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We examine the quantum entanglement spectra and Wannier functions of the square lattice Hofs-
tadter model. Consistent with previous work on entanglement spectra of topological band structures,
we find that the entanglement levels exhibit a spectral flow similar to that of the full system’s en-
ergy spectrum. While the energy spectra are continuous, with cylindrical boundary conditions the
entanglement spectra exhibit discontinuities associated with the passage of an energy edge state
through the Fermi level. We show how the entanglement spectrum can be understood by examining
the band projectors of the full system and their behavior under adiabatic pumping. In so doing we
make connections with the original TKNN work1 on topological two-dimensional band structures
and their Chern numbers. Finally we consider Wannier states and their adiabatic flows, and draw
connections to the entanglement properties.

PACS numbers: 73.43.Cd

1. INTRODUCTION

In the presence of a uniform magnetic field, the en-
ergy spectrum of a noninteracting two-dimensional elec-
tron gas is arranged in discrete, equally spaced Lan-
dau levels. The Hall conductivity of n filled Landau
levels is σxy = ne2/h. A discretized version of this
model, due to Hofstadter2, has electrons hopping on a
two-dimensional lattice with complex tight-binding am-
plitudes tij = t eiAij , such that the magnetic flux through
each unit cell is a rational multiple p/q of the Dirac
flux quantum. The gauge field Aij can be made peri-
odic by choosing a magnetic unit cell comprising q struc-
tural unit cells of the lattice. For a lattice with an r
element basis, this results in qr energy subbands which
in general do not cross, a consequence of the Wigner-
von Neumann theorem; the continuum limit is recovered
at low energies for q → ∞. Plotting these energies as
a function of φ ≡ 2πp/q yields the famous ‘Hofstadter
butterfly’. As shown in a seminal paper by Thouless et

al.1 (TKNN), to each band index j there corresponds
an integer Chern number Cj , which physically represents
the contribution to the Hall conductivity when band j
is filled. The main differences with respect to the con-
tinuum are (i) the tight-binding subbands are dispersive,
and (ii) whereas Cj = 1 for each Landau level in the
continuum, the Chern indices of the TKNN bands are in
general nonuniform.

The Chern number is an integer invariant which re-
flects aspects of the bulk band topology. As such it is
robust and invariant with respect to parameter varia-
tions which do not collapse the band gaps. The nontrivial
bulk topology is also manifested at the edge. Hatsugai3

showed that the number of edge modes interpolating be-
tween bulk bands separated by a gap is equal to the sum
of the Chern indices of all bands below that gap. The
spectral flow of the edge energy levels as a function of
the momentum parallel to the edge is also reflected in
the behavior of the quantum entanglement spectrum4,5

of the many-body reduced density matrix obtained by

partitioning the system along a translationally-invariant
boundary. For noninteracting fermions, the spectrum
of the reduced density matrix itself corresponds to that
of a noninteracting ‘entanglement Hamiltonian’ deter-
mined by the one-body correlation matrix of the origi-
nal system6–9. However there are also exceptions to the
edge-entanglement correspondence. For example, the en-
tanglement spectrum has protected midgap modes for a
system with inversion symmetry even if the edge modes
are gapped10,11. In certain cases, one also has to tune the
boundary conditions for a system with nontrivial topol-
ogy in order for its energy edge modes to be gapless12,
while such tuning is not required to observe the entangle-
ment spectral flow. Thus in certain sense, the entangle-
ment spectrum is a more robust test of the bulk topology.

Once one specifies the wavevector ~k⊥ along the trans-
lationally invariant partition boundary, the entanglement
Hamiltonian becomes effectively one-dimensional, and
the localization properties of such states can be con-
sidered from the perspective of a Wannier basis13, and
several recent studies of topological insulators have in-
voked Wannier states14,15 in their analyses. While non-
vanishing Chern numbers provide an obstruction which
rules out exponentially localized Wannier states in higher
dimensions16, the one-dimensional entanglement eigen-

states at fixed ~k⊥ can be so localized, and for topologi-
cally nontrivial bulk band topologies, their Wannier cen-
ters exhibit a spectral flow similar to that observed in
the edge and entanglement spectra.

