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We use the structure of conditionally independent states to analyze the stability of topological
entanglement entropy. For the ground state of quantum double or Levin-Wen model, we obtain a
bound on the first order perturbation of topological entanglement entropy in terms of its energy
gap and subsystem size. The bound decreases superpolynomially with the size of the subsystem,
provided the energy gap is nonzero. We also study the finite temperature stability of stabilizer
models, for which we prove a stronger statement than the strong subadditivity of entropy. Using
this statement and assuming i) finite correlation length ii) small conditional mutual information of
certain configurations, first order perturbation effect for arbitrary local perturbation can be bounded.
We discuss the technical obstacles in generalizing these results.

I. INTRODUCTION

Topological order is a new kind of order that cannot
be described by Landau’s symmetry breaking paradigm.
Properties of these exotic phases include a ground state
degeneracy that depends on the manifold, anyonic statis-
tics, and long range entanglement.1–4 Such phases are
expected to be stable against generic perturbation if its
strength is sufficiently weak and its interaction range is
bounded. Indeed, it was shown by several authors that
the spectral stability follows under a set of reasonable
assumptions.5–7

If the energy gap remains open under the perturba-
tion, one can adiabatically continue from the ground
state of the original hamiltonian to the ground state of
the perturbed hamiltonian.8 Since the generator of this
flow consists of quasi-local terms which decay almost ex-
ponentially, the perturbed hamiltonian has similar prop-
erties to the unperturbed hamiltonian.6,8,9 For example,
one can define local operators that create defects with
well-defined energies and string operators that can move
around the defects. One may argue that the long range
entanglement in the ground state can be preserved in
a similar vein, although one must define precisely what
long range entanglement is.

Long range entanglement in a 2D system refers to the
nontrivial constant subcorrection term of the entangle-
ment entropy, also known as the topological entangle-
ment entropy.3,4,10 While a proof with full mathematical
rigor has not been established to the best of author’s
knowledge, it is widely accepted by now that topological
entanglement entropy is a universal constant that char-
acterizes the phase of the gapped quantum many-body
system. If one accepts the topological quantum field the-
ory description of the low energy physics, there is a sim-
ple explanation as to why the topological entanglement
entropy remains stable against generic perturbation.3

There are also mounting numerical evidences suggesting
the stability.11–13

Presence of the long range entanglement can be in-
terpreted as a consequence of some nontrivial nonlocal
constraint. For example, in the ground state of a 2D

gapped system supporting anyonic quasiparticles, total
charge enclosed in some region must add up to be a trivial
charge. However, the existence of the constant subcor-
rection term alone does not necessarily imply that the
nature of the constraint is quantum. 3D toric code at
finite temperature has nonlocal contributions to the en-
tanglement entropy14, yet such state can be mapped to a
Gibbs state of a classical hamiltonian under local unitary
transformation.15 We wish to understand if this nonlocal
contribution to the entanglement entropy is an invari-
ant of the phase. We would also like to understand the
mechanism behind their stability, instead of arguing on
the ground of effective field theory. In such pursuit, we
introduce a property of these states that has apparently
been unnoticed so far with few notable exceptions.

The key property is the conditional independence. Tri-
partite state ρABC is referred to be conditionally in-
dependent if its conditional mutual information I(A :
C|B) = SAB + SBC − SB − SABC is 0. Hastings and
Poulin showed that even for a system with long range
entanglement, there exists a set of subsystems that are
conditionally independent.16 To see this, note that the
entanglement entropy of a topologically ordered system
can be expressed as SA = a|∂A| − γA, where |∂A| is
the boundary area and γA is a constant that only de-
pends on the topology of A. If the topologies of AB,
BC, B, and ABC are all identical, γ as well as the
boundary contributions cancel out each other. Proving
such statement for a generic quantum many-body system
is a hard problem. However, the entanglement entropy
formula for the ground state of some exactly solvable
models are known.4,10 For such systems, the conditional
independence can be easily shown. Conditional indepen-
dence is also the key idea behind quantum belief prop-
agation(QBP) algorithm.17,18 Success of the QBP algo-
rithm indicates that the conditional mutual information
for certain configuration is likely to be small for noncrit-
ical finite temperature systems.19,20

Main message of the present paper is that the condi-
tional independence of certain subsystems strongly con-
strains the structure of these states so as to ensure the
robustness of the nonlocal quantum correlation. Admit-
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tedly our result is limited to either i) the first order of the
perturbation series of the exactly solvable models or ii)
the perturbation that has a special structure. However,
generalizations to both higher orders of perturbation se-
ries and more general models seem to be hindered by our
lack of understanding about approximately conditionally
independent states rather than that of the physical prop-
erties of such systems.

