num-
ber density, divided by 2m; hence, it is equivalent to an
electric potential V B(q, ω) = sB(q, ω)/(2m), giving rise
to an effective electric field EB

µ (q, ω) = −iqµV B(q, ω),

and thus to an electric current density 〈jν(q, ω)〉(2)B =

σ
(0)
νµ (ω)EB

µ (q, ω). The corresponding order q2 contribu-
tion to the conductivity is:

σ
(2),B
νβ (q, ω) = −i s

2

qαqµ
mω+

σ(0)
νµ (ω)ǫαβ . (6.2)

Summing Eqs. (6.1)-(6.2) we find the total contribu-
tion of the orbital spin to the conductivity:

σ
(2),s
νβ (q, ω) = −i s

2

qαqµ
mω+

[
ǫνµσ

(0)
αβ (ω) + σ(0)

νµ (ω)ǫαβ

]
,

(6.3)

where σ
(0)
λρ (ω) is given by Eq. (4.9).

These terms, however, do not in general give the full
conductivity tensor, even for gapped systems. In that
case, the only other possible contribution comes from a
response with the form of the inverse (internal) compress-
ibility κ̃−1, which is not necessarily the total one κ−1

int , as
we will see. As before, in the presence of a nonuniform
electric field, to lowest order in q the electric current

response is 〈jα(q, ω)〉(0) = σ
(0)
αβ (ω)Eβ(q, ω). Again, the

corresponding change in the particle number density is
δ〈n(q, ω)〉(1) = qα〈jα(q, ω)〉(0)/ω+. Through the inverse
compressibility, this leads to a contribution to the pres-

sure δ̃P (q, ω) = κ̃−1δ〈n(q, ω)〉(1)/n, which is equivalent

to an electric field EP
µ (q, ω) = −iqµδ̃P (q, ω)/n. Finally,

this leads to a change in electric current, 〈j(2)〉ν(q, ω) =
σ
(0)
νµ (ω)EP

µ (q, ω). Combining all these expressions, we

find an order q2 contribution to the conductivity,

σ
(2),κ
νβ = −iκ̃−1 qµqα

n2ω+
σ(0)
νµ (ω)σ

(0)
αβ (ω). (6.4)

We then have the total q2 conductivity

σ
(2)
νβ (q, ω) = σ

(2),s
νβ (q, ω) + σ

(2),κ
νβ (q, ω). (6.5)

Using Eq. (4.9) we then obtain, in the absence of a mag-
netic field,

σ
(2)
νβ (q, ω) = iκ̃−1 qνqβ

m2ω+3
+

ns

2m2

q2

ω+2
ǫνβ. (6.6)

The contributions of s and κ̃−1 have different tensor
structures, and the result agrees with eq. (4.15) if we
identify κ̃−1 = κ−1, and ηH = 1

2ns.
On the other hand, for nonzero magnetic field we find,

σ
(2),s
νβ (q, ω) ∼ ins

m2

qαqµ
ω+ωc

ǫαβǫµν − ns

2m2

q2

ω2
c

ǫνβ , (6.7)

σ
(2),κ
νβ (q, ω) ∼iκ̃−1 qαqµ

m2ω2
cω

+
ǫµνǫαβ − κ̃−1 1

m2ω3
c

q2ǫνβ,

(6.8)

as ω → 0, up to terms linear or higher order in ω. Adding
these, we see that the total inverse internal compressibil-
ity is κ−1

int = κ̃−1 + nsωc, and hence

σ
(2)
νβ (q, ω) ∼

iκ−1
int

qαqµ
im2ω2

cω
+
ǫµνǫαβ +

(
1
2nsωc − κ−1

int

) 1

m2ω3
c

q2ǫνβ .

(6.9)

This agrees with the general form eq. (4.16), giving again
ηH = 1

2ns.
In this derivation of the Hall viscosity, the centerpiece

was the use of the magnetization equal to the orbital spin
over twice the mass, for each particle. This is the stan-
dard result for zero magnetic field, and can be obtained
by taking minus the derivative of the kinetic energy with
respect to B in the symmetric gauge, then setting B to
zero. But doing the same in a uniform non-zero field gives

−(bi
†
bi+ 1

2 )/m for the ith particle, which is twice the or-
bital angular momentum of the cyclotron motion of a
particle divided by twice the mass in the non-interacting
case. Of course, in the rigorous microscopic derivation,
this was not the way that the conductivity was calcu-
lated, so there is no contradiction, however, the under-
lying reason for the assumed coupling seems less clear.
Hence in the magnetic field case, the present argument
should perhaps be viewed as an interpretation of the cor-
rect result, rather than as an alternative derivation from
first principles.

