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We study the influence of quantum fluctuations on the electron self energy in the normal state
of iron-pnictide superconductors using a five orbital tight binding model with generalized Hubbard
on-site interactions. Within a one-loop treatment, we find that an overdamped collective mode
develops at low frequency in channels associated with quasi-1D dxz and dyz bands. When the
critical point for the C4 symmetry-broken phase (structural phase transition) is approached, the
overdamped collective modes soften, and acquire increased spectral weight, resulting in non-Fermi
liquid behaviour at the Fermi surface characterized by a frequency dependence of the imaginary part
of electron self energy of the form ωλ, 0 < λ < 1. We argue that this non-Fermi liquid behaviour is
responsible for the recently observed zero-bias enhancement in the tunneling signal in point contact
spectroscopy. A key experimental test of this proposal is the absence of non-Fermi liquid behaviour
in the hole-doped materials. Our result suggests that quantum criticality plays an important role
in understanding the normal state properties of iron-pnictide superconductors.

PACS numbers:

I. INTRODUCTION

Whether or not the iron pnictide superconductors are strongly correlated materials is hotly debated. Certainly a
clean association of non-Fermi liquid behaviour, either experimentally or theoretically, with any part of the phase
diagram would suffice to settle this debate. While parallels with the cuprates are suggestive1–5, they have not resulted
in a decisive answer to this problem. In fact, to our knowledge, the possibility of non-Fermi liquid behaviour other
than Mott physics6 has not been discussed to date.
A feature common to the parent and underdoped compounds of the iron pnictide superconductors is the structural

phase transition (SPT) from tetragonal to orthorhombic symmetry occuring around 150K7. For most members of the
1111 and 122 families, in-plane anisotropy in the resistivity commences near the structural transition, and stripe-like
antiferromagnetism develops if the temperature is further lowered. The quasiparticle interference in STM9 also showed
aniostropic electronic states at low temperature. Despite the controversy of whether the SPT is induced by magnetic
fluctuations as a result of the onset of stripe-like antiferromagnetism10–14 or if orbital ordering in quasi-1D dxz and dyz
bands15–18 is the efficient cause, the phase below the SPT breaks C4 symmetry, and quantum fluctuations associated
with this phase are nematic in character. A recent measurement of photoexcited quasiparticle relaxation19 reveals the
existence of strong nematic fluctuations up to 200K, well above the SPT temperature. Moreover, in electron-doped
Ba(Fe1−xCox)2As2 (Ba122), an unexpected enhancement of the zero-bias signal20,21 in the tunneling data measured
in point-contact spectroscopy has been observed at an onset temperature higher than TSPT. The excess conductance
appears at temperatures around 175K, increasing in magnitude through the structural, antiferromagnetic, and, in
materials exhibiting superconductivity, through the superconducting transitions. It is not seen in overdoped Ba122.
It is important to study how these strong orbital (nematic) fluctuations affect the physical properties in both the
normal and orthorhombic states of the iron pnictide superconductors.
In this paper, we develop a microscopic theory for the orbital fluctuations and show that they give rise to non-Fermi

liquid behaviour. In particular, we find a branch of overdamped collective modes in the scattering channels associated
with quasi-1D dxz and dyz bands in the normal state at a temperature higher than TSPT. In the vicinity of the SPT
critical point, these overdamped collective modes dominate the low-energy physics, resulting in a strong modification
of the electron self energy and a breakdown of Fermi-liquid theory even in the symmetric normal state.

II. RPA THEORY FOR ELECTRON SELF ENERGY

Since the random phase approximation (RPA) represents a perturbative treatment of the fluctuations, it represents
a zeroth-order theory. If deviations from Fermi liquid theory are found at this level of theory, then a Fermi liquid
description is most likely invalid. This line of reasoning has been used previously in the continuum limit to establish
the existence of the nematic phase22. Thus far, a similar analysis has not been done for a multi-orbital model. We
use this approach here to show that at the RPA level, the fluctuations are inherently non-Fermi liquid in nature. Our
starting point is the Hamiltonian H = Ht +HI , where Ht =

∑

~k Hk is the five-band tight binding model proposed in
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FIG. 1: Mean-field phase diagram of the model used in this paper. The arrow indicates the direction the critical region is
approached in this paper. At T = 0, the orbital ordering transition is driven entirely by changing the strength of the interaction
strength.