It has been known in quantum information community
that the structure of states that are conditionally inde-
pendent is significantly constrained compared to that of
the the general quantum state.21–23 In particular, exact
conditional independence implies that subsystems form
a quantum Markov chain. This structure, together with
the locality of the hamiltonian, reveals why topological
entanglement entropy changes very little, at least up to
the first order of the perturbation series. A statement
that extends to the approximate conditional independent
states are not known. In fact, a classical statement that
relates conditional mutual information to a Markov chain
is known to be false for quantum states.24

Rest of the paper is structured in the following way.
In Section II, we introduce the notations. Section III
explains the technical tools. We apply these tools in Sec-
tion IV and V which are respectively dedicated to the
zero temperature and the finite temperature states. We
discuss technical obstacles in generalizing the results to
both higher orders and more general models in Section
VI. We discuss the implication of these results and some
open problems in Section VII.

II. NOTATIONS

The Hilbert space has a tensor product structure ⊗iHi
where Hi corresponds to the local Hilbert space located
at vertices of a square lattice. Local Hilbert space dimen-
sion is d. We assume periodic boundary condition with
sufficiently large system size. We define a set of operators
having nontrivial support on HA as B(HA). The Bound-
ary of subsystem A is denoted as ∂A. |A| represents the
volume of A and similarly |∂A| is the boundary area of
A. We set the size of the subsystems to be O(l) unless
specified otherwise.

We consider a family of hamiltonian H(s) = H0 + sV
and study its behavior in the vicinity of s = 0. Both the
original hamiltonian H0 =

∑
i hi and the perturbation

V =
∑
i vi consists of sum of terms that are supported

on a ball of radius r0 and the interaction strength is uni-
formly bounded by J , i.e. ‖hi‖, ‖vi‖ ≤ J . ‖ · · · ‖ is l∞
norm. We denote the spectral gap as Γ(s).

Following Bravyi et al.’s construction25, we define an
approximation of a quasi-local operator as follows.

[O]A =
1

dimAc
TrAc(O)⊗ IAc (1)

This approximation is motivated from the fact that a
correlation generated by local hamiltonian falls off expo-

nentially outside an effective lightcone. The quasilocal
operators generated by such time evolution can be ap-
proximated by a local operator supported on a ball of
finite radius R, with the correction term decreasing su-
perpolynomially with R.

O(l)

O(l)
R

L

L

ξ : correlation length

FIG. 1: The shaded region represents an effect of the pertur-
bation that is smeared out in space. We shall approximate
this effect by a strictly local operator with a finite radius R.
The correction decreases superpolynomially with R.

Entanglement spectrum of a subsystem A is defined as
ĤA = −IAc ⊗ log ρA, where ρA is the reduced density
matrix of A. We define conditional mutual spectrum as
ĤA:C|B = ĤAB + ĤBC − ĤB − ĤABC . Note that

Tr(ρABCĤA:C|B) = I(A : C|B). (2)

We also define 〈· · · 〉 = Tr(ρ · · · ) as an expectation value.
Throughout the paper, constants c and c′ denote numer-
ical constants, and their exact values may be different in
each contexts.

III. TECHNICAL TOOLS

We have extensively used three technical tools in the
present paper. The ideas that motivate each of these
tools are as follows. First, local perturbation perturbs
locally with superpolynomially decaying tail.26 Second,
perturbation that acts locally can be bounded by us-
ing deformation moves. Deformation move refers to a
chain rule of conditional mutual spectrum, analogous
to the chain rule of conditional mutual information.
Third, effect of the superpolynomially decaying tail can
be bounded by regularizing the entanglement spectrum.

The locality estimates come from Lieb-Robinson
bound.27 The deformation moves and the regularization
of the entanglement spectrum is a more refined treatment
of the tools introduced in Ref.28.

