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Abstract

We show that, taking a two-dimensional photonic-crystal slab system as an example, surprisingly

high quality factors (Q) over 105 are achievable, even in the absence of a rigorous photonic-band-

gap. We find that the density of in-plane Bloch modes can be controlled by creating additional

photon feedback from a finite-size photonic-crystal boundary that serves as a low-Q resonator.

This mechanism enables significant reduction in the coupling strength between the bound state

and the extended Bloch modes by more than a factor of 40.

PACS numbers: 42.60.Da, 42.70.Qs, 42.50.Pq
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I. INTRODUCTION

Significant reduction in the radiation rate of a point-like emitter can be achieved by set-

ting up mirrors around it,1, or by employing photonic crystals (PhCs),2,3 which is a photonic

analogue of atomic crystals for electron waves.4 It has long been believed that the existence

of the photonic-band-gap (PBG) is essential to achieving a spatially localized high-Q elec-

tromagnetic bound state using a PhC cavity. Thus, most efforts so far have focused on

artificial dielectric structures possessing a PBG.5–8 Donor- or acceptor-like impurity photon

states can be formed at the location of a crystal defect.9 Such a localized state (with small

mode volume, V ) has drawn much attention in the context of cavity quantum electrodynam-

ics (cQED) experiments10,11 where the use of high Q/V cavities are essential to enhancing

light-matter interaction.

Due to fabrication related difficulties, three-dimensional (3-D) PhCs have been replaced

with a lower dimensional counterpart relying on index guiding in one or two dimensions.

Often, this assumes the from of a thin dielectric slab,12 whose thickness (T ) is roughly

equal to half the effective wavelength (T ≈ λ/2neff) in order to optimize the size of the

in-plane PBG. One representative such a design is shown in Figs. 1(a) and 1(b). Note

that a 2-D PhC with the triangular-lattice of air-holes supports the PBG only for even

guided modes, where the symmetry is defined with respect to the mirror plane at z = 0.

However, this incomplete PBG does not preclude the possibility of high-Q defect states,

because the same mirror symmetry ensures that the defect mode with the even symmetry

will be completely decoupled from all odd guided modes. Lowering the dimensionality often

creates new symmetries that can be exploited, making the condition for localized photon

states less stringent.

It is well established that an optically-thick PhC slab does not support any PBG for

both even and odd symmetries12,13. As an example, in Fig. 1(d), we present a photonic

band structure (ω-k diagram) for even Bloch modes in a thick PhC slab with T = 1.731a.

The formation of the PBG is hindered by the higher-order slab modes lying between the

1st and the 5th bands. Note that the energy gap defined by the 1st and the 5th bands

(△ω1−5) will remain more or less constant as T increases and, in the limit of T → ∞,

△ω1−5 will approach the PBG of an ideal 2-D PhC.12 Also note that, though all bands,

E(Bloch)(r), shown in Fig. 1(d) are mutually orthogonal, the bound state in a defect region,
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FIG. 1: (Color online) (a) A 3-D rendering of the photonic-crystal cavity to be studied in this

paper. The number of photonic-crystal hole layers (N layer) and the boundary termination (p)

are to be varied. a is the lattice constant of the 2-D triangular-lattice photonic-crystal with the

background air-holes, R, of 0.35a. The refractive index of the slab is assumed to be 3.4. The six

nearest neighbor holes are reduced (Rm = 0.25a) and slightly pushed away (by a scale factor of

1.1) from the defect center. (b) |E|2 distribution of the hexapole mode in a T = 1.731a slab. (c)

Cross-sectional views of the first five lowest Bloch modes at M -point. These modes all have even

symmetries with respect to the plane at z = 0. (d) The photonic band structure for all even Bloch

modes. The hexapole mode resonance shown in (b) (ωn ∼ 0.265) is represented by the horizontal

line, in which ωn is the normalized frequency defined by ωn ≡ a/λ.

E(cav)(r), in general, can couple to any of the higher-order Bloch modes. However, this

coupling strength, |κc,B| ∼ |
∫

d3r△ǫE(cav) ·E∗
(Bloch)|.14 shouldn’t be strong, because E(cav)(z)

resembles E(Bloch)(z) of the 1st band. In this sense, any optically-thick PhC slab bears a

pseudo-PBG. Similar pseudo-energy gap in solid state physics can create resonance states.15

Here, the photonic counterpart can be easily manipulated with high precision by means of

the mature modern nanofabrication technology.

