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We study aU(1)×U(1) system in (2+1)-dimensions with long-range interactions and mutual statistics. The
model has the same form after the application of operations from the modular group, a property which we call
modular invariance. Using the modular invariance of the model, we propose a possible phase diagram. We
obtain a sign-free reformulation of the model and study it inMonte Carlo. This study confirms our proposed
phase diagram. We use the modular invariance to analytically determine the current-current correlation functions
and conductivities in all the phases in the diagram, as well as at special “fixed” points which are unchanged
by an operation from the modular group. We numerically determine the order of the phase transitions, and
find segments of second-order transitions. For the statistical interaction parameterθ = π, these second-order
transitions are evidence of a critical loop phase obtained when both loops are trying to condense simultaneously.
We also measure the critical exponents of the second-order transitions.

PACS numbers:

I. INTRODUCTION

Models with statistical interactions can be used to describe
a variety of interesting systems. In particular, quasiparticles in
the Fractional Quantum Hall effect, as well as other fraction-
alized phases of spins and bosons, have such interactions.1–4

Some models with statistical interactions contain a symmetry
under the action of the modular group. This can simplify an-
alytic study of these models. Several different such systems
have been studied in the literature.5–12 In this work we define a
model with this symmetry, which we call modular invariance,
and study its properties both numerically and analytically.

In this work, we study aU(1)×U(1)model in (2+1) dimen-
sions with mutual statistical interactions. After introducing
the model, we will explain what we mean when we say that
it has modular invariance. A general action for two species of
U(1) particles with mutual statistical interactions is given by
the following action:

S =
1

2

∑

k

[

v1(k)| ~J1(k)|2 + v2(k)| ~J2(k)|2
]

+
∑

k

iθ ~J1(−k) · ~a2(k). (1)

Here ~J1 and ~J2 represent conserved integer-valued currents
residing on interpenetrating cubic lattices, and~∇ · ~J1 =

0, ~∇ · ~J2 = 0. Since the boson worldlines can be viewed
as loops in (2+1) dimensions, this classical action is defined
in three space-time dimensions. For brevity, the above action
is defined in terms of Fourier components, wherev1(k) and
v2(k) are Fourier transforms of the intra-species interactions
for speciesJ1 andJ2 respectively. In the partition sum, a
given current configuration obtains a phase factoreiθ or e−iθ

for each cross-linking of the two loop systems, dependent on
the relative orientation of the current loops. This is realized
in the last term of Eq. (1), by including an auxiliary “gauge
field” ~a2, whose flux encodes the~J2 currents,~J2 = ~∇ × ~a2.
As explained in our previous works,13,14the model is precisely
defined with periodic boundary conditions if, for all directions
µ, J1µ,tot ≡

∑

r J1µ(r) = 0, and similarly forJ2.
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FIG. 1: Phase diagram for the model in Eq. (1), with fixedθ =
2π/3. The dashed line is the ‘symmetric’ line where the potentials
are equal,v1 = v2, which is also assumed everywhere in the phase
diagram in Fig. 2. In phase “∞” both J variables are gapped, while
they condense in phase “0”. In phases I and II only one speciesis
gapped. In the lower left corner different composite variables are
gapped; here the structure can be significantly different for different
values ofθ.

Of some relevance to our study is the work of Fradkin and
Kivelson.5 Though several of the mathematical results in their
work are applicable to our model, the model itself is different.
In particular, Fradkin and Kivelson from the outset requirea
binding between different species, which is not present in our
model and does not occur in our phase diagram.

Figure 1 shows a schematic of the phase diagram of the
model in Eq. (1), forθ = 2π

3 . In the remainder of this work,
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we use the following marginally long-ranged potential:

v1,2(k) =
2πg1,2

| ~fk|
, (2)

where| ~fk|2 =
∑

µ(2− 2 coskµ), andg1,2 are parameters de-
scribing the strength of the potentials. Thev(k) ∼ 1

|k| in mo-

mentum space is equivalent to a1/r2 potential in real space.
The main features of the phase diagram are controlled by the
overall strength of the potentials, independent of the precise
form (e.g. in a previous work14 we found a similar phase di-
agram for short-ranged potentials), while more detailed prop-
erties do depend on the range of potentials. The dashed line
in the figure is the ‘symmetric’ line, wherev1 = v2.

When v1 and v2 are large, bothJ1 and J2 particles are
gapped, and only small loop excitations are possible in these
variables. We call this phase “∞”. If we decreasev1 andv2
along the symmetric line, the reduction in potential allowsthe
J1 andJ2 particles to condense, in the sense to be defined
later; we call this phase “0”. The labels of these phases will
be explained in Sec. III. Having both particles condensed at
the same time incurs some penalty due to the statistical in-
teraction, and phase 0 exists only at intermediate couplings.
As v1 andv2 are reduced still further, we can reach a phase
where multiples ofJ1 andJ2 (in particular, multiples ofn if
θ = 2π/n) can condense. Roughly, suchn-tuples of the cur-
rent variables do not see a statistical interaction, the more pre-
cise meaning of this will be explained below. Off the symmet-
ric line, we can access phases I and II where only one species
of loop is condensed, and the other is gapped. The phase di-
agram is qualitatively similar for other values ofθ, with two
exceptions. First, forθ = π phase 0 is not present. Instead
there is a phase transition on the symmetric line, which sep-
arates phases I and II. An example of such a phase diagram
can be seen in Ref. 13. Second, for generic values ofθ more
phases exist at smallg. These can be seen in vertical cuts in
Figs. 2 and 3, and will be explained in Sec. III.

The modular group is an infinite, non-abelian group, gen-
erated by two operations: duality (denoted byS) and period-
icity (denoted byT ). We call our action “modular invariant”
because it has the same qualitative form after the application
of these operations. The periodicity operation corresponds to
shifting the statistical angleθ by an integer multiple of2π, and
since the loop cross-linking number is an integer we can see
thate−S for the action in Eq. (1) is unaffected by such shifts.
In what follows we will find it useful to defineη ≡ θ

2π , and
the complex number

z = η + ig. (3)

In this notation the action of such a shift by an integern is:

T n : z → z + n. (4)

Duality corresponds to performing a well-known duality
transform14–20 on both species in the above action to obtain

the following “dual” action:21

Sdual[ ~Q1, ~Q2] =
1

2

∑

k

[

v1,dual| ~Q1(k)|2 + v2,dual| ~Q2(k)|2
]

+
∑

k

iθdual ~Q1(−k) · ~aQ2
(k), (5)

v1/2,dual =
(2π)2v2/1(k)

| ~fk|2v1(k)v2(k) + θ2
,

θdual =
−(2π)2θ

| ~fk|2v1(k)v2(k) + θ2
.

The Q variables are dual to theJ variables and are also
conserved integer-valued currents satisfying~∇ · ~Q1 = 0,
~∇· ~Q2 = 0. Under the exact dualityQ1,tot = Q2,tot = 0; aQ2

is an “auxiliary” field such that~Q2 = ~∇ × ~aQ2
. If we think

of theJ variables as boson number variables, theQ variables
are vortices in the boson phase variables.