A. Regularization of entanglement spectrum

We extend some of the results in Ref.28.
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Definition 1. Regularized entanglement spectrum ĤΛ
A

with a cutoff Λ is

ĤΛ
A = −

∑
p≥1/Λ

log pi |i〉 〈i| , (3)

where |i〉 is an eigenstate of ρA with an eigenvalue pi.

Lemma 1.

|ρAB∆Λ
A|1 ≤

d3
A

Λ
1
2

log Λ, (4)

where ∆Λ
A = ĤA − ĤΛ

A.

Proof. Purify ρAB to |ψ〉ABC . |ψ〉ABC admits the follow-
ing Schmidt decomposition.

|ψ〉ABC =

dA∑
i=1

√
pi |i〉A |i〉BC , (5)

where pis are eigenvalues of ρA and |i〉A (|i〉BC) are the
basis states for the Hilbert space HA(HBC).

For any operator O ∈ B(HAB), it allows the following
decomposition.

O =

d2
A∑

i=1

d2
B∑

i=1

1

dAdB
Tr(UA,i ⊗ UB,jO)U†A,i ⊗ U

†
B,j , (6)

where UA,i(UB,j) are unitary operators that are sup-
ported on A(B) with appropriate normalization condi-
tions.

Tr(UA,iU
†
A,j) = dAδij

Tr(UB,iU
†
B,j) = dBδij . (7)

In other words, {UA,i/
√
dA} ({UB,i/

√
dB}) is a com-

plete set of orthonormal basis for B(HA) (B(HB)) un-

der Hilbert-Schmidt inner product 〈O1, O2〉 = Tr(O†1O2).
Such basis set always exists for a finite dimensional
Hilbert space.29 Equation 6 is equivalent to the following
expression.

O =

d2
A∑

i=1

OB,i ⊗ U†A,i, (8)

where

OB,i =
1

dA
TrA(UA,iO) (9)

=

dB∑
j=1

1

dAdB
Tr(UA,i ⊗ UB,jO)U†B,j . (10)

Also, OB,i can be bounded as follows.

‖OB,i‖ =
1

dA
sup
|φ〉BC

dA∑
i=1

〈φ|BC 〈i|A UA,iO |i〉A |φ〉BC (11)

≤
dA∑
i=1

1

dA
‖UA,iO‖ = ‖O‖. (12)

Rewriting Tr(ρAB∆Λ
AOB,i ⊗ U

†
A,i) as 〈ψ|ABC ∆Λ

AOB,i ⊗
U†A,i |ψ〉ABC ,

〈ψ|ABC ∆Λ
AOB,i ⊗ U

†
A,i |ψ〉ABC = Tr(ρ

1
2

A∆Λ
AU
†
A,iρ

1
2

AÕ
T
B,i),

(13)

where ÕB,i = V OB,iV
† with isometry V =

∑
i |i〉A 〈i|BC .

OT is the transpose of O. Equation 13 can be bounded
by

|ρ
1
2

A∆Λ
A|1‖U

†
i ρ

1
2

AÕ
T
i ‖ ≤

dA

Λ
1
2

log Λ‖Oi‖. (14)

Summing over all i, we get

|Tr(ρAB∆Λ
AO)| ≤ ‖O‖ d

3
A

Λ
1
2

log Λ (15)

Following corollaries can be easily proven by a judi-
cious choice of Λ.

Corollary 1.

|Tr(ρAB log ρAO)| ≤ 6‖O‖ log dA (16)

Corollary 2. Consider a connected correlation func-
tion C(O1, O2) = 〈O1O2〉 − 〈O1〉〈O2〉. If C(O1, O2) ≤
‖O1‖‖O2‖ε for all O1, O2,

|C(ĤA, O)| ≤ ε‖O‖(18 log dA + 4 log
1

ε
). (17)

B. Deformation moves

Author has introduced a set of deformation moves to
show that C(ĤA:C|B , O) can be bounded for an operator
O supported on one of the subsystems, provided that i)
area law holds approximately ii) correlation decays suf-
ficiently fast iii) certain information-theoretic conjecture
is correct.28

Here we construct a similar, yet slightly different state-
ment. As in Ref.28, the statement concerns a correlation
bound between ĤA:C|B and an arbitrary operator O. The
difference is that here we relax the condition on the sup-
port of O: O is allowed to be located anywhere, as long
as its support is sufficiently small compared to the sub-
system.