In this paper, we will show how κc,B can be controlled by setting up simple mirror

boundaries around the finite size PhC resonator [See Fig. 1(a) and Fig. 5(e)]. The addi-

tional boundary conditions imposed by the mirrors can alter the density of Bloch states in

the momentum space (k-space). Thus, in relation to the k spectrum of E(cav),
16 κc,B can

3



experience significant change. We note that the situation is analogous to the well-known

cQED example of a point dipole source (≈ the hexapole mode) in an optical resonator (≈
the low-Q resonator defined by the boundary termination).17

The paper is organized as follows: In Sec. II, we begin with the simplest boundary

condition – air, which may appear impractical due to its air-suspended nature. However,

we intentionally choose this moderately reflecting boundary in order to emphasize that κc,B

plays the more important role in the Q optimization than the reflectivity itself. In Sec. III,

we discuss the case of a metal boundary condition. We show one feasible design for a current-

injection PhC laser based on this metal-bridge structure. We also discuss other potential

candidates for practical devices based on the 2-D PhC.

II. BOUNDARY TERMINATION BY AIR

A. 3-D numerical simulation

We perform fully-vectorial 3-D numerical simulations using the finite-difference time-

domain method (FDTD) to understand the mutual interaction between E(cav) and E(Bloch).

First, we study the energy decay rate (γ) of the hexapole mode18 shown in Fig. 1(b). The

total decay rate (γtot) can be decomposed into the decay rates into the horizontal direction

(γhorz) and the out-of-plane direction (γvert). Then, γ is translated into Q factor through

Q ≡ ω/γ. Thus, 1/Qtot = 1/Qhorz + 1/Qvert.
13 Note that we set up detection planes for the

Poynting energy flux (∼ E×H∗) away from the mirror boundary, so that γhorz accounts for

the reflection/transmission at the PhC-air discontinuity.

In Fig. 2, we consider the two boundary terminations of p = ∞ and p = 1.2a. For p = ∞,

Qtot tends to be saturated by Qhorz; Qtot approaches 44, 000 ∼ 48, 000 as N layer > 8.13

In fact, this particular choice of the boundary termination p = ∞ approximately ensures

negligibly small reflection off the interface. Alternatively, we can simulate the transparent

boundary condition by overlapping the perfectly matched layer in the FDTD with the PhC

air-holes,19 which results in the similar saturated Qhorz of ∼60,000 (≡ Q
(sat)
horz ).

Usually, the reflection coefficient at the PhC-air boundary is not so large as 0.5∼0.6.20

However, drastically different behaviors can be seen by forming simple mirrors with p = 1.2a

[Fig. 2(b)]. (i) All Q values strongly modulate with N layer. (ii) Qhorz can be brought up
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to a surprisingly high value of ∼ 2.6× 106 at N layer = 10. This implies that γhorz can be

reduced by more than a factor of 40 compared with the case of minimal reflection (p = ∞).

(iii) Since Qhorz >> Qvert, now the hexapole mode emits more photons into the out-of-plane

direction. Interestingly, all Qs modulate in the same fashion; whenever Qhorz is peaked, so

is Qvert. Therefore, the abrupt boundary termination does not simply redirect the in-plane

guided energy into the out-of-plane radiation. Rather, there should be a common physical

principle for the observed enhancement and suppression. Moreover, note that the maximum

Qtot of 1.4 × 105 in the present case can be further increased by employing a higher Qvert

cavity mode. Also note that Qvert of the hexapole mode is slightly lowered by the use of

finite space grids (△ = a/20) used in the FDTD simulation.21

More detailed analyses are performed as we finely tune the mirror boundary conditions.