Let us use the long-ranged potential in Eq. (2), then we can
see that on the symmetric line the action (5) has the same form
as (1). The parameters in the original action transform under
the duality in the following way:

gdual =
g

g2 + η2
, ηdual =

−η

g2 + η2
. (6)

In terms of the complex numberz we have

S : z → −1/z. (7)

TransformationsS andT generate the modular group of trans-
formations of the upper half of the complex planez. There-
fore with this choice of potential we say that the system is
modular invariant. What happens here is that the statistical
interaction can also be viewed as a marginally long-ranged in-
teraction, and the duality operation preserves the form of such
interactions. We chose the potential in Eq. (2) for analytical
convenience because its form is preserved under duality, but it
also corresponds to a three-dimensional Coulomb interaction
between charged particles constrained to two spatial dimen-
sions, and so we can apply this model to realistic systems.

The phase diagram of a modular invariant system can
be determined entirely from the properties of the modular
group.5–7,11 We will also use these modular transformations
to characterize each phase of our model in terms of quasipar-
ticles gapped in that phase. This will allow us to determine
the behavior of current-current correlators and conductivities
in each phase.

Our numerical study also allows us to examine the critical
properties of the system. All of the phase transitions in the
modular invariant phase diagram can be mapped to each other
under modular group operations. Therefore all such related
phase transition points should have the same critical proper-
ties. We have found some phase transitions which are second-
order, with continuously varying critical exponents. Thisis an
example of a novel type of phase transition. We have also
studied special points in theη, g plane where three phases
meet, and found these to be first-order.
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II. MODEL AND MONTE CARLO METHOD

The action in Eq. (1) has a sign problem, which must be
eliminated if we are to study it in Monte Carlo. In order to
do this, we dualize only one of the two loop species. In this
work, we dualize theJ1 variables to get:14

S[ ~Q1, ~J2] =
1

2

∑

k

[

(2π)2

| ~fk|2v1(k)
| ~Q1(k)|2 (8)

+

(

v2(k) +
θ2

| ~fk|2v1(k)

)

| ~J2(k)|2 +
4πθ ~Q1(−k) · ~J2(k)

| ~fk|2v1(k)

]

.

This is a sign-free classical statistical mechanics problem in
terms of closed loopsQ1, J2 and works for anyv1,v2 andθ
(Note that in Refs. 13,14 we used a different sign-free refor-
mulation that only works for a specific short-rangedv1, v2).
In order to study the above action numerically, we write it in
real space and use the potential from Eq. (2):

S[ ~Q1, ~J2] =
1

2

∑

r,r′

V (r − r′)×
[

1

g1
~Q1(r) · ~Q1(r

′) (9)

+

(

g2 +
η2

g1

)

~J2(r) · ~J2(r′) +
2η

g1
~Q1(r) · ~J2(r′)

]

,

V (r − r′) =
1

Vol

∑

k 6=0

2π

| ~fk|
· ei~k·(~r−~r′), (10)

whereVol ≡ L3 is the volume of the system. In real space,
J2µ(r) is an integer-valued current on a linkr, r + µ̂ of a
cubic lattice. The variablesJ1 are defined on a lattice dual
to the lattice of theJ2, but after the duality procedure the
Q1 are integer-valued current variables on links of the same
cubic lattice as theJ2. We perform our simulations using
the directed geometric worm algorithm.22 We attempt to pro-
duce worms in both theQ1 andJ2 variables, while satisfying
Q1,tot = J2,tot = 0. In this work, we monitor “internal en-
ergy per site”ǫ ≡ S/Vol, and compute “specific heat”, defined
as

C = (〈ǫ2〉 − 〈ǫ〉2)×Vol. (11)

In what follows, we will present all of our results in the
~J1, ~J2 language of Eq. (1). To study the behavior of these
variables we wish to monitor current-current correlations, de-
fined as:

Cab
µν(k) ≡ 〈Jaµ(k)Jbν(−k)〉 , (12)

wherea and b are the loop species andµ and ν are direc-
tions; Jaµ(k) ≡ 1√

Vol

∑

r Jaµ(r)e
−i~k·~r. We trivially have

Cba
νµ(k) = Cab

µν(−k). Because of the vanishing total current,
we define the correlators at the smallest non-zerok; e.g., for
Caa

xx we used~k = (0, 2π
L , 0) and~k = (0, 0, 2πL ). For simplic-

ity, in this work we definek to be in thez-direction, so that
k = (0, 0, kz), and we only need to considerµ, ν ∈ {x, y}.

From symmetry arguments14 we know thatCaa
µν is non-zero

only if µ = ν, andC12
µν is non-zero only whenµ 6= ν. Also,

C12
µν = 0 whenθ = π.14

In our Monte Carlo we have access to the variables
~J2 and ~Q1. In order to monitor all correlators involv-
ing the ~J1 variables, we need to writeC11

µµ(k) andC12
µν(k)

in terms of the correlators that we can measure:C22
µµ(k),

〈Q1µ(k)Q1µ(−k)〉 and 〈J2µ(k)Q1µ(−k)〉. It is easy to ar-
gue that〈J2µ(k)Q1µ(−k)〉 = 〈J2µ(−k)Q1µ(k)〉, which are
the only non-zero cross-correlators ofJ2 andQ1. To obtain
expressions forC11

µµ(k) andC12
µν(k) we can couple the orig-

inal ~J variables to external probe fields~Aext by adding the
following terms to Eq. (1):

δS = i
∑

k

[

~J1(−k) · ~Aext
1 (k) + ~J2(−k) · ~Aext

2 (k)
]

. (13)

We carry the fields~Aext
1,2 through the duality procedure which

leads to Eq. (8). By taking derivatives of the resulting partition
sum with respect to the external fields, we can derive expres-
sions forC11

µµ andC12
µν in terms of correlators which we can

measure:

C11
xx(k) =

1

v1(k)
− (2π)2〈Q1y(k)Q1y(−k)〉

|~fk|2v1(k)2
(14)

−
θ2C22

yy(k)

|~fk|2v1(k)2
− 2(2π)θ〈Q1y(k)J2y(−k)〉

|~fk|2v1(k)2
,

C12
xy(k) =

−
[

2π〈Q1y(k)J2y(−k)〉+ θC22
yy(k)

]

2 sin kz

2 · v1(k)
. (15)

To be explicit, in the above equations we have setµ = x,
ν = y. We note that on the symmetric linev1(k) = v2(k)
and soC11

µµ(k) = C22
µµ(k). Whenever we present numerical

data on the symmetric line, we have performed appropriate
averages over both of these measurements and all directions
to improve statistics.