The price we have to pay is the following. Instead
of relying on an information-theoretic conjecture that is
expected to hold for any quantum states, we impose a
condition on the reduced density matrices.

Definition 2. ρABC is c0-bounded if

|TrC(ρABCĤA:C|B)|1 ≤ c0I(A : C|B). (18)
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Note that all classical states are 1-bounded. Reduced
density matrices of finite temperature Gibbs state for the
so called “stabilizer models” are also 1-bounded. De-
tailed explanation about these states shall be presented
in Section V. If I(A : C|B) = 0, conditional mutual spec-
trum is 1-bounded by Petz’s theorem.22 More specifically,
Petz showed that

ĤA:C|B = 0 (19)

if and only if I(A : C|B) = 0.41

Following Ref.28, given a conditional mutual spectrum
ĤA:C|B , we shall refer B as a reference party. A and C
shall be referred as target parties. Diagrammatically the
reference party will be denoted with a ‘R’ sign and the
target parties will be denoted with ‘T’ signs.

The key idea behind the deformation move is that for
any local operator O, one can decompose ĤA:C|B into

ĤAi:Ci|Bi such that either i) I(Ai : Ci|Bi) = o(1) or ii) O
is sufficiently far away from AiBiCi. Such decomposition
can be expressed as a linear combination of the following
chain rule, which can be verified easily.

ĤA1A2:C|B = ĤA2:C|B + ĤA1:C|A2B , (20)

Nevertheless, we found it instructive to define three ele-
mentary deformation moves to explain this technique.

The first step in the deformation procedure is to apply
an isolation move. Goal of the isolation move is to deform
the boundary between the reference and the target party
so that the support of O is sufficiently separated from
the reference party. See FIG.2

O

T

T

R R

O

T

T

R R

O

T

T

R R= -

FIG. 2: Applying the isolation move, the conditional entan-
glement spectrum is deformed in such a way that i) for the
new conditional entanglement spectrum, O is sufficiently far
away from the reference party ii) the difference is a condi-
tional entanglement spectrum with small conditional mutual
information.

Once the support of O is isolated from the reference
party, we can apply a separation move, which separates
the support of O from the target parties. See FIG.3

Last step is to apply an absorption move. Absorption
move enables us to write the correction terms as a linear
combination of ĤAi:Ci|Bi such that i) the support of O is
contained in either AiBi or BiCi ii) I(Ai : Ci|Bi) = o(1).
See FIG.4.

To summarize, given a local operator O, one can de-
compose the conditional mutual spectrum ĤA:C|B into

O

T

T

R R

O

T

T

R R

O

T

R

T

= +

FIG. 3: Applying the separation move, the conditional en-
tanglement spectrum is deformed in such a way that i) for
the new conditional entanglement spectrum, O is sufficiently
far away from both the reference and target parties ii) the
difference is a conditional entanglement spectrum with small
conditional mutual information.

O

T

T

R R

O

T

T

R R

O

T

T

R R= -

FIG. 4: Applying the absorption move, the conditional en-
tanglement spectrum is expressed in terms of a linear combi-
nation of conditional entanglement spectrum ĤAi:Ci|Bi such
that i) the support of O is contained in either AiBi or BiCi
ii) I(Ai : Ci|Bi) is small.

ĤA′:C′|B′ and correction terms with the following prop-
erties. First, the distance between A′B′C ′ and the sup-
port of O is O(l). Second, the correction term consists of
sum of conditional mutual spectrum such that the sup-
port of O is contained in the reference party and one of
the target parties. Third, the conditional mutual spec-
tra in the correction term have small conditional mutual
information for the ground state of topologically ordered
system.

In Section IV and V, we shall frequently encounter
terms of the following form.

Tr(ρABCĤAi:Ci|BiO), (21)

where O is an operator whose support is contained in
AiBi. If ρABC is c0-bounded, this term can be bounded
as follows.