VII. CONCLUSION

The motivation for and conclusions of this work have
been described in detail in the Introduction. Essentially,
we have a fairly complete formalism for defining the stress
response to an external strain field, and obtaining from
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it the inverse compressibility and the viscosity tensor,
in different situations that include non-zero temperature
or magnetic field, and finite systems with a confining
potential or periodic boundary conditions. The results
from distinct formulations (such as different boundary
conditions) agree in the thermodynamic limit. The re-
sults illuminate the relation of the Hall viscosity results,
obtained from adiabatic transport, to more traditional
Kubo formula approaches; the Kubo formulas extend to
more general situations.
A motivation for this work was to make it possible to

study Hall viscosity experimentally. The generality of the
Kubo formulas should make it possible to analyze possi-
ble experimental set-ups to see when Hall viscosity mani-
fests itself. In particular, the use of optical techniques to
obtain the current response σ(q, ω) to an external per-
turbing electromagnetic field at small q and ω, in con-
junction with the relation due to Hoyos and Son8, which
holds more broadly as shown in Sec. IV, to obtain the
Hall viscosity should be explored. The result would be
of interest in quantum Hall physics, because Hall viscos-
ity is related to the so-called shift in the ground state4,5,
which can distinguish between distinct possible ground
states at a given filling factor.
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Appendix A: The stress tensor for pair interactions

For completeness, we present a derivation of an expres-

sion for the local stress τ
(0)
µν (x) and its integral T

(0)
µν for

the case of a system of particles interacting through a
two-particle interaction. In particular, starting with the
position-dependent generalization of eq. (2.23) in a space
with coordinates x and a general metric gµν(x),

τ (0)µν (x) = − 2
δHΛ

δgµν(x)

∣∣∣∣
Λ=I

, (A1)

and setting the metric to its standard flat space form af-
ter taking the functional derivative, we shall recover the
known Irving-Kirkwood form of the stress tensor18,19,
and show that its integral over space agrees with eq.
(2.21). (We consider only the rotationally-invariant case,
as this was assumed in those references.) Note that any
time dependence of the metric does not enter into this
derivation (all variational derivatives are taken at equal
time), and hence it has been suppressed for brevity.

We begin with the Hamiltonian (in zero magnetic field,
for simplicity)

HΛ =
1

2m

∑

i

∫
ddx gµν(x)

{
piµ,
{
piν , δ(x− xi)

}}

+ 1
2

∑

i6=j

V (D(xi,xj)). (A2)

Here we have introduced the geodesic distance

D(x,x′) ≡
∫ 1

0

dξ

√
gµν(r(ξ))

drµ

dξ

drν

∂ξ
, (A3)

which is the length (computed using gµν(x)) of the
geodesic r(ξ), the path from x to x′ satisfying

r(0) = x, (A4)

r(1) = x′, (A5)

δ

δr(ξ)

(∫ 1

0

dξ

√
gµν(r(ξ))

∂rµ

∂ξ

∂rν

∂ξ

)
= 0, (A6)

where the variational derivative is taken with fixed end-
points. For metrics close to the flat metric, which is
sufficient for our purposes, there is a unique path that is
a local minimum (in the space of paths) of the length,
and this path is the geodesic. The use of the geodesic
distance allows us to use the same potential function in
curved space as in flat, and while in principle the choice
of path entering the distance function D is somewhat ar-
bitrary, we believe that the geodesic distance given above
represents a natural choice. Different choices could pro-
duce different stress tensors even in the flat-space limit,
but they will differ only by divergenceless tensors.
We now proceed to evaluate eq. (A1). Looking first at

the kinetic term, and using the identity

δgαβ(x)

δgµν(x′)

∣∣∣∣
g=I

= −1

2
δ(x− x′) (δαµδβν + δανδβµ) , (A7)

we easily find for the kinetic part of the stress tensor

τ (0),Kµν (x) =
1

4m

∑

i

{
piµ,
{
piν , δ(x− xi)

}}
, (A8)

in agreement with standard results.
Moving on to the interaction term, we have

−2
δ

δgµν(x)


 1

2

∑

i6=j

V (D(xi,xj))


 =

= −
∑

i6=j

V ′(D(xi,xj))
δ

δgµν(x)
D(xi,xj).