In order to determine the critical exponents of the model
at various phase transitions, we will also monitor the deriva-
tives of the correlation functions with respect to parameters
in the potential. One option is to study derivatives with re-
spect tog (here we are working on the symmetric line where
g1 = g2 ≡ g). However sinceg controls marginally long-
ranged interactions in our model, it is possible that universal
properties, and in particular critical exponents, might depend
on it.21 To avoid possible difficulties in interpretation due to
driving the transition while varyingg, we have chosen to in-
troduce a short-range interaction into the potential, so that

v1(k) =
2πg

| ~fk|
+ t1, v2(k) =

2πg

| ~fk|
+ t2, (16)

wheret1 andt2 are parameters controlling the strength of the
additional short-range interaction. We can drive transitions by
varyingt1 andt2, with the expectation that critical indices will
depend only ong andη. We can fixg at its critical valuegcrit,
which we will find using our modular group analysis. We will
extract critical exponents by taking derivatives with respect to
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t1 andt2, att1 = t2 = 0 andg = gcrit. We will see in Sec. VI
that we need symmetric and antisymmetric combinations of
t1 andt2 to extract the critical exponents. We definets to be
the short-ranged parameter in the symmetric direction, andta
in the antisymmetric direction, which leads tot1/2 = ts ± ta.
When computing the derivative of a general expectation value
〈O〉, of an observableO, we use the following formula:

∂〈O〉
∂ts/a

∣

∣

∣

∣

ts/a=0

= 〈O〉
〈

∂S

∂ts/a

〉

−
〈

O
∂S

∂ts/a

〉

. (17)

The actionS is the action given in Eq. (8), which is what is
used in the Monte Carlo.

The current-current correlationsCab
µν represent the response

of the currentJaµ to an externally applied fieldAext
bν . We can

view our system with long-range interactions as having an-
other, internal, gauge field, induced by the other currents in
the system.21,23,24In systems with short-range interactions, the
quantityC11

xx(k) · L, with k = kmin ≡ (0, 0, 2πL ) can be used
to detect the phases of the system because it decreases with
system sizeL when theJ variables are gapped and increases
when theJ variables are condensed. This allows the loca-
tion of phase transitions to be determined by finding crossings
of C11

xx(kmin) · L at differentL. However, the long-range in-
teractions in our system preventC11

xx(kmin) · L from increas-
ing when theJ variables condense,14,21,24,25so we cannot use
crossings in this quantity to locate the phase transitions.To
solve this problem, we study “irreducible responses”, which
measure the response ofJ to the total field made up ofAext

and the internal field. These responses are related to the con-
ductivities of the system. The derivation of these responses is
given in Ref. 14, and the result is the following equation for
the conductivities:

σ =
1

|~fk|
C(1−VC)−1, σ ≡

[

σ11
xx(k) σ12

xy(k)
−σ12

xy(k) σ22
yy(k)

]

C ≡
[

C11
xx(k) C12

xy(k)
−C12

xy(k) C22
yy(k)

]

, (18)

V ≡
[

v1(k)
θ

2 sin(kz/2)
−θ

2 sin(kz/2)
v2(k)

]

.

σ11
xx(k) relates the current induced in theJ1 variables in the

x direction to the total field in thex direction, coupled to the
same variables.σ12

xy(k) relates the current induced in theJ1
variables in thex direction to the total field coupled to theJ2
variables in they direction. In Ref. 14 we showed that con-
ductivities such asσ11

xy or σ12
xx are zero in our system. When

we present numerical data we take appropriate averages over
both species and all directions to improve statistics. Unlike
the current-current correlators, suchσ11

xx(kmin) increase with
L in the phase where theJ1 andJ2 variables condense, even
in the presence of long-range interactions, and therefore this
quantity can be used to determine the phase transitions.

III. PHASE DIAGRAM OF THE MODULAR INVARIANT
MODEL

We now wish to use the modular invariance of our ac-
tion to determine the phase diagram of the system with the
J1 ↔ J2 interchange symmetry, in the phase space defined
by the intraspecies interactiong and the statistical interaction
η (η = θ/2π). To begin, consider the action in terms of theJ
variables given in Eq. (1), using the potential in Eq. (2) with
g1 = g2 ≡ g. The behavior of theJ variables is determined by
the parametersg andη. We know that asg → ∞, the system
will be in phase∞, where theJ variables are gapped. Asg
decreases, theJ variables will condense. To find the location
of the phase transition, consider the action after the applica-
tion of the duality operationS. This action is in terms of theQ
variables. Due to the fact thatV (r) ∼ 1/r2, theQ variables
have the same kind of interaction as the originalJ variables,
with parametersgdual, ηdual, given by Eq. (6), instead ofg, η.

Consider the model atη = 0. In this model, the two species
of loops are decoupled, andgdual = 1/g. There are two
phases, one phase with theJ variables gapped (which we call
phase∞) and the other with theQ variables gapped (phase
0). The phase transition between these two phases must occur
at g = gdual = 1. Such single loop models with long-ranged
interactions were studied in Refs. 21 and 26.

Next, we can see from Eq. (1) that our model at phase space
coordinates(η, g) is mathematically equivalent to the model
at (−η, g), after making the change of variablesJ1 → −J1,
while leavingJ2 unchanged. Therefore, away fromη = 0,
we can use the equivalence betweenη and−η to see that
the phase transition will again occur wheng = gdual, which
means that nearη = 0 the transition between phase∞ and
phase 0 occurs wheng2 + η2 = 1. We conjecture that this
is the case for− 1

2 < η < 1
2 . We will see that this conjec-

ture leads to a phase diagram which has the same properties
after any operation by the modular group. This phase dia-
gram is in agreement with our numerics. Therefore we be-
lieve that the conjecture is correct. We know that the phase
diagram is periodic under integer shifts ofη, so in the region
− 1

2 + n < η < 1
2 + n we expect a phase transition out of

phase∞ wheng2 + (η − n)2 = 1. Phase∞ is located in the
region of parameter space above these phase transitions.

We can now use the duality transform to deter-
mine that phase 0 is located in the region where
(ηdual(η, g), gdual(η, g)) lie in the ∞ parameter region,
i.e.g2dual+(ηdual−n)2 > 1, for somen and|η−n| ≤ 1

2 (see
also Fig. 2).

When deriving the extent of phase 0, we performed the fol-
lowing steps. First, we applied an operation of the modular
group (specifically, duality) to the action in Eq. (1). This gave
us an action in terms of new variables (specifically, we ob-
tained theQ variables). The new parameters in the action,
gdual andηdual, were functions of the original parametersg
and η. Note that both actions refer to the system at a sin-
gle point on the phase diagram. By determining which(η, g)
gave(ηdual, gdual) in the∞ parameter region, we were able
to determine the extent of phase 0, where theQ variables were
gapped.
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We now want to generalize this procedure to everywhere
in the phase diagram. This requires us to apply modular
group operations more complicated than duality to the action
in Eq. (1), and so we must determine the new phase space
coordinates(η̃, g̃) that result from a given modular group op-
eration. To do this we combine Eqs. (4) and (7) to get:5,11

z̃ =
az + b

cz + d
, (19)

wherea, b, c, d are integers andad − bc = 1. To find the
a, b, c, d that correspond to a given set ofS andT , we write
them in matrix form:

[

a b
c d

]

(20)

and the operations can also be represented by matrices:

S =

[

0 −1
1 0

]

, (21)

T n =

[

1 n
0 1

]

. (22)

We can find thea, b, c, d that correspond to a given operation
by multiplying these matrices. Such matrices whereÂ and
−Â are identified make up the groupPSL(2,Z), which is
equivalent to the modular group.