Ref. [23] which can reproduce correctly the Fermi surfaces of hole α1, α2 and electron pockets β1, β2 in the unfolded
Brillouin zone. The interaction terms are given by HI

HI =
∑

ia

Unia↑nia↓ +
∑

i,b>a

(U ′
−

J

2
)nianib −

∑

i,b>a

2J ~Sia ·
~Sib

+ J ′
(

p†iapib + h.c.
)

, (1)

where U ′ = U − 2J , J the Hund coupling, J ′ = J , and a (b) refers to the orbital index, 1 = xz, 2 = yz, 3 = xy,

4 = x2 − y2, and 5 = 3z2 − r2. nia =
∑

σ c
†
iaσciaσ is the number operator on site i in orbital a, and pia = cia↓cia↑.

Energies are measured in eV, in line with the units used in recent tight-binding models23. J = 0.2U throughout
this paper. This model has been shown to have stripe-like antiferromagnetism together with orbital ordering in a

previous study.24,25 We introduce a unitary transformation Û~k such that
(

Û~k

)†
Ĥ~kÛ~k = diag.

[

E~k,1, · · · , E~k,5

]

, and it

is straightforward to obtain the non-interacting response functions,
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×
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E~k+~q,l − E~k,m − iωn
, (2)

in the symmetric normal phase, where χ
(0)
ab;cd(~q, iωn) is a 25 × 25 matrix. The convention on the indices is that in

Ref.[23]. Adopting the interaction kernels for the spin-spin (V̂ s) and density-density (V̂ c) fluctuations derived in
Ref.[26], we obtain the electron self energy at the random-phase approximation level,

Σorbital
ab (~k, ipn) =

1

βN

∑

~q

∑

ikm

Γ̂ai;jd(~q, ipn − ikm)Ĝ0
ij(

~k − ~q, ikm), (3)

where ikm, ipn are Matsubara frequencies for fermions, Ĝ0(~k, ipn) =
[

ipn− Ĥt+µ
]−1

is the bare Green function, and

Γ̂ab;cd(~q, ipn − ikm) is the effective interaction,

Γ̂(~q, ipn − ikm) =
1

2

{

3
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−
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]−1

V̂ c
}

(4)

within one-loop.
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FIG. 2: Spectral functions for effective interactions in intra-orbital channels (Γaa;aa(~q, ω)) at ~q1 = (0.04π, 0.04π) for (a) U=1.3
and (b) U=2.0. Γ11;11(~q, ω) = Γ22;22(~q, ω) for ~q along the diagonal direction as expected, and an overdamped collective mode
appearing at low energy in Γ11;11(~q, ω)(Γ22;22(~q, ω)) can be observed.

III. CRITICAL BEHAVIOUR ABOVE THE STRUCTURAL PHASE TRANSITION

Since our focus is on the critical region above the structural phase transition, throughout this paper the temperature
is set to kBT = 0.02eV at which the system is in a normal state without any symmetry breaking. The case of ordered
states will be discussed in the next section.
We start by studying the mean-field phase diagram of our model using the formalism outlined in Ref. [24], as shown

in Fig. 1. Then we can fix the temperature and change U to investigate how the self-energy changes as the critical
region is approached. Consider first the spectral functions for the effective interactions −ImΓ̂(~q, ω + iη) displayed in
Fig. 2. As is evident, the spectral functions for the intra-orbital effective interactions −ImΓaa;aa(~q1, ω) dominate the
electron self energy. Also of interest are the spectral functions for momenta ~q along the diagonal direction so that
Γ11;11(~q, ω) = Γ22;22(~q, ω). It can be seen in Fig. 2 that the spectral functions at low frequency are dominated by an
overdamped collective mode in Γ11;11 (Γ22;22). When U is tuned to approach the critical point (Uc ≈ 2.1eV at this
temperature), this mode gains more spectral weight and moves to even lower energy as shown in Fig. 3. Note that
although the shift of the spectral weight upon approaching the critical point is shwon to follow the typical behaviour
for overdamped continuum of collective excitations, our calculations do not have the accuracy to demonstrate the shift
of the peak position toward zero frequency as expected. We attribute this to the fact that the model considered here
generally has both orbital ordering and stripe-AFM phases occuring together. In this case, it is hard to distinguish
whether the transition is first or second order as discussed in Ref. [32], which is beyond the accuracy of our calculation
on a finite-size square lattice.
These overdamped modes, emergent at low frequency and small ~q, resemble the collective modes observed in the

quadrupole density spectral function22,27–29, that is, the spectral function related to the interactions in the d-wave
channel in a quantum nematic Fermi fluid. As shown in Ref. [30], in a system containing quasi-1D dxz and dyz bands,
hybridization enhances significantly the strength of the interaction in the d-wave channel. As a result, the nematic
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FIG. 3: Spectral functions of effective interactions Γ11;11(~q1, ω) at ~q1 = (0.04π, 0.04π) for different U . The overdamped collective
mode at low energy acquires increased spectral weight as the critical point (Uc ≈ 2.1eV at the temperature we are considering
kBT = 0.02eV ) is approached.