Tr(ρABCĤAi:Ci|BiO) = TrAiBiTrCi(ρABCĤAi:Ci|BiO)

≤ |TrCi(ρABCĤAi:Ci|Bi)|1‖O‖
≤ c0I(A : C|B)‖O‖. (22)

C. Lieb-Robinson bound

Lieb-Robinson bound states that there is a constant
speed of light so that the correlation decays exponentially
outside the effective lightcone. We refer the readers to
Ref.27 for pedagogical introduction to the subject. Here
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we assume the quantum many-body hamiltonian satis-
fies the Lieb-Robinson bound and study its consequences.
Given an observable OA(OB) supported on A(B), Lieb-
Robinson bound can be formally stated as follows.

‖[OA(t), OB ]‖ ≤ c‖OA‖‖OB‖min(|A|, |B|)ec1(vt−d(A,B)),
(23)

where 0 < c, c1, v < ∞ are some constants that depend
on the parameter of the hamiltonian and d(A,B) is a
distance between A and B. O(t) = e−iHtOeiHt is a time
evolution of operator O under the hamiltonian.

Similar, albeit weaker locality bound holds for∫∞
−∞ f(t)OA(t)dt if f(t) decays sufficiently fast. To state

this more formally, we introduce a superoperator defined
as follows.

Φf (O) =

∫ ∞
−∞

e−iHtOeiHtf(t)dt (24)

It is worth noting that in the energy eigenbasis,

Φf (O)|ij = f̃(Ei − Ej)Oij , (25)

where f̃(ω) is an inverse Fourier transform of f(t).
We also define a truncated superoperator ΦTf by intro-

ducing a cutoff T .

ΦTf (O) =

∫ T

−T
e−iHtOeiHtf(t)dt. (26)

Lieb-Robinson type locality bound for Φf can be es-
tablished as follows.

‖[Φf (OA), OB ]‖ ≤ ‖[ΦTf (OA), OB ]‖+ ‖[∆T
f (OA), OB ]‖,

(27)
where ∆T

f = Φf −ΦTf . The first term can be bounded by∫ T

−T
|f(t)|dt‖OA‖‖OB‖cec

′(vT−d(A,B)) (28)

from the Lieb-Robinson bound. Second term can be
bounded by ∫

R\[−T,T ]

|f(t)|dt‖OA‖‖OB‖. (29)

Depending on the function f , one can optimize the
bound with a judicious choice of T . An example that

illustrates this idea is f̃β1 (ω) = tanh(βω/2)
βω/2 .

Lemma 2. If H satisfies Lieb-Robinson bound,

‖[Φfβ1 (OA), OB ]‖ ≤ c‖OA‖‖OB‖min(|A|, |B|)e−
c′d(A,B)

1+c′vβ/π ,

(30)
for some constant 0 < c, c′ <∞.

Therefore, Φfβ1
(vi) can be approximated by a local op-

erator.

Corollary 3.

‖Φfβ1 (vi)− [Φfβ1
(vi)]vi(r)‖ ≤ c

′‖vi‖e
− c′r

1+c′vβ/π , (31)

where vi(r) is a set of sites whose distance from the
support of vi is less or equal to r.

It would be remiss if we do not mention Φfβ1
was origi-

nally introduced by Hastings in the context of QBP algo-
rithm and finite temperature correlation decay properties
of a fermionic system.17,30 In fact, it is not a coincidence
that these operators appear in seemingly different con-
texts. As one can see in the following lemma, Φfβ1

is a

quantum channel that appears naturally when comput-
ing a directional derivative of a density matrix.42

Lemma 3. For ρ(s) = e−βH(s)

Z ,

d

ds
ρ(s)|s=0 =

β

2
(Φfβ1

(V )ρs + h.c.)− β〈Φfβ1 (V )〉, (32)

where h.c. is hermitian conjugate.

Similar technique was used by Bachman et al.26 in the
studies of the ground state of gapped systems. They
showed that a unitary evolution that adiabatically con-
nects the ground states of two different hamiltonian is
generated by a path dependent generator of the follow-
ing form.

−i d
ds
U(s) = D(s)U(s), U(0) = I. (33)

D(s) = ΦWΓ
(
dH(s)

ds
) (34)

where Γ = mins∈[0,1] Γ(s) and WΓ(t) is some superpoly-

nomially decaying function. In our setting, dH(s)
ds = V .