Specifically, we tune p in the range of 0.8−1.2a as a means to control the phase shift (φ) upon

reflection. Here, we will provide direct graphical evidence for the enhancement/suppression

of the in-plane Bloch modes. In order to visualize the very weak near-fields in the outskirt

regions, we adopt the saturated color scheme in which 1/1000 of the intensity maximum

is taken as the upper bound. In Fig. 3(a)-(c), we present |E(r||, z = 0)|2 of the hexapole

mode for three different p = 0.8, 1.0, and 1.2a. We take only one-sixth area (cut by the

two Γ-K lines) of the hexapole mode profile for each N layer, then combined with plots of

FIG. 2: (Color online) Qtot, Qvert, and Qhorz of the hexapole mode for two different boundary

terminations, (a) p = ∞ and (b) p = 1.2a. When the mirror boundary effect is weak (p = ∞),

Qhorz is limited by about 60,000 due to the coupling to the in-plane Bloch modes. However, in the

case of the abrupt termination by air, Qhorz can be made over 2,600,000.
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FIG. 3: (Color online) (a-c) Top-down views (|E|2) of the hexapole resonances in a T = 1.731a

slab as we increase N layer from 4 to 9 (in the clockwise direction) for three different boundary

terminations of p = 0.8, 1.0, and 1.2a, respectively. (d) The hexapole resonances in a thin (T =

0.488a) slab for p = ∞ are presented in the same manner used in (a-c). Note that this thin slab

possesses the in-plane photonic-band-gap. (e) Qhorz and (f) Qtot for the hexapole resonances shown

in (a-d).

different N layers to create a one image filling upto 360◦. We also provide a similar plot

for a PBG-confined hexapole mode in Fig. 3(d), corresponding to a slab thickness of 0.488a.

For quantitative analyses, we also provide graphs for Qtot [Fig. 3(f)] and Qhorz [Fig. 3(g)] as

well as the resonance frequency shift △ωn/ωn [Fig. 3(e)].

We find that, at (N layer, p) = (9, 0.8a), |E(Bloch)(r||)|2 is almost completely suppressed,

which is comparable with that of the PBG-confined case shown in Fig. 3(d). On the other

hand, at certain combinations of (N layer, p), |E(Bloch)(r||)|2 becomes quite strongly pro-

nounced; for example, see (7, 0.8a), (8, 1.0a), and (7, 1.2a). For small N layer such as at

(N layer ≤ 5, p = 1.0a), it seems natural to have more intense photon tunneling than the

equivalent PBG-confined case. However, by slightly tuning p, the strong in-plane loss in the

previous case can be greatly reduced by more than a factor of 10, whose resultant Qtot and
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Qhorz can be higher than those of the PBG-confined case.22 This result may find a practi-

cal importance in applications where a device miniaturization is required while keeping Q

reasonably high.

We find that |E(Bloch)(r||)|2 variations can explain peaks and dips observed inQhorz orQtot.

We also note that the more intensified |E(Bloch)(r||)|2 in the outskirt region can contribute to

the excessive scattering losses into the vertical direction, thereby lowering Qvert. In short,

what we have shown here is that κc,B strongly depends on the detailed boundary conditions.

κc,B obviously depends on the size of the hexagonal boundary, which determines the phase

thickness of the 2-D cavity. It is also understandable that p is a very critical parameter

controlling the density of in-plane Bloch modes, as has been seen in many cQED examples

of an atom and a cavity. Further evidence of this analogy can be found in Fig. 3(e), which

reports the fractional frequency shift. Even using sufficiently thick PhC mirrors with N

layer ≥ 6, the thick-slab cases show noticeable modulations in △ωn/ωn order of ±10−5,

while the PBG-confined case does not. These energy-level shifts17 are signatures of the

coupling between E(cav)(r) and E(Bloch)(r) and can be explained in terms of κc,B.
14

B. Coupled-mode theory

Though the FDTD provides very accurate first-principle means to understand the κc,B

modulation, we have not been quite convinced as to how the simple boundary termina-

tion (hence the low-Q) can enable such large modulations in Qhorz (and Qtot as well).

Therefore, it would be instructive to develop a simple model in the spirit of the cou-

pled mode theory (CMT).14,23 To begin, we would like to note that the in-plane hexapole

mode profile, |E(cav)(r||)|2, can be approximated in terms of the three M-point wavevec-

tors of kM1 = (0, 1)|kM |, kM2 = (
√
3/2, 1/2)|kM |, and kM3 = (

√
3/2,−1/2)|kM | with

|kM | = 2π/
√
3a. For example, |E(cav)(r||)|2 ≈ | sin(αkM1·r||)−sin(αkM2 ·r||)−sin(αkM3·r||)|2

with a correction factor α > 1.24 For our hexapole mode, α is ∼ 1.1 based on the k-space

intensity distribution, |Ẽ(cav)(k)|2.21 This is the reason the outskirt region of the hexapole

mode resembles the M-point Bloch modes.25

To simplify our CMT model, we assume that the hexapole mode couples only to the six