order in such multiorbital systems is completely equivalent to orbital ordering in quasi-1D bands, and the spectral
functions due to quantum fluctuations associated with the quasi-1D bands naturally acquire the same properties of
the quadrupole density spectral function discussed in the context of the quantum nematic fluid mentioned above.
It has been shown22,27,29 that these overdamped collective modes could lead to a non-Fermi liquid near the critical
region and also in the nematic phase. The reason is that in the vicinity of the nematic critical point, these overdamped
collective modes become soft. Electrons scatter strongly with these soft overdamped collective modes, which modify
the electron self energy away from the Fermi liquid behaviour in the vicinity of the nematic critical point.
It is intriguing to check whether the same physics discussed above occurs in the iron-pnictide superconductors since

the SPT signals a transition from thei symmetric normal phase to a state which breaks C4 symmetry. We performed
a numerical evaluation of Eq. 3. To compute the self energy of the retarded Green function of a single-particle state
on the Fermi surface, we need to do one more transformation and also an analytical continuation on Eq. 3 to obtain

Σband
αα (~kF , ω + iη) =

(

Û~kF

Σ̂orbital(~kF , ω + iη)Û †

~kF

)

αα
, (5)

which is the self energy of the electron with momentum ~kF on the Fermi surface sheet α.

Because we study the normal state at finite temperature, Σband
αα (~kF , ω+iη) contains contributions from both thermal

and quantum fluctuations which can not be separated in RPA-type calculations29. Nevertheless, it is generally
expected that the contribution from quantum critical fluctuations should be expanded in powers of ω/T and the
thermal fluctuations should be most dominant at ω = 0. In order to see the frequency dependence due to the
quantum critical fluctuations more clearly, we plot in Fig. 4 the normalized imaginary part of the self energy defined
as

ImΣnor
αα (~kF , ω) ≡

(

ImΣband
αα (~kF , ω)− ImΣband

αα (~kF , 0)
)

ImΣband
αα (~kF , 0)

. (6)

Generally, it is expected that at finite temperature the self-energy is analytical for ~ω << kBT , which gives the ω2

term. We find the crossover from a Fermi liquid with ω2 at small frequency to a non-Fermi liquid in which the ωλ

term with λ ≤ 1 dominates over ω2 term as U is increased to approach the critical point. Similar results have been
seen in Ref. [29]. In the critical region, non-Fermi liquid behaviour exists in a large part of the Fermi surface with
strong angular dependence of ImΣ as expected due to the critical fluctuations near orbital ordering (now termed
nematicity)27. As the temperature is lowered, the critical point Uc shifts to a lower value but the non-Fermi liquid
behaviour remains robust near the critical point. This strongly suggest that this non-Fermi liquid behaviour should
be observable in iron-pnictide superconductors at a temperature above the SPT.
One subtle point is that the effective interaction Γ in Eq. 4 contains both contributions from the charge and

spin channels. While for large momentum (e.g. (π, 0) or (0, π)) there is no doubt that the contribution from spin
channels is dominant as seen from previous calculations23,26 and also in our calculations, for small momentum, which
we focus on here, the contributions from both charge and spin channels become comparable. As a result, we can not
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FIG. 4: (a)Normalized self-energy of electron with momentum ~kF = (0.12π, 0.12π) on the hole Fermi pocket α1 for different
U . A crossover from Fermi liquid (λ = 2) to non-Fermi liquid (λ ≤ 1) can be seen as U increases from U = 0.5 to critical

point U = 2.1eV . (b) Normalized self-energy of electron in the critical region (U=2.1 eV) with momenta ~kF1 = (0.12π, 0.12π),
~kF2 = (0.2π, 0) on hole Fermi pocket α1, and ~kF3 = (0.88π, 0.16π) on electron Fermi pocket β1.

completely rule out the effects from the spin channels. However, since it has been shown32 that the spin nematicity
could also induce orbital ordering, the critical collective modes associated with the orbital ordering discussed above
will be still present in that case, despite the fact that the spectral weight might be reduced due to the coupling to
the collective modes associated with spin nematic order. As a result, the non-Fermi liquid behaviour discussed above
will be most prominent if the contribution from charge channels in Eq. 4 is dominant. We find, in general, that
the charge channels become much stronger for U ≈ U ′, which is consistent with previous studies of orbital ordering
in Sr3Ru2O7

33,34. Moreover, it has been shown that the inclusion of electron-phonon coupling can also enhance
the instability in the charge channels36. Since it is well-known that physical properties of iron-based superconductors
could vary significantly for different families due to difference in details, we expect that the non-Fermi liquid behaviour
discussed above might not be visible in some families of the iron-based superconductors. This is actually what is seen
in point contact spectroscopy and other experiments which will be discussed in Sec. V.