We know that there is a phase transition atg2 + η2 = 1,
for |η| ≤ 1

2 . If we apply a modular group operation, we
will obtain an action in terms of variables with interactions
g̃, η̃, and these variables will have a phase transition whenever
g̃2 + η̃2 = 1, |η̃| ≤ 1

2 . Therefore we can find all of the phase
transitions in the diagram by finding all the different values
of g, η which have this property for some modular operation.
The resulting phase diagram is shown in Fig. 2. We have only
shown one period of the phase diagram, with0 ≤ η ≤ 1, but
the same structure repeats for allη. As the modular group is
an infinite group, there are an infinite number of phase tran-
sitions, and so our diagram does not show all of the details at
smallg.

The solid symbols in Fig. 2 show the locations of the phase
transitions determined numerically. In a physical systemη
must be fixed, and so we took data in sweeps at fixedη, vary-
ing g. This corresponds to vertical lines in the phase diagram.
We determined the locations of phase transitions by observ-
ing peaks in the specific heat. We have also observed that
σ11
xx(kmin) diverges with system size in phase 0 but decreases

with system size in all of the phases neighboring phase 0 (this
will be explained in Sec. IV). Therefore we were also able to
use crossings in this quantity to locate the phase transitions.21

Finally, using Eqs. (14) and (15) we can determine that at
the∞-0 phase transition, where theJ variables andQ vari-
ables see the same potential (but opposite statistical angle),

2 · [gC11
xx(k)− ηC12

xy(k) sgn (kz)] =
|~fk|
2π

. (23)

In addition, we find that in the thermodynamic limit the above
quantity divided by|fk| approaches zero in phase∞ and a dif-
ferent finite value in phase 0, and so we used crossings of this
quantity as another way to find the location of the transition.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1/4 1/3 1/2 2/3 3/4 1

g

η=θ/2π

∞

0 1

1/2

FIG. 2: The phase diagram for the “symmetric” model withg1 =
g2 = g, for one period inη. TheJ variables are gapped in phase
∞, and the (dual vortex)Q variables are gapped in phase 0. In other
phases, the gapped particles are linear combinations ofJ andQ. Ev-
ery phase can be mapped to phase∞ by an operation in the modular
group. Solid symbols show where the locations of phase transitions
have been confirmed by our numerical study. There are infinitely
many phase transitions in the model, so at smallg our diagram does
not show every transition. The labels on the phases are explained in
the text.

We have mentioned above that by applying an operation
of the modular group we can express the original problem in
terms of new loop variables. For a given phase, if we choose
the modular group operation which gives(η̃, g̃) in the∞ pa-
rameter region, these loop variables will be gapped quasipar-
ticles in that phase. In the following we will show how to
determine the precise physical nature of the phase and these
quasiparticles. Starting with Eq. (1), we perform a duality
transformation on theJ1 variables to obtain Eq. (8). We then
make the following substitutions:

~G1 = c ~Q1 − d ~J2. (24)
~F2 = a ~Q1 − b ~J2, (25)

A change of variables like the one above will not always map
the independent, integer-valued variablesQ1, J2 to new inde-
pendent, integer valued variables. Ifa, b, c, d are allowed to be
any integer,G1 andF2 may not be independent and therefore
the action in terms of these variables will not be equivalentto
our original action. However, ifa, b, c, d represent an element
of the modular group, then the above substitutions represent a
valid change of variables. Note that for the duality transform
(a, b, c, d) = (0,−1, 1, 0), and so this transformation gives us
G1 = Q1, F2 = J2.

After performing the above change of variables, we arrive
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at the following action:

S[~G1, ~F2] =
1

2

∑

k

(2π)2

|fk|
[1

g̃
|~F2(k)|2

+

(

g̃ +
η̃2

g̃

)

|~G1(k)|2 −
2η̃

g̃
~F2(−k) · ~G1(k)

]

, (26)

where

g̃ =
g

(d+ ηc)2 + g2c2
, (27)

η̃ =
(b+ ηa)(d+ ηc) + g2ca

(d+ ηc)2 + g2c2
. (28)

In the above we have specialized to the potential given in
Eq. (2), on the symmetry line wherev1 = v2. One can
check that the new parametersη̃, g̃ are precisely those given
by Eq. (19). We can then dualize theF2 to obtain the follow-
ing action:

S[~G1, ~G2] =
1

2

∑

k

2πg̃

| ~fk|

[

|~G1(k)|2 + |~G2(k)|2
]

+
∑

k

i2πη̃ ~G1(−k) · ~aG2
(k), (29)

with ~G2 = ~∇ × ~aG2
. We can now understand the gapped

variables as linear combinations ofJ variables andQ vari-
ables. The concept that each phase can be understood as a
phase of gapped variables given by modular transformations
is the main result of our work. A more general version of the
above equation is given in the Appendix.

In the above we chose a modular operation to map a given
η, g to the region of the phase diagram whereg̃2 + η̃2 >
1, |η̃| ≤ 1

2 . We could instead have chosen a different oper-
ation which mapped tõg2 + (η̃−n)2 > 1, |η̃−n| ≤ 1

2 , since
this would still be in the∞ parameter region. The coefficients
of this new transformation would change bya → a + nc,
b → b + nd, with c andd remaining unchanged. We can see
from Eq. (25) that the new variablesG1 (and by symmetry
G2) are the same regardless of which part of region∞ the
original model is being mapped to. In what follows we will
always choose the modular operation which maps to the re-
gion g̃2 + η̃2 > 1, |η̃| ≤ 1

2 . We have found that all physical
results depend only on the coefficientsc andd, which are the
same regardless of which part of the∞ parameter region the
g̃, η̃ variables are in.

We will label each phase by the label−d
c . (Note that for

phases with0 < η < 1, c andd have opposite signs). For any
modular transformation,c andd are mutually prime, so this
label will be an irreducible fraction which uniquely identifies
c andd. This label is practical for a number of reasons. From
Eq. (25) we see that it gives the nature of the gapped quasi-
particles in this phase. It also gives theη value at which this
phase touches theg = 0 axis, which is also theη value which
maps tog = ∞. Phase∞ with c = 0, d = 1, and phase 0
with c = 1, d = 0 both conform to this label. Figure 3 shows a
section of the modular invariant phase diagram with the labels
assigned.

We can understand each phase as a condensate of objects
which haveG1 = 0 or G2 = 0. An example of such an
object would haveQ1 = d, J2 = c. In our Monte Carlo
simulations we can greatly reduce autocorrelation times by
attempting worms of these composite objects.

Let us provide some examples of the application of the
above approach. Consider performing an experiment on this
system by decreasingg while holdingη constant atη = 1

n ,
with n an integer, andn 6= 2. This is equivalent to a vertical
sweep in Fig. 2, or a sweep along the symmetric line in a fig-
ure similar to Fig. 1. At largeg, theJ variables are gapped.
As g is decreased theJ variables condense and theQ vari-
ables are gapped. In fact, the precise meaning of condensation
of theJ variables is that their dualQ variables are gapped.14

Though the intraspecies potential of theJ particles (which is
controlled byg) is small, theJ variables feel a statistical in-
teraction, and this limits how many loops of theJ variables
can form. Also,g is large enough that large values ofJ are
still costly, and so we expect that when theJ variables first
condense they have strength one. This means that complex
composite objects of theJ variables are not condensed here.
Consider further decreasingg. In Eq. (6), we see that for non-
zeroη, at small enoughg the parametergdual will also become
small. Now we enter a phase where both theQ andJ variables
want to proliferate in some form. The gapped variables are
now theG variables given by the modular operationST nS,
which has coefficients(a, b, c, d) = (−1, 0, n,−1), leading to

g̃ =
1

n2g
, η̃ = − 1

n
. (30)

As g → 0, these variables will havẽg → ∞, and therefore
no loops. The small value ofg thus leads to the binding and
condensation of more complicated composites ofJ (in partic-
ularQ1 = 1, J2 = −n). These objects will see no statistical
interaction, and loops of these variables can form more easily
than loops of theJ variables in phase 0. Specifically, under
the change of variables in Eqs. (24) and (25), the interactions
in Eq. (26) are such that theG1 variables want to be gapped
and theF2 variables condensed (hence theG2 variables are
also gapped). This is phase “1/n”. The transition from phase
0 to phase1/n occurs atg = 1/n(

√
n2 − 1).