(A9)

Now comes the key observation. D(xi,xj) depends on
the metric in two ways - through its explicit dependence
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indicated in eq. (A3), and implicitly through the defini-
tion (A6) of the geodesic r(ξ) for each pair i, j. However,
because r(ξ) is defined such that the distance is station-
ary under variations of the path, the chain rule tells us
that only variations of D with respect to the explicit met-
ric dependence are nonvanishing. Thus, we have

δ

δgµν(x)
D(xi,xj) = 1

2

∫ 1

0

dξ δ(x−r(ξ))
1

D(xi ,xj)

drµ

dξ

drν

dξ
.

(A10)
Now, at g = I, the geodesic r(ξ) is simply given by a

straight-line path

r|g=I = xi + ξ
(
xj − xi

)
, (A11)

and the distance D by the standard Euclidean norm

D(xi,xj)
∣∣
g=I

=
∣∣xi − xj

∣∣ . (A12)

Thus, putting it all together, we find for the interaction
contribution to the stress tensor

τ (0),Vµν (x) = −1

2

∑

i6=j

V ′(
∣∣xi − xj

∣∣) (x
i − xj)µ(xi − xj)ν

|xi − xj |

∫ 1

0

dξ δ(x− xi + ξ(xi − xj)), (A13)

which is the well-known contribution due to two-particle
interactions introduced by Irving and Kirkwood18. Phys-
ically, it means that the flow of momentum between par-
ticles i and j when they interact is treated as flowing
along the straight line connecting them, and so there is
a momentum density at any x on that line, which neces-
sitates the integral over ξ from 0 to 1. The verification
that this stress tensor satisfies the continuity equation
for the momentum density, eq. (2.20), is straightforward
or can be found in the literature.
Finally, integrating τ

(0)
µν = τ

(0),K
µν + τ

(0),V
µν over space

yields

T (0)
µν =

1

m

∑

i

piµp
i
ν−

1

2

∑

i6=j

V ′(
∣∣xi − xj

∣∣) (x
i − xj)µ(xi − xj)ν

|xi − xj | ,

(A14)
which a simple calculation shows is equal to

T (0)
µν = −i [H0, Jµν ] (A15)

as expected.

Appendix B: Strain generators for systems in a

confining potential

Because the volume of a system in the infinite plane
with zero magnetic field is poorly defined, we would like
to work in a finite-sized system when using the exten-
sive forms of the stress response function given in Section
III. Unfortunately, because the strain generators contain
an explicit x operator, we cannot do this with periodic
boundary conditions. Instead, let us add to the Hamil-
tonian HΛ(t) a general confining potential (this differs
slightly from what was mentioned in Sec. II.1, for rea-
sons that should become clear)

U (x) =
∑

i

u
(
Zxi

)
, (B1)

with an invertible matrix of shape parameters Zµν , and
we take the single-particle potential u such that u(x) →
∞ as x → ∞ in any direction. For example, the most
general harmonic confining potential can be written

U (x) =
∑

i

mC2

2
ZµνZµαx

i
νx

i
α. (B2)

Now, under an additional strain transformation we

have xi → Λ′Txi, and this Λ′ can be absorbed into Λ
by multiplication on the left. According to the definition
just given, U (x) in the x variables should be unchanged,

so we need Z → ZΛ′T−1
. To implement this transforma-

tion using operators, we are motivated by our treatment
of the magnetic field in Section (II.2) to quantize the
Zµν . We introduce operators Zµν and their conjugate
momenta Mµν such that

[Mµν ,Zαβ ] = −iδµαδνβ , (B3)

and take for the strain generators Jµν

Jµν = −1

2

(∑

i

{
xiµ, p

i
ν

}
− {Mαµ,Zαν}

)
. (B4)

These satisfy [Jµν , (Zx
i)α] = 0, and so also

[
Jµν , U

(x)
]
= 0. (B5)