Each of the local terms vi in V can be approximated as
follows.26

‖ΦWΓ(vi)− [ΦWΓ(vi)]vi(r)‖ ≤ C‖vi‖G
(I)(

Γr

2v
), (35)

where v is the Lieb-Robinson velocity appearing in Equa-
tion 23, and GI(x) is a function that satisfies the follow-
ing property.

G(I)(x) =
K

Γ
0 ≤ x ≤ x0

= 130e2x10u2/7(x) x > x0. (36)

Estimates for the constants are K ≈ 14708, 36057 <
x0 < 36058.26 Also, ua(x) is defined as follows.

ua(x) = e−a
x

ln2 x . (37)
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IV. GROUND STATE OF EXACTLY SOLVABLE
MODELS

Exact formula for the entanglement entropy is known
for quantum double and Levin-Wen models.4,10,31 If the
subsystem is simply connected, the entanglement entropy
satisfies area law.

SA = a|∂A| − γ, (38)

where γ is the topological entanglement entropy. These
systems have zero correlation length, so the density ma-
trices of two nonoverlapping regions factorize, i.e. ρAB =
ρA ⊗ ρB . Therefore, the following formula holds for the
entanglement entropy.

SAB = SA + SB (39)

if A ∩B = ∅.
Using standard perturbation theory, for a family of

quantum states ρ(s) that are differentiable with respect
to s,

dSA
ds

= Tr(
dρ

ds
ĤA). (40)

Therefore,

dI(A : C|B)

ds
= Tr(

dρ

ds
ĤA:C|B)

= i
∑
j

Tr([ΦWΓ(vj), P0]ĤA:C|B), (41)

where P0 is a projector onto the ground state.
Without loss of generality, let us consider terms vj that

are distance al or less away from ABC, where a > 0
is some constant. Using deformation moves, ĤA:C|B =

ĤA′:C′|B′ +
∑
i aiĤAi:Ci|Bi , where d(vj , A

′B′C ′) = O(l)

and I(Ai : Ci|Bi) = 0. By Petz’s theorem, ĤAi:Ci|Bi = 0.
Now approximate ΦWΓ

(vj) by [ΦWΓ
(vj)]vj(cl) for some

c > 0 such that the support of [ΦWΓ
(vj)]vj(cl) does not

overlap with A′B′C ′. This implies the following relation.

Tr([[ΦWΓ
(vj)]vj(cl), P0]ĤA′:C′|B′) = 0. (42)

To see this, consider an operator O that is supported
on one of A′, B′, C ′, or D = (A′B′C ′)c.

iTr([O,P0]ĤA′:C′|B′) =
d

dt
Tr(eiOtP0e

−iOtĤA′:C′|B′)

=
d

dt
I(A′ : C ′|B′), (43)

where the infinitesimal generator generates a unitary
transformation supported on (A′B′C ′)c. Since the entan-
glement entropy is invariant under local unitary transfor-
mation, this is 0. The correction terms are of the follow-
ing form.

iTr([ΦWΓ
(vj)− [ΦWΓ

(vj)]vj(cl), P0]ĤA′:C′|B′). (44)

Using Equation 16 and 35, we conclude that the effect
of each terms are bounded by cJG(I)(c′ Γl2v )l2d for some
constant c and c′.

Terms that are distance al or more away from
ABC can be bounded by approximating ΦWΓ

(vj) as
[ΦWΓ(vj)]vj(R), where R is the distance between vj and
ABC. Combining all of these contributions together, we
arrive at the following bound.

dγ

ds
|s=0 ≤ cJ(

Γl

v
)10l4u2/7(c′

Γl

v
) (45)

for a sufficiently large subsystem size l. One can see that
the bound diverges for gapless systems.

We note in passing that the same technique can be
applied to topologically trivial configurations, i.e. I(A :
C|B) = 0. Under general perturbation that consists of
sum of short-range bounded-norm terms, conditionally
independent configurations become approximately con-
ditionally independent. One may wish to establish a
bootstrapping argument that recursively uses the approx-
imate conditional independence of these configurations.
Main difficulty of this approach lies on proving the c0-
boundedness.