IV. NON-FERMI LIQUID BEHAVIOUR BELOW THE STRUCTURAL PHASE TRANSITION

In this section, we discuss the fate of the non-Fermi liquid behaviour in the C4 symmetry broken phase. For the
nematic phase in a continuous model, these overdamped collective modes induced by the d-wave interaction evolve
into Goldstone modes but remain overdamped and dominate the low energy physics. Consequently, the non-Fermi
liquid persists in the nematic phase. In the multiorbital model studied here, the situation is complicated by the fact
that since the continuous rotational symmetry is absent in a lattice model, there are no gapless Goldstone modes
in general. Nevertheless, these overdamped collective modes remains existing with a gap ∆ due to the breaking of
a discrete symmetry from C4 to C2. Consequently, the non-Fermi liquid behaviour will be present as long as the
temperature energy scale kBT is larger than ∆. Note that ∆ is a gap in the density-density correlation function not
in the single particle spectrum, since the orbital order (same as nematic order) does not gap out the Fermi surfaces.
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As a result, it is expected that the non-Fermi liquid will persist for a while as the temperature is lowered below TSPT

and then gradually disappear at very low temperature where the orbital order is strong. This is analogue to the case
of ferromagnetic quantum critical point with magnetic field where the critical fluctuations are gapped by the Zeeman
energy35.

V. EXPERIMENTAL CONSEQUENCES

A direct cconsequence of non-Fermi liquid behaviour is the temperature dependence of the resistivity. It has been
pointed out31 from studies on various iron-pnictide superconductors that a strong deviation from the Fermi liquid T 2

behaviour of the resistivity above the SPT temperature would occur if a large anisotropy in the in-plane resistivity
exists below the SPT temperature. Since the anisotropy in resistivity is intimately related to orbital ordering, this
observation provides direct evidence for our claim that non-Fermi liquid behaviour is due to orbital fluctuations. An
independent calculation including electron-phonon coupling to enhance the effect of orbital fluctuations by Onari and
Kontani36 also showed unusual temperature dependence of the resistivity above the structural transition temperature.
What about the zero-bias anomaly seen in point-contact tunneling experiments20,21 on electron-doped

Ba(Fe1−xCox)2As2? Intriguingly, this zero-bias enhancement starts to appear at temperatures roughly 30K higher
than TSPT and remains robust well below TSPT. This observation is also consistent with our theory. It has been
shown by Lawler et. al.22 that the single particle density of states has the form of

N∗(ω) = N∗(0) +Bω2/3 lnω + · · · (7)

in the nematic critical region and also in the nematic phase. In fact, N∗(ω) obtains extra contributions due to
the non-Fermi liquid self-energy, giving rise to a cusp at zero frequency and a subsequent decrease as the frequency
increases. This provides a direct explanation for the zero-bias enhancement observed in point contact spectroscopy
since the conductance dI/dV roughly measures the single-particle density of states for small frequency. Moreover,
since the form of the single-particle density of states is the same up to some mild modifications in the vicinity of the
critical point and also in the C4 symmetry broken phase, the zero-bias enhancement should have a smooth crossover
as TSPT is crossed, which in fact has been noticed in quantum point-contact measurements37. We predict that for
hole-underdoped Ba1−xKxFe2As2 which does not have an in-plane resistivity anisotropy31, the zero-bias enhancement
should be either non-existant or much weaker than that in electron-doped Ba(Fe1−xCox)2As2.

VI. CONCLUSION

In this paper we have presented a theory of non-Fermi liquid behaviour in a five-band model with generalized
Hubbard on-site interactions for iron pnictide superconductors. At the level of the random-phase approximation, we
found a branch of overdamped collective modes emergent at low frequency in channels associated with quasi-1D dxz
and dyz bands, and we have shown that these modes become dominant at low energies near the critical point for the C4

symmetry-broken phase, leading to non-Fermi liquid behaviour. Our theory indicates that quantum criticality through
the evolution of a non-Fermi liquid phase plays an important role in understanding the normal-state properties of
iron-pnictide superconductors.
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