Now consider the same experiment as above, this time hold-
ing η = 2

5 , as shown by the vertical line in Fig. 3. Phase
∞ and phase 0 have the same properties as in the earlier
case. Atg = 1

5 , the system enters phase 1/2. The new
gapped variables in this phase are related to theJ variables
by the operationST 2S, and so have~G1 = 2 ~Q1 + ~J2. At
g = 1/(5

√
21) the system enters phase 2/5. The new gapped

variables correspond to the operationST−2ST 2S, which has
(a, b, c, d) = (−2, 1,−5, 2). They remain gapped even as
g → 0. The new condensed variables see no statistical in-
teraction and can condense completely.

In the general case of rationalη such thatη = r
s , with r and

s mutually prime integers, we can find a modular transforma-
tion such thatc = s, d = −r. For such a transformation,
we can see from Eq. (27) thatg̃ = 1/(gc2) → ∞ asg → 0.
Therefore for generalη the system will pass through a num-
ber of phases with different gapped variables, before finally
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FIG. 3: A section of Fig. 2, blown up to show the labels on the vari-
ous phases. Not all transitions are shown as there are infinitely many
of them at smallg. The dashed line is atη = 2/5, where the data in
Figs. 4, 5, and 6 were taken.

reaching a phase on theg = 0 axis wherec andd are related
to η, and which can be viewed as a condensate of composite
objects likeQ1 = r, J2 = s.

IV. CORRELATION FUNCTIONS AND CONDUCTIVITIES

In our Monte Carlo, we can measure the correlators be-
tween the current variables,C11

J (k) andC12
J (k), where the

J subscript refers to the fact that these are correlators in the
J variables. Here and below we are dropping the direction
subscripts on these variables:C11 meansC11

xx andC12 means
C12

xy. We would like to determine the values of these correla-
tors in the thermodynamic limit for all the phases in the phase
diagram. The conductivitiesσ11

xx(k), σ
12
xy(k) are functions of

these correlators, so this will also give us the values of these
conductivities. We know the values of the correlators in phase
∞, because in this phase theJ variables are gapped. This
means that the only excitations are small loops, which im-

plies thatC11
J (k) ∼ k2. Since we measured the correlators at

k = (0, 0, kz = 2π
L ) ≡ kmin, we find thatC11

J (kmin) ∼ 1
L2 .

The smallest excitation that contributes toC12
J (k) consists of

a small loop in each of the~J1 and ~J2 variables. An estimate of
such contributions with cross-linking between the loops leads
to C12

J (kmin) ∼ − sin(θ)k3min ∼ 1/L3. From these corre-
lators we can determine that the conductivities vanish in this
phase.

In the previous section, we have interpreted each phase by
going to the appropriateG1 andG2 variables, and since these
variables are gapped in this phase, we know the behavior of
theG correlators for the same reasons given above. Therefore
we wish to expressC11

J (k) andC12
J (k) in terms ofC11

G (k) and
C12

G (k), where the latter are correlators of the new variables.
To do this, consider the combination

DJ(k) = π

[

C12
J (k)

sin kz

2

+
iC11

J (k)

| sin kz

2 |

]

. (31)

Consider the effect of the duality operatorS on this object. We
can derive the following relation between the complex correla-
tionDJ(k) in the direct variables, and the complex correlation
DQ(k) in the dual variables:14

DQ(k) = z2DJ(k) + z. (32)

Note that this equation is a relation between twodifferent cor-
relation functions at thesame point in the phase diagram. The
periodicity operatorT does not change the correlation func-
tions. Combining the actions of the two operators leads to the
following relation between correlation functionsDG(k) of the
G variables in Eq. (31), and the correlation functionsDJ(k)
of the originalJ variables:5

DG(k) = (cz + d)2DJ (k) + c(cz + d), (33)

wherec andd are the parameters of the modular group oper-
ation which gives the gapped quasiparticles. We can rewrite
Eq. (33) to get expressions for theJ correlation functions in
terms of only theG variables:

C11
J (k) =

| sin kz

2 |
π

c2g

(cη + d)2 + c2g2
+

[(cη + d)2 − c2g2]C11
G (k)− 2cg(cη + d) sgn (kz)C

12
G (k)

[(cη + d)2 + c2g2]2
, (34)

C12
J (k) =

sin kz

2

π

−c(cη + d)

(cη + d)2 + c2g2
+

[(cη + d)2 − c2g2]C12
G (k) + 2cg(cη + d) sgn (kz)C

11
G (k)

[(cη + d)2 + c2g2]2
. (35)

In the phase whereG are gapped,C11
G (kmin) ∼ 1/L2 and

C12
G (kmin) ∼ 1/L3, and so in the thermodynamic limit the

behavior ofC11
J (kmin) andC12

J (kmin) is given by the first
terms in the above expressions. Our numerical results agree

with this analysis. Plots of these first terms compared to the
numerical data are given in Fig. 4 forC11

J (kmin), and Fig. 5
for C12

J (kmin). To find the curves that correspond to the the-
oretical predictions, one reads offc andd from the label of a
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FIG. 4: C11

J (kmin) · L as a function ofg for η = 2

5
(i.e. along the

dashed line in Fig. 3), for system sizesL = 6 andL = 8. The
dashed curves correspond to the theoretical predictions inthe differ-
ent phases. The dotted vertical lines denote the phase transitions,
which occur atg = 1

5
andg = 1

5
√

21
.

given phase, and substitutes these coefficients into the leading
terms of Eqs. (34) and (35).

From the correlation functions we can also determine the
conductivities. We find that in the thermodynamic limit (and
assumingd 6= 0)

σ11
xx(kmin) = 0, (36)

σ12
xy(kmin) =

−c

2πd
. (37)

These conductivities are determined solely by the coefficients
c and d, and hence by the “−d/c” label. Figure 6 shows
σ12
xy(kmin) for η = 2

5 . As g is decreased, the system passes
through both phase 1/2 and 2/5, and the conductivity takes the
expected values of− 1

2π
c
d = 1

2π2 and 1
2π

5
2 in these phases. At

a phase transition theG variables are not gapped and so the
above expressions do not hold. In phase 0,d = 0, and so to de-
termine the behavior of the conductivities one must take into
account the subleading terms in Eqs. (34) and (35). When this
is done one finds thatσ11

xx(kmin) diverges in phase 0 (which is
why its crossings can be used to detect phase transitions) and
σ12
xy(kmin) approaches a non-universal value.
Note that in the above expressions, if we chose a differ-

ent modular operation which had̃η → η̃ + n, this would not
changeDG(k), nor would it change the modular group co-
efficientsc andd, and therefore the above equations would
remain unchanged. Therefore shiftingη̃ by an integer, which
is equivalent to choosing a different modular operation to de-
scribe the gapped particles, does not change any of the physi-
cal properties.