V. STABILIZER MODELS AT FINITE
TEMPERATURE

Unlike the ground state of the exactly solvable mod-
els, exact formula for the entanglement entropy of a fi-
nite temperature system is not known except for few spe-
cial cases.14,32,33 To cope with this difficulty, we make a
nontrivial but natural assumption: that the corrections
from the deformation moves consist of conditional mutual
spectrum with small conditional mutual information. For
3D toric code, topological entanglement entropy does not
depend on the size of the subsystem for a sufficiently large
subsystem.14 We shall denote the conditional mutual in-
formation in the correction terms as ε(l) and study how
the first order perturbation effect depends on it.43 We
shall also assume that the correlation decays exponen-
tially.

C(OA, OB) ≤ ‖OA‖‖OB‖min(|A|, |B|)e−d(A,B)/ξ. (46)

Stabilizer model refers to a hamiltonian of the following
form

H = −
∑
i

Jisi, (47)

where Ji > 0 are coupling constants and sis are elements
of the stabilizer group. Stabilizer group is an abelian
subgroup of Pauli group.34 Important examples include
toric code, color code, their higher dimensional general-
izations, and other glassy topologically ordered systems
in 3D.1,14,35–38 Important property of the stabilizer mod-
els is that their reduced density matrices commute with
each other.
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Lemma 4. ρA =
∑
Si∈S(A) ciSi for some coefficients

{ci}.

Proof. ρ can be expanded as a sum of stabilizer group
elements. After taking the partial trace, any operator
that has nontrivial support on Ac vanishes. Any stabi-
lizer group element that has nontrivial support only on
A survives. But these terms are generated from the gen-
erator of the stabilizer group, so they are again elements
of the stabilizer group.

It trivially follows that for the Gibbs state of the sta-
bilizer hamiltonian, reduced density matrices commute
with each other. Therefore, any reduced density matrix
ρABC for the stabilizer model is 1-bounded. To see this,
note the following inequality

D1(lnD1 − lnD2) ≥ D1 −D2 (48)

for positive semidefinite operators D1, D2 which com-
mute with each other. Setting D1 = ρABC and D2 =
ρABρ

−1
B ρBC and taking a partial trace over C, we con-

clude that TrC(ρABCĤA:C|B) is a positive semidefinite
operator. Since l1 norm is equal to the trace for positive
semidefinite operator, ρABC is 1-bounded.

Consider terms vj that are distance al or less away

from ABC. Using the deformation moves, ĤA:C|B =

ĤA′:C′|B′ +
∑
i aiĤAi:Ci|Bi , where d(vj , A

′B′C ′) = O(l)
and I(Ai : Ci|Bi) = ε(l). Choose an approxima-
tion radius R such that Φfβ1

(vj) is approximated by

[Φfβ1
(vj)]vj(R). First order effect of vj can be divided

into three parts: the connected correlation between
[Φfβ1

(vj)]vj(R) and ĤA′:C′|B′ , the approximation error of

Φfβ1
(vj), and the corrections from the deformation moves.

Terms that are distance al or more away from ABC can
be similarly bounded by using the exponential correla-
tion decay and making a judicious choice for the approx-
imation radius R. All of these effects combined together
results in the following bound.

1

βJ

dγ

ds
|s=0 ≤ O(l2D(e−c1l/ξ)+O(l2De−c2l/β))+O(lDε(l)),

(49)
where D is the number of spatial dimensions and c1, c2, c3
are some numerical constants.

VI. COMMENT ON HIGHER ORDER TERMS

Close inspection of the first order bound reveals that
the c0-boundedness plays a pivotal role in the derivation.
For example, consider a perturbed ground state of the
topologically ordered system which satisfies area law ap-
proximately. Equation 45 is only modified by including
the area law correction terms, provided c0-boundedness
is guaranteed.

It turns out that the c0-boundedness in a finite neigh-
borhood of s implies a nontrivial bound for the higher or-
der terms as well. The key idea is that Equation 45 can

be applied to topologically trivial configuration as well
as topologically nontrivial configuration. Since Equation
45 relied on the fact that the conditional mutual infor-
mation of topologically trivial configuration is small, we
can bootstrap this argument to the bound higher order
terms.

Assuming the c0-boundedness for s ∈ [0, s0), following
inequality holds.

| d
ds
I(A : C|B)s| ≤ δs(l) +

∑
i

aiI(Ai : Ci|Bi)s, (50)

where δs(l) is a function that decreases superpolynomi-
ally with l, and ai is a finite number that is uniformly
bounded for s ∈ [0, s0]. I(Ai : Ci|Bi)s is a conditional
mutual information appearing in the correction terms of
the deformation moves.