For given eigenvalues Z of Z, the confining potential is
fixed, independent of Λ, and defines a box that is always
fixed in the x variables.
To use this formalism, we first note that M does not

appear in the Hamiltonian HΛ+U (x), and so with Λ = I
(for example), states with given eigenvalues Z of Z evolve
with Z fixed, however (as with B), formal eigenstates
of Z are not normalizable. One can, however, consider
normalizable states that are eigenstates of H0 +U (x) for
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each Z, with a narrow range of Z. These are almost as
good as true eigenstates for most purposes.
We want to show that both our basic relation (2.21)

and our Kubo formulas (3.3-3.5) continue to hold unmod-
ified in the presence of the confining potential. First, we
will verify that the stress tensor is given by minus the
time derivative of Jµν . This is simple, as Jµν commutes

with U (x), and the {M,Z} terms in Jµν commute with

H
(x)
0 . Hence

T (0)
µν = −i[H(x)

0 + U (x), Jµν ]. (B6)

Next, we will verify that our Kubo formulas still hold
with these strain generators. We have the Hamiltonian
HΛ(t)+U

(x) in the x variables (which include Z andM),
and we make a time-dependent canonical transformation
to X variables. The analogs of Z and M in X variables

will be denoted by Ẑ = SZS−1 = ZΛT−1 and M̂ =
SMS−1. Then the Hamiltonian in X variables is H =
H

(X)
0 + U (X) +H1, where

H
(X)
0 + U (X) =

∑

i

P i
µP

i
µ

2m
+

1

2

∑

i6=j

V
(
Xi −Xj

)

+
∑

i

u(ẐXi), (B7)

H1 = −∂λµν
∂t

Jµν (B8)

to order λ. In these variables, the {M̂, Ẑ} terms in H1

cause Ẑ to evolve in time, in such a way that if the Xis
also evolve by the H1 term only, then they continue to
lie inside the “box” (defined by U) if they do so initially;
this was the desired behavior. The stress in these vari-
ables, T

(X)
µν , is the same expression as in the case with no

potential U . Thus, the stress-strain Kubo formula (3.3)
obtained from standard linear response theory takes the
same form as before (though the strain generator is now
different, and the Hamiltonian includes U). Addition-
ally, the Ward identity Eq. (B6) ensures that the stress-
stress and strain-strain Kubo formulas are still valid in
the presence of a confining potential, as is the final for-
mula (3.15) for the viscosity, up to a choice of the vol-
ume Ld to assign to the system. (Technical justification
of these statements is discussed further in Appendix D.)
If the potential u is taken to have a hard-wall form, the
volume can be taken as that within the walls.
As an example of this formalism, let us consider a sys-

tem of noninteracting spinless fermions in a harmonic
potential in two dimensions, with Hamiltonian

H =
∑

i

(
piµp

i
µ

2m
+
mC2

2
ZµαZµβx

i
αx

i
β

)
(B9)

We consider the state |0〉 in which the potential has an-
gular frequency C/L, meaning that Zµν |0〉 = L−1δµν |0〉
(strictly, this means a narrow normalizable wavepacket
centered at this value, as we explained above), and the

lowest Q levels filled. This state has N = Q(Q + 1)/2
particles, and its energy is

EQ =
C

L

Q∑

n=1

n2. (B10)

The integrated stress tensor is Tµν =
∑

i p
i
µp

i
ν/m. We

will use the stress-stress form of the Kubo formula, eq.
(3.4). Let us examine the contact term first. This gives

〈[Tµν(0), Jαβ(0)]〉0 =
i

m

∑

i

(〈
piβp

i
µ

〉
0
δνα +

〈
piβp

i
ν

〉
0
δµα

)

=
iEQ

2
(δµαδνβ + δναδµβ) , (B11)

where the last line follows from an application of the
virial theorem. To evaluate the time-integral term, note
that the stress tensor and the Hamiltonian are indepen-
dent of Mµν , and hence Tµν(t) leaves the ground state
in the fixed Zµν = L−1δµν subspace. Hence, we are free
to evaluate the time-dependence in this subspace. Doing
so, we find

∫ ∞

0

dteiω
+t 〈[Tµν(t), Tαβ(0)]〉0 =

=
−iEQ

4

1

1−
(

ω+L
2C

)2 (δµαδνβ + δναδµβ) . (B12)

Hence we find that the response function for
harmonically-trapped non-interacting fermions is

Xµναβ =
iEQ

2ω+


1− 1

2

1

1−
(

ω+L
2C

)2


 (δµαδνβ + δναδµβ) .