A different situation arises when we discuss shiftingη by
an integer, i.e.η → η + n. This corresponds to describing
a different point on the phase diagram, for example a point
with η ≈ 1/3 after a shift of 1 would haveη ≈ 4/3. From
Eq. (1), it is clear that the correlatorsC11

J (k), C12
J (k) should

have the same properties after the shift, but this is not obvious
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FIG. 5: C12

J (kmin) · L as a function ofg for the same system as in
Fig. 4. The dashed curves correspond to the theoretical predictions.
The dotted vertical lines denote the phase transitions.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  0.1  0.2  0.3  0.4  0.5

2π
σ12 xy

(k
m

in
)

g

01/22/5

L=6
L=8

FIG. 6: 2πσ12

xy(kmin) as a function ofg for the same system as in
Fig. 4. We observe that the conductivity approaches1

2π
2 in phase

1/2 and 1

2π
5

2
in phase 2/5, as expected. The dotted vertical lines de-

note the phase transitions. In phase 0,σ12

xy approaches non-universal
values.

from Eqs. (34) and (35). However, in order to get an action in
terms of gapped quasiparticles in a phase at the shiftedη, we
must apply aT−n operation to our action before we apply the
modular operation for unshiftedη. This changes the modular
coefficientsb andd: b → b−an, d → d−cn, and this cancels
the shift inη in Eqs. (34) and (35) to leave the correlators un-
changed. Therefore whenη is shifted different quasiparticles
become gapped.

Though the current-current correlators do not change when
η is shifted, the conductivities do change [note the dependence
on d in Eq. (37)]. Though the equivalence of the correlators
implies that the system’s response to an applied field is un-
changed by a shift inη, this does not mean that the system’s
response to the internal fields is unchanged. In particular,14

when defining the conductivities we are treating the statisti-
cal interaction as a long-ranged interaction mediated by real-
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valued internal gauge fields. Shiftingη changes the strength
of this interaction, which in turn changes the action of the in-
ternal gauge fields. This is responsible for the change in the
conductivity. An interesting case is the effect of such a shift
on the conductivity in phase 0. In this phase theJ variables
are condensed, and since these are the variables which carry
the current in this phaseσ11

xx diverges, as we have seen. We
can apply the operatorT 1 to phase 0 to get phase 1. In this
phase, the partition function for theJ variables is exactly the
same, butσ11

xx does not diverge. To understand this, recall the
precise meaning of condensation: a variable is said to be con-
densed if its dual variables under the formal duality transfor-
mation are gapped. The variables dual to theJ variables are
theQ variables that are gapped in phase 0. However, theQ
variables are not gapped in phase 1 and hence theJ variables
are not condensed in the above sense. Instead, some other
variables, which can be determined from the substitutions in
Eqs. (24) and (25) appropriate for phase 1, are condensed. An-
other way of interpreting condensation is that in calculations
like the current-current correlations we can replace integer-
valued condensed variables by real-valued variables, and per-
form Gaussian integrals over these variables. By the above ar-
guments we can do this in phase 0 but not phase 1, and noting
how we defined the conductivity for theJ currents, it “knows”
whether or not this real-valued replacement is possible. This
explains the difference in conductivities between phase 0 and
phase 1.

The phase diagram in Fig. 2 has a number of special “fixed”
points which are unchanged by an operation of an element
of the modular group. There are two types of such points:
“triple points” where three phase transitions meet, and points
halfway along a phase transition line, such as the point at
η = 0, g = 1.5,11 The invariance under a modular operation
means that in Eqs. (34) and (35) we haveC11

J (k) = C11
G (k)

andC12
J (k) = C12

G (k). We can then solve the two equations
to determine the correlation functions, and therefore alsothe
conductivities. We obtain the following results, applicable at
all fixed points withg > 0:

C11
J (k) =

| sin(kz

2 )|
2πg

, (38)

C12
J (k) = 0. (39)

We can then determine the conductivities:

σ11
xx(k) =

g

2π(g2 + η2)
, (40)

σ12
xy(k) =

η

2π(g2 + η2)
. (41)

We have verified these equations numerically for the fol-
lowing points(η, g): (1/2,

√
3/2), (1/2, 1/2), (1/2,

√
3/6).

Whenη = 0 the two species of particles are decoupled, and
we studied this system in Ref. 21. We found the above equa-
tions to hold for the fixed point(η = 0, g = 1).
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FIG. 7: Histograms ofǫ at various points on the phase transition
between phase∞ and phase 0, using sizesL = 10, 12, 14, 16. A
normally-distributed histogram implies that the transition is second-
order, while a transition with multiple peaks implies first-order. The
first panel corresponds toη = 1

5
, the next two panels correspond to

η = 1

4
,1
3
. We see no evidence of first-order behavior at these sizes.

V. NATURE OF TRANSITIONS

Our numerical approach allows us to study the properties
of the various phase transitions in Fig. 2. We have attempted
to determine the order of the transition between phase∞ and
phase 0. To do this we study histograms of the total energy
ǫ at the phase transition, utilizing the fact that we know the
exact location of the transition. In a second-order transition,
we would expect such histograms to be normally distributed,
while for a first-order transition we may see multiple peaks
in the distribution. Figure 7 shows histograms taken on the
∞-0 transition, atη = 1

5 ,
1
4 ,

1
3 . Histograms for system sizes

L = 10, 12, 14 and 16 are shown. We see normally dis-
tributed histograms, suggesting a second-order transition. We
can show that in our sign-free reformulation using theQ1, J2
variables,〈ǫ〉 = 1 − 1

L3 for the model withJ1 ↔ J2 inter-
change symmetry, at all values ofg andη. Our Monte Carlo
measurements of〈ǫ〉 confirm this.

The modular invariance of the system implies that all phase
transitions that are related by a modular operation will have
the same properties. In fact, one can show that in our vari-
ablesQ1, J2, any two points related by the modular group
produce simulations with the same energies, so the histograms
should be identical. In these variables the updates used in
the Monte Carlo are different, but if they are done properly
the results should be the same. We will check this by study-
ing the properties of the line of phase transitions atη = 1

2 .
There are two modular group operations which map the∞-
0 phase transition to this one. The first isT 1ST 1S, which
has(a, b, c, d) = (0,−1, 1,−1). This maps the three above
points at η = 1

5 ,
1
4 ,

1
3 to three points withη = 1

2 and
g =

√
6/4,

√
15/6, 1/

√
2. Histograms at these points are

shown in Fig. 8. Once again, we see no evidence of first-
order behavior at these system sizes. The second modular
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FIG. 8: Histograms ofǫ at various points on line of phase transitions
at η = 1

2
, using sizesL = 10, 12, 14, 16. Each point is related to

a point on the∞-0 phase transition by the operationT 1ST 1S. The
first panel maps toη = 1

5
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.