In this paper, we investigate the spectral flow of entan-
glement levels and Wannier states derived from the two-
dimensional square lattice Hofstadter model. We identify
the correspondence between these flows and the Chern
numbers of the bulk bands, and investigate the effect
of adiabatic pumping on the wavefunctions of different
energy bands of the system. We consider both energy
eigenstates as well as ‘entanglement eigenstates’ of the
corresponding reduced density matrix which results from
a spatial partitioning of the system into two parts.
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2. HOFSTADTER MODEL AND ITS

ENTANGLEMENT SPECTRUM

2.1. Hofstadter model

The Hofstadter model2 is a discrete model of electrons
in two space dimensions and in the presence of magnetic
flux. It is defined by a lattice tight-binding Hamiltonian,

Ĥ = −
∑

〈ij〉

[
tij c

†
i cj +H.c.

]
, (1)

where tij = |tij | eiAij is the complex hopping ampli-
tude between sites i and j. The U(1) flux φp through
a plaquette p is the product

∏
∂p e

iAij over a counter-
clockwise path of links along its boundary, ∂p. We shall
only consider the case of uniform amplitude hopping, i.e.
|tij | = 1.
In the continuum limit, energy eigenstates of ballis-

tic electrons collapse into macroscopically degenerate,
equally spaced Landau levels. The degeneracy of each

Landau level is NL = BΩ/φ0, where B is the mag-
netic field, Ω the total area covered by the system, and

φ0 = hc/e is the Dirac flux quantum. The spectral flow
of entanglement eigenstates in this limit was investigated
by Rodŕıguez and Sierra17. On the lattice, the Landau

levels are no longer degenerate, but form magnetic sub-

bands, each subband accommodating NL states. The
model may be defined on any lattice, but for definiteness
we consider the square lattice. Our principal results do
not depend qualitatively on the underlying lattice struc-
ture. (See Appendix B for the case of triangular lattice.)

As is well-known, while φp is periodic on the scale of
the structural unit cell, the vector potential Aij is not.
However, if the flux φ per plaquette is uniform and is
2π times a rational number p/q, a gauge can be chosen
where Aij is periodic on the scale of a ‘magnetic unit cell’
comprising q elementary structural cells. For example,
one can choose

Aij = φ yi δxi,xj+1 δyi,yj
, (2)

where (xi, yi) are integer coordinates for lattice site i.
The magnetic unit cell is then a 1×q tower of lattice cells,
and one obtains a q×q Hamiltonian matrix with nonzero
matrix elements Hn,n = −2 cos(kx + nφ), Hn,n+1 = −1,
HN,1 = −eiky , and remaining elements determined by
hermiticity. This results in q magnetic subbands with
dispersion εa(kx, ky). Here we are concerned with entan-
glement spectra, and to this end we consider a cylinder
with periodic boundary conditions in the x-direction and
Ny sites in the y-direction. The Hamiltonian matrix is

H(kx, Ny, z) = −




2 cos(kx + φ) 1 0 · · · z∗

1 2 cos(kx + 2φ) 1 0

0 1
. . .

...
... 1
z 0 · · · 1 2 cos(kx +Nyφ)




. (3)

Here, kx is the Bloch phase in the x direction, Ny is the
number of lattice sites in the y direction, and z controls
the boundary condition on y: z = 0 for cylindrical bound-
ary conditions (i.e. periodic in the x-direction and open
in the y-direction), z = 1 with Ny mod q = 0 for peri-
odic boundary conditions; unimodular complex z can be
interpreted as flux threading the compactified cylinder.
Note that for z ∈ R the Hamiltonian is real and hence
the eigenfunctions may be chosen to be real as well.

In what follows, we focus on the case with integer
number Ky of magnetic unit cells in the y direction
(Ny = qKy), which is more convenient for switching be-
tween open and periodic boundary. In ref. 3, the edge
solution is derived with the requirement of commensu-
rability, i.e., Ny = qKy − 1, in order to exploit some
structure in the transfer matrix formalism. This restric-
tion can be lifted in the thermodynamic limit Ny → ∞,
where the spectrum of edge states localized at y = 1 is
unchanged, while that of states localized at y = Ny is

shifted in kx. A proof is given in Appendix A.