(B13)

The fluid in the harmonic potential is not homoge-
neous; its density is not uniform, and accordingly its
other properties, such as the expectation of τµν(x), are
not uniform either, and this effect does not disappear in
the thermodynamic limit L, N → ∞, if we take it with
the density at the center held fixed. A macroscopic frac-
tion of particles experience a non-zero potential (this is
already apparent from the use of the virial theorem: the
kinetic energy, which is used to obtain the trace of Tµν ,
is only half the total energy). Therefore use of the results
involving P and κ−1 which relied on homogeneity is not
justified. However, we find that if we use the free Fermi
gas results in Sec. V.1 to obtain the pressure and viscosity
at a given density, and then average the results using the
density profile of the harmonically-trapped gas, the re-
sults agree in all details with the thermodynamic limit of
the above. To obtain a fluid that is homogeneous (up to
a negligible boundary layer) in the thermodynamic limit,
we need a confining potential that is essentially zero in
the interior, then rises rapidly very close to the edge.
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Appendix C: Stress response without use of strain

generators

In this section we show how to obtain even more gen-
eral forms of the stress response, which work for either
the infinite system with a confining potential, or for pe-
riodic boundary conditions, and are analogous to the
stress-strain and strain-strain forms, but do not require
the use or existence of the strain generators. The ap-
proach we use is based on that of Niu et al. for the
conductivity case26, however we extend it to non-zero
frequency as well as adapting it for the stress response.
For the case of infinite space, the expressions reduce to
the forms in the text when written in terms of strain
generators.
We begin with the time-integral part of the extensive

stress-stress form at zero temperature, which we write
in a spectral representation. For definiteness, one can
assume periodic boundary conditions. Then we have

1

ω+

∫ ∞

0

dt eiω
+t 〈[Tµν(t), Tαβ(0)]〉0 =

1

ω+

∫ ∞

0

dt eiω
+t
∑

n

[
e−i(En−E0)t 〈0|Tµν(0)|n〉〈n|Tαβ(0)|0〉

− e−i(E0−En)t 〈0|Tαβ(0)|n〉〈n|Tµν(0)|0〉
]
, (C1)

where {|n〉} is an orthonormal set of energy eigenstates
ofH0 (orH0+U if the confining potential is used in place
of periodic boundary conditions) with energies En, and
we now write |0〉 for the ground state, which we assume
for simplicity is non-degenerate. We now use the identity

e−i(En−E0)t =
d
dt
e−i(En−E0)t

−i(En − E0)
(C2)

in the first term inside the integral, and the same with
n and 0 switched in the second term; then integrate by
parts. Further, we recall that in the x variables, the
Hamiltonian HΛ(t) to first order in λ is

HΛ(t) = H0 − Tαβλαβ(t) (C3)

(where Tαβ = Tαβ(0) is at zero time in the Heisenberg
picture), and so if we define the ground state of HΛ for
given λ to be |ϕ(λ)〉, that is

HΛ|ϕ(λ)〉 = E(λ)|ϕ(λ)〉 (C4)

(with |ϕ(0)〉 = |0〉, E(0) = E0), then perturbation theory
to first order in λ gives us

∣∣∣∣
∂ϕ

∂λαβ

〉
=
∑

n

|n〉〈n|Tαβ(0)|0〉
En − E0

. (C5)

(We leave it as understood that the partial derivative
is evaluated at λ = 0.) Combining these results, and
moving the term resulting from the lower limit in the

integration by parts to the other side, we arrive at two
forms of the response function Xµναβ(ω):

Xµναβ(ω) =

i

ω+

[〈
ϕ(0)

∣∣∣∣Tµν(0)
∣∣∣∣
∂ϕ

∂λαβ

〉
+

〈
∂ϕ

∂λαβ

∣∣∣∣Tµν(0)
∣∣∣∣ϕ(0)

〉]

+
1

ω+

∫ ∞

0

dt eiω
+t 〈ϕ(0)| [Tµν(t), Tαβ(0)] |ϕ(0)〉 (C6)