M-point wavevectors, β×(kM1, kM2, kM3, −kM1, −kM2, −kM3), where β is a scale factor

∼ 0.7 as evidenced from the photonic band structure in Fig. 1(d). Now we emphasize that
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FIG. 4: (Color online) (a) In our coupled-mode model, the hexapole mode is assumed to couple only

to the Γ-M wavevectors. For further simplification, the solution for the entire system is projected

into the x direction. The hexapole symmetry ensures the odd mirror symmetry with respect to

the x = 0 plane. (b) Qhorz enhancement factors in Eq. 4. All plots assume rM = 0.6.

these M-point wavevectors ({βkM}) are closed upon reflections at the six hexagonal facets.

Thus, we may consider the whole set of wavevectors, {βkM}, as a channel or a port in the

CMT formulation [Fig. 4(a)]. Under these assumptions, our hexapole mode can be viewed as

side-coupled to the port.26 Then, the time evolution of the hexapole mode’s energy amplitude

(b) can be described by

db

dt
=

[

iω0 −
γvert + γhorz

2

]

b+ κMS+M , (1)

where the last term describes the total incoming power as a result of the feedback by the

boundary termination. We assume that S+M is measured at the inner boundary of the

partial mirror shown in Fig. 4(a) and consists of the Bloch waves with {βkM}. The CMT

states that κM cannot be arbitrarily determined but rather it should be connected by the

decay rate into the waveguide port such that κM =
√
2γhorze

−iθM .

When the effect of the photon feedback is weak as in the case of p = ∞, we can set

S+M = 0 in Eq. 1. Then, |b|2 decays exponentially with γhorz = |κM |2/2 = ω0/Q
(sat)
horz .

However, when there is a feedback mechanism, γhorz is not a constant but varies with θM

and φM (reflection phase). For this general situation, we need additional set of equations,

which can be derived from the CMT.27 For example, the outgoing power (S−M) and the

incoming power (S+M) are related each other by b through
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S−M = e−2iθMS+M +
√

2γhorze
−iθM b. (2)

We define the scattering matrix of the partial mirror such that S+M = rMeiφMS−M . Then,

the modified Qhorz (≡ Qfeed
horz) can be written using the definition of Q (≡ ω× [total energy

stored in the resonator]/[total power loss into the port]),

Qfeed
horz = ωfeed |b|2

t2M |S−M |2 (3)

In general, ωfeed (the resonance frequency in the presence of the feedback) differs from the

original ω0 as we have seen from the FDTD result in Fig. 3(e). However, we can assume

ωfeed ≈ ω0 since the fractional change in ω is much less than 1%. Note that the partial

mirror is assumed to be lossless such that r2M + t2M = 1.

After solving S−M and S+M for b, we obtain the expression for the Qhorz enhancement,

Qfeed
horz/Q

(sat)
horz (= γhorz/γ

feed
horz),

Qfeed
horz

Q
(sat)
horz

=
1 + r4M − 2r2M cos(2φM + 4θM)

(1− r2M)(1 + r2M + 2rM cos(φM − 2θM ))
. (4)

Fig. 4(b) shows plots of Eq. 4 for several φM values, while rM is fixed at 0.6. The model

also expects drastic modulations in Qhorz depending where we locate the resonator with

respect to the |E|2 envelop of the low-Q Fabry-Perot type resonator. For example, when

φM = 1.0π, Qhorz enhancement is maximized to be about 5 at θM = π (=effective half wave-

length), which can be understood considering that |E|2 = 0 at x = 0. Interestingly, tuning

φM slightly can greatly improve the enhancement; φM = 0.75π results in the maximum

Qfeed
horz/Q

(sat)
horz very close to 30. We also find that the φM tuning inevitably alters the optimal

θM for Q, which agrees with the FDTD results in Fig. 3; the small tuning in p changes the

optimal N layer for Q.

It should be noted that we have assumed only one k-port and such a large enhancement

holds true only for that port. However, if the defect state could excite many in-plane

Bloch waves with different wavevectors thereby creating many k-ports, the overall Qhorz

enhancement contributed from different k-ports will be averaged out to be 1 as Eq. 4 expects.