2.2. Entanglement spectrum

Imagine partitioning the sites of our lattice into two
groups, A and B. If a many-body wavefunction |Ψ〉 can
be written as a direct product |ΨA〉 ⊗ |ΨB〉, the wave-
function is said to be unentangled with respect to this
partition. More generally, let ̺ = |Ψ〉〈Ψ| be the pro-
jector onto |Ψ〉. Tracing out over the B sites yields the

reduced density matrix ˜̺ = TrB ̺, whose eigenvalues con-
stitute the entanglement spectrum4. The von Neumann
entropy, S = −Tr ˜̺ ln ˜̺, provides a measure of the degree
of entanglement.

If the boundary between A and B is irregular, then
translational invariance is completely broken, but if the
boundary is such that the A region remains periodic in
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FIG. 1: (Color online) Energy levels (top) and entanglement
occupancies (bottom) for the square lattice Hofstadter model
with flux p/q = 3/7 per plaquette, on a cylinder of height
Ny = 28 as a function of the conserved crystal momentum
kx. The Fermi level EF lies inside the third gap (grey line),
and the occupied bands below EF contribute a total Chern
number Cocc = 1. The energy spectrum (top) is shown for
cylindrical boundary conditions, with the black dots indicat-
ing bulk levels, the red lines indicating edge levels localized
along the lower edge (y = 1), and the blue lines indicating
edge levels localized along the upper edge (y = Ny = 28).
The vertical gray line marks the value of kx where the lower
edge mode crosses the Fermi level. The entanglement occu-
pancies fa (bottom) are computed for the lower half of the
cylinder (1 ≤ y ≤ 14), color and symbol-coded according to
a. Although the overall flow appears continuous, there is a
discontinuity in the occupancies fa(kx) where the lower edge
mode crosses EF, resulting in a sudden color change in the
plot.

one direction (or more than one, in the case of systems in
more than two space dimensions), then the eigenstates of
˜̺ can be classified by a corresponding crystal momentum,
and one can investigate the spectral flow of the entangle-
ment levels5.
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FIG. 2: (Color online) Same as in Fig. 1 but with Ny = 29
and M = 15.

2.2.1. The correlation matrix method

A general recipe for computing the reduced density
matrix for noninteracting Fermi systems has been de-
rived by Cheong and Henley6. Let I and J denote sites

in the full system, whose Hamiltonian is Ĥ = HIJ c
†
IcJ .

The statistics of this Hamiltonian are then completely

determined by the one-body correlation matrix GIJ =

〈c†IcJ〉 = Tr (̺ c†IcJ), where ̺ is the density matrix. Now
consider a bipartition of the full system into two subsys-
tems A and B, and let i and j denote sites within A.

Then Gij = 〈c†i cj〉 = (RGRT)ij where RiI = δiI is an

oblong matrix of dimensions NA × (NA + NB) with 1’s
along the diagonal; NA(B) is the size of the A(B) sub-
space. I.e. R spatially projects onto A. Thus G is a
submatrix of G, and a key fact, due to Peschel9, is that

we may write Gij = Tr (˜̺c†i cj), where ˜̺ = exp(−K̂)/Z is

the reduced density matrix (RDM) and K̂ ≡ Γij c
†
i cj is

the dimensionless ‘entanglement Hamiltonian’ (both re-

stricted to A). One then finds G =
{
exp(ΓT) + 1

}−1
,

and the normalization Z follows from Tr (˜̺) = 1. The
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NA eigenvalues {γa} of ΓT = ln
(
G−1 − 1

)
are the en-

tanglement ‘quasienergies’, and the eigenvalues of G are
then Fermi functions of the quasienergies7, viz.

fa =
1

exp(γa) + 1
. (4)

For our system, the translation invariance along x means
kx is a good quantum number, and for each kx, the sys-
tem can be regarded as one-dimensional. Thus, HIJ(kx)
and GIJ(kx) are of dimension Ny, and I and J label rings
and not single sites. In our study, the Fermi energy EF is
always placed within some bulk gap. For periodic bound-
ary conditions, G is then a sum of projectors onto the oc-
cupied bands. With open boundaries, there will be edge
modes which cross the Fermi level. In either case, we take
the A subsystem to be the bottom part of the cylinder,
with y ∈ [1,M ]. Thus G is the upper left M ×M block
of G.