=

∫ ∞

0

dt eiω
+t

[〈
ϕ(0)

∣∣∣∣Tµν(t)
∣∣∣∣
∂ϕ

∂λαβ

〉

+

〈
∂ϕ

∂λαβ

∣∣∣∣Tµν(t)
∣∣∣∣ϕ(0)

〉]
. (C7)

The first of these is the stress-stress form, and the second
is the stress-strain form.
In order to use the same identity and perform a second

integration by parts, we generalize the previous pertur-
bation formula by using Tµν(t) for given t as the pertur-
bation, and define

∣∣∣∣
∂ϕ(t)

∂λµν

〉
=
∑

n

|n〉〈n|Tµν(t)|0〉
En − E0

(C8)

=
∑

n

|n〉〈n|Tµν(0)|0〉
En − E0

e−i(E0−En)t. (C9)

Then the strain-strain form of X is

Xµναβ(ω) = (C10)

−i
[〈

∂ϕ(0)

∂λµν

∣∣∣∣
∂ϕ(0)

∂λαβ

〉
−
〈
∂ϕ(0)

∂λαβ

∣∣∣∣
∂ϕ(0)

∂λµν

〉]

+ ω+

∫ ∞

0

dt eiω
+t

[〈
∂ϕ(t)

∂λµν

∣∣∣∣
∂ϕ(0)

∂λαβ

〉
−
〈
∂ϕ(0)

∂λαβ

∣∣∣∣
∂ϕ(t)

∂λµν

〉]
.

The first part is the curvature of the Berry connection.
This part reproduces the formulas for the antisymmet-
ric (Hall viscosity) part of X at ω = 0 that result from
adiabatic transport in a gapped system (with the sign
here corrected as explained earlier). The derivation of
this ω = 0 limit from the stress-strain form is presum-
ably equivalent to the one reviewed in Ref. 5. The last
term produces the iκ−1/ω+ term in the trace part, as
ω → 0, similarly as in Sec. V.2 (such parts, referred to
as “persistent currents” by analogy with the conductiv-
ity case, were suppressed in Ref. 5 by subtracting the
ground state energy E(λ) from HΛ). The strain-strain
form given here can be viewed as generalizing the adia-
batic curvature (and the related Chern number for con-
ductivity) to the full stress response tensor, to all fre-
quencies, and to systems that are gapless in the thermo-
dynamic limit. Because the formal derivation is general
in form, similar ones can be given for conductivity at all
ω, and for other transport properties also.
The similarity with the three forms of X given in the

text is evident, and can be made exact by use of the
formula

|ϕ(λ)〉 = e−iλαβJαβ |ϕ(0)〉, (C11)
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and expanding to first order. Then one can view

∣∣∣∣
∂ϕ(t)

∂λαβ

〉
= −iJαβ(t)|ϕ(0)〉 =

∑

n

|n〉〈n|Tαβ(t)|0〉
En − E0

(C12)
as resulting from the basic relation, eq. (2.21). This is
not merely an analogy; for the infinite-space geometry,
the ground states of HΛ are of exactly this form (with
t = 0), using the formalism for magnetic field and for a
confining potential, so they form a “homogeneous bun-
dle” in the language of Ref. 5 (here for GL(d,R), not just
SL(d,R) as mainly considered there). We note however
that strictly speaking for the infinite-space geometry, the
formalism for a magnetic field or in Appendix B again
produces issues regarding the existence of normalizable
energy eigenstates, and some arguments with wavepack-
ets analogous to those in the text or in Appendix D are
needed to overcome these.
In any case, the forms given here for periodic boundary

conditions are expected to yield the same results for in-
tensive quantities in the thermodynamic limit, justifying
the use of the same notation Xµναβ(ω) in the formulas
given here.