For example, multiple k ports might be involved if T were too thick (since this would allow

more higher-order slab modes with many ks) or if the boundary termination would not

retain the hexapole symmetry (since kM cannot be conserved upon reflections).
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FIG. 5: (Color online) The air boundary condition is now replaced with a metal slab. The metal

is assumed as gold, which is modeled as a single-pole Drude medium.28 We calculate Qtot [(a) and

(b)] and |E(r||, z = 0)|2 [(c) and (d)] as we vary N layer (while p is fixed to 1.4a) and p (while

N layer is fixed to 7) for the photonic-crystal slab (T = 1.731a) shown in (e). (f) A schematic

diagram shows how the metal reflector on the side can be designed to function as a current injection

electrode. The conical area shaded in red (blue) denotes a p-doped (an n-doped) region by using

ion-implantation, forming a laterally p-i-n doped structure.29

III. BOUNDARY TERMINATION BY METAL

We now discuss the case of a highly-reflective (rM ≈ 1) mirror boundary condition –

metal, as depicted in Fig. 5(e). We note that such a structure is experimentally realizable.30,31

We investigate the same hexapole resonance shown in Fig. 1(b) except for the boundary

condition. In this case, Qhorz is a meaningless quantity because a sufficiently-thick metal

layer (thicker than the optical skin-depth, which is usually < 30 nm at λ = 1300 nm)22

can completely block the light transmission. Also note that a small fraction of the incident

energy, typically about 1∼2%, can be absorbed upon a single reflection. Therefore, most

of the photon energy leaks into the out-of-plane direction and Qtot ≈ Qvert for the entire

tuning range of the parameters.
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In Figs. 5(a) and 5(b), we calculate Qtot as we vary N layer and p. As expected, we

observe strong modulations in Qtot (or Qvert) either by N layer or p. The maximum Qtot

is found to be very close to 2.0 × 105, which is about 40% increase compared with the air

boundary case. It should be noted that the Qtot modulation here is not so much enhanced

compared with the case of the low-reflectivity air/dielectric boundary.

Though the CMT model in Sec. II B is used to explain Qhorz variation, the essentially

same view on the coupling strength (κc,B) modulation can also be employed in the present

case. As we have seen in Sec. IIA, Qtot and Qhorz tend to modulate in the same fashion [See

Figs. 3(f) and 3(g)]. Therefore, the Qtot modulation observed here should have the same

origin as in Sec. II. Figs. 5(c) and 5(d) confirm the aforementioned conjecture. We plot

|E(r||)|2 using the same saturated color scheme as used in Figs. 3(a)-3(d). Again, we can

verify that the parameter combination giving low Qtot corresponds to the strongly intensified

|E(Bloch)(r||)|2.
Since the high-Q condition does not critically depend on the use of high rM , instead

of having metal contacts on the six hexagoanal facets, evaporated metal films on the top

surface of the PhC slab may function quite well as partial mirrors. If this is the case, we

can envisage a number of unconventional functionalities integrated into a single component

of the metal contact, for example, as a side reflector and/or an optical antenna.32 With all

these possibilities in mind, in Fig. 5(f), we present one exemplary design showing how the

surrounding metal reflector discussed in this section can be adopted as an electrical contract

for current injection PhC nanolasers. As for the PhC slab, we assume the laterally doped

p-i-n doped structure proposed very recently.29

There still remain other practical forms of the 2-D PhC resonator: A low index cladding

material can be placed underneath as a supporting structure. An optically-thick PhC slab

can be placed on a metal substrate, which is another practical form of the current injection

PhC nanolaser.28

IV. SUMMARY

In summary, we study a quasi-bound photon state within a PhC that does not posses a

rigorous PBG. We show that the density of in-plane Bloch modes can be controlled by the

termination of the finite-size PhC. The coupling strength between the bound state and the
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extended Bloch modes can be reduced by more than a factor of 40 in the case of a thick PhC

slab. By removing the thickness constraint of T ≈ λ/2neff , many unconventional cavity

designs which were previously discarded because they cannot support a PBG can now be

reconsidered. Though the present study is merely focuses on a 2-D PhC system, the same

principle can be applied to the design of a high-Q defect mode in the 3-D PhC lacking of a

full 3-D PBG.33
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