2.2.2. Rank of G and 1−G

The eigenvalues of G may contain exact zeros or ones.
The number of zeros and ones, denoted as D0 and D1 re-
spectively, are by definition the dimensions of the kernels
of G and 1 − G. If ν bulk bands are occupied with pe-
riodic boundary conditions, then the total rank of G(kx)
is νNy/q, since each of the q bands contains an equal
number of states. Thus if M ≥ νNy/q, the rank of G
will also be νNy/q. ForM ≤ νNy/q, the rank of G isM .
Thus,

rank(G) = min(M,νNy/q) , (5)

D0 =M − rank(G) , (6)

and similarly

rank(1−G) = min
{
M,Ny(1− ν/q)

}
, (7)

D1 =M − rank(1−G) , (8)

where Ny(1−ν/q) is the rank of 1−G, the projector onto
unoccupied bands.
As we shall see, with cylindrical boundary conditions,

the rank of G changes with kx whenever an edge state
crosses the Fermi level. As a result, D0 and/or D1 are
discontinuous at such kx values for certain range of M .
It is easy to verify that the condition for D0 = D1 = 0 is
M ≤ min(ν/q, 1− ν/q)×Ny.

2.2.3. Entanglement occupancy, quasienergy, and spectral

flow

Fig. 1 shows the energy spectrum and entanglement
occupancy for p/q = 3/7, Ny = 28, and M = 14, using
cylindrical boundary conditions. The Fermi energy EF

lies within the third gap. The total Chern number of the
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FIG. 3: (Color online) Hofstadter model with flux p/q = 3/7
per plaquette on a cylinder of height Ny = 70. Top: detail
of energy spectrum showing lowest three energy bands. The
Fermi level lies at EF = −1.9 (grey horizontal line). The to-
tal Chern number of the occupied bands is Cocc = 3. Red
(blue) vertical lines indicate kx at which the lower (upper)
edge modes cross the Fermi energy (kL

x and kU

x in text). Bot-
tom: entanglement occupancies fa after tracing out the upper
half of the cylinder.

three occupied bands is Cocc =
∑3

j=1 Cj = 1, which is
also the number of times the lower edge mode, localized
at y = 1 (the red line in the plot), flows across the gap,
i.e., the winding number3. The sign of Cocc is reflected
in the direction of the edge flow, e.g. Cocc = −1 for 4
filled bands, and the lower edge flows downward. Several
features are noteworthy:
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FIG. 4: (Color online) Same system as in Fig. 3. Top: en-
tanglement quasi-energies γa. 20 levels are below the large
‘gap’ – the same as the number of occupied levels in the full
system. Colored levels are also plotted in Fig. 3 with the
same color scheme. Red and blue vertical lines mark the kx
values at which lower and upper edge modes of the cylindri-
cal Hamiltonian are crossed by the Fermi level (kL

x and kU

x

in text). Bottom: quasienergy in 2D polar coordinates. The
radius is the quasienergy and the polar angle is kx. The black
circle corresponds to γ = 0. There are three curves spiral-
ing outward in the clockwise direction, corresponding to total
Chern number C = 3.

(a) Most levels are clustered near f = 0 and f = 1. This
reflects the fact that EF lies inside a bulk gap. Taking lin-
ear combinations of the occupied states in the full system,
one can create wavefunctions which are mostly confined
to either (A or B) subsystem. The same consideration ap-
plies to unoccupied states. In the thermodynamic limit,

the fraction of occupied states in A and in B should be
the same as that for the full system. This is confirmed
by our numerical results. The entanglement eigenstates
with f ∼ 1

2 are localized along y ≈M . As is the case for
the edge modes of the full Hamiltonian, the number of
entanglement levels flowing between f ≃ 0 and f ≃ 1 is
the same as the total Chern number number Cocc of the
filled bands. This is depicted in Fig. 1 for Cocc = 1 and
in Fig. 3(b) for Cocc = 3.