Appendix D: Time-translation invariance and the

Kubo formulas

In this Appendix, we give arguments that justify the
use of time-translation invariance (TTI) in the derivation
of the Kubo formulas in Sec. III.1, even though the states
that must be used are not true eigenstates of the Hamil-
tonian. We say that a correlation or response function in
the time domain has TTI if shifting the time argument
in each operator by the same constant has no effect on it.
For the zero magnetic field case in the informal treatment
without a confining potential that we have mentioned in
Sec. II.1, one has to appeal to an assumed limit in which
time-dependence of the state occurs only near the bound-
ary, and the bulk of the system presumably dominates
the response over relevant time scales. This is intuitively
appealing, but quite involved to justify fully. Here we
give more detailed arguments for the case with a mag-
netic field, in which normalizable ground (energy eigen-)
states in which a disk-shaped region is occupied exist for
given magnetic field. There is still an issue here, however,
because our strain generators involved the introduction
of the magnetic field variable B, and eigenstates of B are
not normalizable. Similar arguments are also given for
the case with a confining potential, in the formalism of
Appendix B.
The “ground” state that we described in Sec. II.2 is

not strictly an energy eigenstate, because though it is
such for each value of B, the energy eigenvalue depends
on B (the Hamiltonian H0 depends on B but not on P ,
so parts of the state with different B values do not mix).
Thus the contributions from different B change phase
with time at different rates. When we calculate an ex-

pectation value of some operators, these time-dependent
phase may cancel; in particular, they will if those oper-
ators do not contain P . Now the stress tensor Tµν does
not contain P , so the correlation function

〈[Tµν(t), Tαβ(t′)]〉0 = f(t, t′) (D1)

is TTI—it is unchanged if we replace t, t′ by t+t0, t
′+t0.

(In the following, the indices on the operators will play
no role, so they will not be recorded on f and similar
functions below.) Now consider the correlation function

〈[Tµν(t), Jαβ(t′)]〉0 = g(t, t′). (D2)

From the identity (2.56),

∂

∂t′
g(t, t′) = −f(t, t′), (D3)

and f(t, t′) = f(t− t′) (say) by TTI. Integrating gives

g(t, t′) =

∫ t−t′

0

dt′′ f(t′′) + g(t, t), (D4)

where

g(t, t) = 〈eiH0t [Tµν(0), Jαβ(0)] e
−iH0t〉0. (D5)

The commutator [Tµν(0), Jαβ(0)] does not contain P for
any choice of indices, and so g(t, t) is again independent
of t, or TTI. Hence g(t, t′) = g(t− t′), say, is TTI. These
results justify the use of TTI to pass from the stress-
strain to the stress-stress form of response.
For the strain-strain form, we proceed similarly with

〈[Jµν(t), Jαβ(t′)]〉0 = h(t, t′). (D6)

Then

∂

∂t
h(t, t′) = −g(t− t′), (D7)

and so

h(t, t′) = −
∫ t−t′

0

dt′′ g(t′′) + h(t, t). (D8)

The equal-time piece is

h(t, t) = 〈[Jµν(t), Jαβ(t)]〉0. (D9)

The commutators of two J ’s are the gl(d,R) Lie algebra
relations, given in (2.9). The generator corresponding to
the trace (the generator of the gl(1) or u(1) subalgebra)
never occurs on the right-hand side; see eq. (3.29). The
traceless parts of J ’s do not contain P , and so h(t, t)
is independent of t, that is, it is TTI. Hence h(t, t′) =
h(t− t′), say, is TTI.
In fact, TTI was not used to obtain the strain-strain

form from the stress-strain form, but we have learned
that it can be applied to the final form. This enables us
to reverse the argument, but with the roles of the two
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pairs of indices interchanged. This leads to the same
stress-stress form of response, but with the two pairs of
indices exchanged in the contact term. We showed in Sec.
III.5 that this contact term is symmetric, which shows
the arguments are consistent.
For the formalism of Appendix B, with a confining po-

tential, we can proceed similarly, using a wavepacket in
Z space of energy eigenstates for each Z. The preced-
ing line of argument goes through, up to the point where
h(t, t) was studied. In the present case, all strain gener-
ators Jµν contain M, not only the trace. Hence h(t, t) is
not independent of t. If we take its time derivative, we
find

∂

∂t
h(t, t) = iδαν〈Tµβ(t)〉0 − iδµβ〈Tαν(t)〉0, (D10)

in which the trace of the expectation of the stress can-
cels. We have shown that the expectation of the traceless
part of Tµν is time independent, so h(t, t) is linear in t,
and also its time derivative is smaller than O(Ld) as the
thermodynamic limit is taken. Thus in the limit, for our
purposes h(t, t′) is again TTI. The strain-strain form in
the main text is nonetheless correct as written even in
finite size.
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