If the energy gap remains open for s ∈ [0, s0), δs(l)
can be uniformly bounded by some δ(l) that decays su-
perpolynomially in l. As a result, one can obtain the
following recursive bound.

|γs − γ0| ≤
∫ s

0

δ(l) +
∑
i

aiI(Ai : Ci|Bi)s′ds′

= sδ(l) +
∑
i

ai

∫ s

0

∫ s′

0

dI(Ai : Ci|Bi)s′′
ds′′

ds′′ds′,

(51)

Here we used the fact that the conditional mutual infor-
mation arising from the deformation move is 0 at s = 0.
Recursively applying this logic, the second order term
can be bounded by O(l2δ(l)). Higher order terms can be
obtained in a similar manner.

To investigate the validity of the c0-boundedness for
general quantum many-body system, we have generated
random density matrices and studied a relationship be-
tween both sides of Equation 18. The result is plotted in
FIG.5. For pure states, we have applied a random uni-
tary from Haar measure. For mixed states, we have ran-
domly generated eigenvalues from uniform distribution
over [0, 1], normalized, and applied random unitary from
Haar measure. It seems that for certain states that have
small conditional mutual information, smallest value of
c0 increases significantly. For this reason, we urge the
readers to be careful in using this condition in general.
This difficulty can be circumvented for stabilizer mod-
els against stabilizer perturbations, since commutativity
of the reduced density matrices is preserved. However, it
remains to be seen if the correction terms from the higher
order deformation moves are small.

VII. CONCLUSION

We have demonstrated that conditional independence
strongly constrains the structure of quantum many-body
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FIG. 5: We have numerically computed I(A : C|B) and

|TrCρABCĤA:C|B |1 for 106 randomly generated pure states.

Largest observed ratio |TrCρABCĤA:C|B |1/I(A : C|B) was
24.21924.

system so as to ensure the first order perturbative sta-
bility of the topological entanglement entropy. Admit-
tedly, our technique gives bounds in limited settings
where i) exact conditional independence is achieved or
ii) reduced density matrices commute with each other.
However, once these conditions are met, the argument
can be applied quite generally. In particular, we ex-
pect our method to be applicable to the studies of Cha-
mon’s model and Haah’s model.36,38 These models sat-
isfy the topological quantum order conditions introduced
by Bravyi et al, and their hamiltonian consists of sum
of frustration-free commuting projectors.6 Therefore, the
energy gap is protected against generic perturbation that
consists of sum of short-range bounded-norm terms.

There are compelling reasons to believe that these
models are not described by BF theory or multiple stacks
of Chern-Simons theory: movement of the quasiparticles
are constrained in a peculiar manner, and their ground
state degeneracy is determined by some number-theoretic

function that depends on the size of the system.39,40 It
would be interesting if one can apply our method to find
a linear combination of entanglement entropy that allows
the first order perturbative stability.

We have also shown that our method can be ex-
tended to higher orders of perturbation series if the c0-
boundedness holds in a finite neighborhood of s, but such
statement seems unlikely to hold for general quantum
states. It would be very interesting if one can find an
alternative technique that relies on the conjecture intro-
duced in Ref.28. There author was able to show that
the connected correlation function between conditional
mutual spectrum and local operator vanishes if the local
operator is supported on one of the subsystems, provided
certain extension of strong subadditivity is true for gen-
eral quantum states. Unfortunately, local operators that
are supported on multiple subsystems are bound to ap-
pear, as shown in the analysis of the present paper.

As for the finite temperature topological entanglement
entropy in 3D, we needed two nontrivial assumptions to
bound the first order perturbation effect. First, the con-
nected correlation function between two observables de-
cay exponentially. Second, the correction terms from the
deformation moves can be expressed as a sum of small
conditional mutual information. We emphasize that nei-
ther of these assumptions were explicitly proved. Fur-
ther studies in explicitly bounding both of these terms
are necessary.

While the structure of conditionally independent state
is relatively well understood, much less is known about
the states that are approximately conditionally indepen-
dent. We hope our work motivates further studies in such
direction.
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