We see no evidence of first-order behavior. The histograms are also
identical to those in Fig. 7, which provides a check on our Monte
Carlo.
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FIG. 9: Same as Fig. 8, but the operation to map these points to∞-0
phase transition isST−1S, as explained in the text.

group operation which maps the∞-0 transition to the line at
η = 1

2 is ST−1S, which has(a, b, c, d) = (−1, 0,−1,−1).
This maps the three points on the semi-circle toη = 1

2 and
g = 1/

√
6,
√
15/10, 1/(2

√
2). Histograms for these points

are shown in Fig. 9, and they also show no sign of first-order
behavior. The histograms for the related points in Figs. 7, 8
and 9 are identical, as predicted by the above argument.

We have also studied the system at the “triple points” on
the modular invariant phase diagram, where three phase tran-
sitions meet. We expect all such points to have the same
properties, and we have studied the points at the ends of the
η = 1

2 line of phase transitions, which occur atg =
√
3/2

and g =
√
3/6. Histograms for these points are shown in

Fig. 10(a) and (b). We see that the histograms have two clear
peaks, indicating that these are first-order transitions.
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FIG. 10: Histograms ofǫ at some special “fixed” points in Fig. 2
using sizesL = 10, 12, 14, 16. The first two panels show histograms
at “triple points” where three phase transitions meet. Panel (a) shows
the triple point at the upper end of the line of phase transitions at
η = 1

2
, which hasg =

√
3/2. Panel (b) shows the point at the

lower end withg =
√
3/6. Both histograms have a double-peaked

structure which indicates that the transitions at these points are first-
order. Panel (c) shows histograms at the fixed pointη = 1

2
, g =

1

2
. These histograms show no sign of first-order behavior, which we

expect since this point should have the same properties as the point
η = 0, g = 1 which is known to be continuous.21

In Ref. 21 we studied the phase transition at(η = 0, g = 1)
and found it to be continuous. This point maps to the point
η = 1

2 , g = 1
2 , and we have studied the phase transition at this

point to confirm the second-order behavior. Histograms at this
point are shown in Fig. 10(c), and we see no sign of first-order
behavior.

VI. CRITICAL EXPONENTS OF PUTATIVE
SECOND-ORDER TRANSITIONS

Apart from the triple points, the transitions we have stud-
ied are second-order, and we can now determine their critical
exponents. In Fig. 2 the∞-0 transition seems to take place
at an ordinary critical point, however in Fig. 1 we see that the
transition actually takes place at a tetracritical point when we
allow v1 andv2 to be not equal. Figure 11(a) shows a closer
look at the upper tetracritical point in Fig. 1. At such a tetra-
critical point there are two scaling directions, each with adif-
ferent correlation length exponent.27 Our system is symmetric
under the interchange ofJ1 andJ2, which implies that one
scaling direction is in the symmetric (δv1 = δv2) direction,
with critical exponentνs, and the other is in the antisymmet-
ric direction (δv1 = −δv2), with critical exponentνa. We can
determine which of these exponents is larger based on how the
phase transition lines meet. A simple renormalization group
argument shows that the phase boundaries in the local coordi-
natesλs, λa obey

λa ∼ λνs/νa
s . (42)
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FIG. 11: (a) Schematic blow-up of the phase diagram in thev1, v2
(Fig. 1) variables, near a tetracritical point. At such a point we ex-
pect two scaling directions with distinct critical exponentsνs andνa.
Due to the symmetry on interchange ofJ1 andJ2, we expect the
scaling directions to be in the symmetric and antisymmetricdirec-
tions, shown by the dotted lines. The shape of the phase transition
lines implies thatνs > νa. (b) Phase diagram for the special case of
θ = π (η = 1/2). We can see that along the symmetric direction
the system goes along the phase boundary, and we can only drive a
phase transition across the antisymmetric direction.

Our data shows that the phase transition lines have the same
shape as those in Fig. 11, and this combined with the above
equation impliesνs > νa.

We will extract the critical exponents by taking appropriate
derivatives ofC11(kmin) · L. In this system with long-ranged
interactions,C11(kmin) · L approaches a constant (possibly
zero) value in each phase. At a critical point, it jumps from
one value to another, which leads to a peak in its derivative.As
mentioned in Sec. II, we want to take derivatives with respect
to a short-ranged part of the potentials, given by the param-
eterst1 andt2 in Eq. (16). To extractνs we take derivatives
with respect to the symmetric combinationts, while forνa we
use the antisymmetric combinationta. C11(kmin) · L has the
scaling form:

C11(kmin) · L = fa(Lt
νs
s ) symmetric direction,

C11(kmin) · L = fs(Lt
νa
a ) antisymmetric direction,

wherefa andfs are scaling functions. This leads to

∂C11
J (kmin) · L

∂ts

∣

∣

∣

∣

ts=ta=0

∼ L1/νs , (43)

∂C11
J (kmin) · L

∂ta

∣

∣

∣

∣

ts=ta=0

∼ L1/νa , (44)

so νs,a can be extracted by fitting curves of∂(C11
J (kmin) ·

L)/∂ts,a vsL. Such curves, at the∞-0 transition, are shown
in Fig. 12(a) for the symmetric derivative and Fig. 12(b) for
the antisymmetric derivative. The extracted values ofνs and
νa are shown in Fig. 13. We see thatνs > νa, as expected
from the shapes of the phase transition lines near the tetracrit-
ical point. We also see that neither exponent is close to1/3,
supporting the conclusion that we have second-order transi-
tions at these points. The exponentνa is decreasing as we

move along the phase transition away fromη = 0. On the
other hand, the error bars onνs are too large to tell whether it
is varying. Error bars forν can be estimated from the fits to
the∂(C11

J (kmin) · L)/∂t curves. However, we may have sig-
nificant finite size effects in our results, even though we are
simulating exactly at the transition, because we do not know
the subleading corrections to Eqs. (43) and (44). To account
for this in the error bars we performed fits both including and
not including the data atL = 6, and if the errors from the fit-
ting procedure were not large enough to encompass both val-
ues we increased the error bars. The values ofν were taken
from the fits which included theL = 6 data. We have also
plotted the critical exponents measured in Ref. 21 at the point
g = 1, η = 0. At this point the two species of particles are
decoupled, soνs = νa.

We could not determineνs on theη = 1
2 line because

changingts does not move the system through a phase tran-
sition, instead it moves along the line of phase transitions, as
seen in Fig. 11(b). On the other hand, we can argue that the
transition driven byta is equivalent to that on the∞-0 line
at the related point, and theνa values on this transition are
shown in Fig. 13(b).

The transition atη = 1
2 is a transition between phase I,

where theJ1 variables are condensed and theJ2 are gapped,
and phase II whereJ1 is gapped andJ2 condensed. Theπ-
statistical interactions prevent both types of loops from con-
densing simultaneously. The two species could behave as im-
miscible fluids and phase separate, or they could coexist in a
critical soup.28–30Our result that the transition is second-order
implies that the two species can indeed form such a critical
state.

An open question is how three transitions meet at a triple
point in the modular phase diagram in Fig. 2. All three tran-
sitions could be second-order all the way to the triple point,
or they could have bicritical points where they become first-
order. Our results show that on at least part of the phase
boundaries the transition is second-order. A more detailed
study could determine whether the phase transitions do be-
come first-order at some point, and where this point is.

VII. DISCUSSION

We studied a model of two species of particles with mu-
tual statistics and long-ranged interactions such that themodel
has the same form after the application of operations from the
modular group. Using this modular invariance, we were able
to analytically conjecture the phase diagram and determine
the values of the current-current correlations and conductiv-
ities in each phase and at all points that are invariant under
the modular group. We can also describe each phase in terms
of particles gapped in that phase. Using a reformulation of
the model that does not have the sign problem, we performed
Monte Carlo studies and firmly established the conjectured
phase diagram. Furthermore, we numerically determined the
order of the transitions in the phase diagram of this modular
invariant system. We found the triple points to be first-order
but the other phase transitions we studied were second order.
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FIG. 12: Plots of the derivatives∂(C11

J (kmin) · L)/∂ts and
∂(C11

J (kmin) ·L)/∂ta at various points on the∞-0 phase transition.
Error bars were obtained by comparing the results of independent
simulations. We expect such plots to scale asL1/νs,a . The values
shown in Fig. 13 were extracted by fitting these curves to the func-
tion a+ bL1/ν .

The second-order transitions are evidence for a novel critical
loop soup state in the caseθ = π.

Exact results derived from the modular invariance greatly
improved our numerical study. We were able to derive a num-
ber of useful checks on the Monte Carlo, as well as run sim-
ulations exactly at the location of the critical points, greatly
simplifying our measurements of critical exponents.

The reader may have noticed that the phase diagram in
Fig. 1 is qualitatively similar to the diagram in Ref. 14. The
largest part of the marginally long-ranged interaction is the
term which corresponds tor − r′ = 0, so it is not surprising
that the phase structure of these models is the same. The new
result in this paper is that the phase diagram has been deter-
mined analytically, which is possible because the interaction
is marginally long-ranged. This allows us to determine the
phase structure for generalθ in more detail than a numerical
study would allow, and to find the quasiparticles which are
gapped in each phase. We expect the phase diagrams for other
potentials to be similar to the results given here, and that each
phase can also be interpreted in terms of gapped quasiparti-
cles.

In Ref. 13 we studied the transition atθ = π similar to the
one studied here, and found it to be first-order. We do not un-
derstand why the marginally long-ranged interaction changes
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FIG. 13: Critical exponents along the (a) symmetric and (b) antisym-
metric scaling direction, extracted from the data in Fig. 12. Error bars
come from the fits, and are further increased to account for finite-size
effects as discussed in the text. The blue circles representthe value of
ν obtained in Ref. 21.νs cannot be measured whenθ = π, since the
system does not cross a phase transition in this direction [see Fig. 11
(b)]. On theθ = π line there are two points which map to each point
on the∞-0 semicircle.

this transition to a continuous one. Some insight can be gained
by studying the one-component model with marginally long-
ranged interactions.21 This model has a larger critical expo-
nent (i.e. is more continuous) than the short-ranged 3DXY
case. We also note that the short-ranged model with no statis-
tical interaction has only continuous transitions. By including
marginally long-ranged interactions we weaken the statistical
interaction relative to the other interactions, which may also
weaken the first-order behavior.

Since we have only studied this model at relatively small
system sizes, it is possible that the transitions which we
observe to be continuous are actually first-order. Studying
larger system sizes could confirm the second-order behavior.
It would also be interesting to study field theories for such
systems with marginally long-ranged interactions and mutual
statistics.14,21,26,31Studying this model at larger system sizes
would also allow one to obtain better estimates ofν, since any
subleading terms would have a reduced effect. In addition, at
larger sizes one could determine the behavior near the triple
points, in particular where the transition changes from first-
order to second-order. Due to the long-ranged interactionsin
our system, each update must calculate its effect on the energy
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of the rest of the system, which requiresL3 operation, and
L3 such updates must be performed to make an independent
measurement. Therefore the amount of computer time needed
scales asL6, making studies at larger system sizes difficult,
but possible with future resources.

At θ = π, our (2+1)-dimensional model is relevant to the
study of unusual phase transitions in (2+1) dimensions.28–30 It
also applies to the study of (2+1)-dimensional symmetry pro-
tected topological (SPT) phases and phase transitions,32–34 as
well as the surface states of (3+1)-dimensional SPT phases.35

It may also be possible to use similar lattice models to study
such SPT phases in the bulk.36–42 More generally, our loop
model provides a precise lattice realization of a topological
field theory. It would be interesting to study such lattice mod-
els for other topological field theories.43–49
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Appendix A: Modular transformations for general potentials

The method in Sec. III allows us to apply duality and peri-
odicity operations to an action to obtain a new action in terms
of new variables. Such a procedure is possible for any choice
of potentials, though potentials other than the ones used inthis
work will not be modular invariant. We can still interpret the
new variables as being gapped in a certain phase, but without

modular invariance we cannot use this to determine the ex-
act locations of the phase transitions, or to predict where the
new variables will be gapped. In Ref. 14 we used numerical
methods to determine which variables were gapped in each
phase, and we were then able to use this procedure to find the
action for these gapped variables. We were also able to deter-
mine the correlation functions and conductivities in the phases
where we knew the gapped variables, using the same methods
as in Sec. IV.

We now provide the equations that generalize the methods
we have used in this paper to any potential. These equations
also represent the procedure used in Ref. 14, generalized to
any operation of the modular group. The action in terms of
new variables is obtained by starting with Eq. (8), making the
substitutionsQ1, J2 → G1, F2 given in Eqs. (24) and (25),
and then dualizing theF2 variables to obtain theG2 variables.
We find

S =
1

2

∑

k

[

vG1
(k)|~G1(k)|2 + vG2

(k)|~G2(k)|2
]

+
∑

k

iθG ~G1(−k) · ~aG2
(k), (A1)

where

vG1/2
(k) =

(2π)2v2/1(k)

(2πd+ θc)2 + v1(k)v2(k)|~fk|2c2
,

and

θG = 2π · (2πb + θa)(2πd+ θc) + v1(k)v2(k)|~fk|2ca
(2πd+ θc)2 + v1(k)v2(k)|~fk|2c2

.

We can also express the current-current correlators in terms of
correlators in the new variables, using the same methods as in
Ref. 14. For simplicity, we specialize to the symmetric line
wherev1 = v2 ≡ v:

C11
J (k) =

v(k)|fk|2c2
(θc+ 2πd)2 + |fk|2v(k)2c2

+
[(θc+ 2πd)2 − |fk|2v(k)2c2]C11

G (k)− 4 sin kz

2 v(k)c(θc + 2πd)C12
G (k)

[(θc+ 2πd)2 + |fk|2v(k)2c2]2
· (2π)2,

C12
J (k) =

−2 sin kz

2 c(θc+ 2πd)

(θc+ 2πd)2 + |fk|2v(k)2c2
+

[(θc+ 2πd)2 − |fk|2v(k)2c2]C12
G (k) + 4 sin kz

2 v(k)c(θc+ 2πd)C11
G (k)

[(θc+ 2πd)2 + |fk|2v(k)2c2]2
· (2π)2.

Whenv = 2πg
|fk| , these equations reduce to Eqs. (34) and (35).
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