(b) The occupancy fa(kx) is discontinuous at kx = kL

x,

where the lower cylindrical boundary edge modes of Ĥ
cross the Fermi level; these are the red curves in Fig.
3(a). For example, in Figs. 1 and 2, where entangle-
ment levels with different indices a are plotted in differ-
ent colors, the tenth (light blue) and eleventh (magenta)
level occupancies are each discontinuous at kL

x, but satisfy
fa=10(k

L

x+0+) = fa=11(k
L

x−0+). The number of distinct
such kL

x values is the number of lower edge mode Fermi
level crossings, which is |Cocc|. Thus, as one increases
kx through each such crossing, the number of levels with
f ≃ 1, and hence the total occupancy

∑
a fa of the A

subsystem, drops discontinuously by unity due to the ex-
clusion of the edge mode. Eventually the f ≃ 1 levels
are repopulated due to the aforementioned spectral flow.
In order to conserve the rank of G(kx) (in the case of
M > rank(G), cf. eqn. 6) upon increasing kx by 2π, then,
there must be a discontinuous repopulation of the f ≃ 0
levels. This occurs when the upper cylindrical boundary
edge modes cross EF at kx = kU

x ; these are the blue curves
in Fig. 3(a). As these modes have a vanishingly small
projection onto the A subsystem in the thermodynamic
limit, they lead to no discontinuity in the total occupancy
of A. A similar analysis of the occupancy discontinuity
has recently been given by Alexandradinata et al.18

(c) From the occupancy spectrum, one can invert the
Fermi distribution (eqn. 4) to get the quasienergy spec-
trum {γa}. A quasienergy plot more clearly reveals en-
tanglement spectrum near f = 0 and f = 1, where many
levels are clustered. In Fig. 4(a) (and equivalently the
polar plot Fig. 4(b)), some key features are apparent.
First, a substantial number of levels are clustered at
γ ≈ 140 (f ∼ 10−60) and are separated from the re-
maining levels by a pronounced gap. Actually this is a
numerical artifact and these levels all lie at γ = ∞. Re-
call the earlier result rank(G) = min(M,νNy/q) in eqn.
6 for a system with periodic boundary conditions. Here
we have p/q = 3/7, Ny = 70, M = 35, and ν = 2 since
EF is placed in the gap between the second and third
bulk bands. Thus we would expect rank(G) = 20, and
since the row dimension of G is M = 35, there should be
15 levels with f = 0, corresponding to γ = +∞. Had one
looked at a system with more than half filling, one would
find entanglement quasienergies clustering at γ = −∞
instead, where the entanglement occupancy is exactly 1.
These would correspond to the kernel of 1−G.

(d) Since our system has cylindrical boundary condi-
tions, there are edge states, and there is a discontinu-
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FIG. 5: (Color online) Normalized eigenfunctions ψ̃a(y) of G
for p/q = 3/7, Ny = 112, M = 56, and ν = 3 at kx = 2π/7
(cylindrical boundary conditions). The Chern number of the
filled bands is Cocc = 1. Color corresponds to the sign of
the wavefunction (red for positive, blue for negative), and
intensity to amplitude (white for zero intensity). The black
points are the entanglement energies γa.

ity in the quasienergy spectrum at each kL

x and kU

x value
where lower and upper edge states are crossed by EF.
When both edge states lie below EF, one counts 20 finite
quasienergy levels. When kx lies between consecutive kU

x

and kL

x values, one of the lower boundary edge states has
crossed the Fermi level, and the rank of G decreases to
19. The spectral flow in the vicinity of γ ≈ 0 is continu-
ous, however. Discontinuities in the entanglement ener-
gies occur for large values of |γ|, where the occupancy is
close to 0 of 1. When an edge state passes from below EF

to above EF, the rank of G changes discontinuously by
−1. For increasing kx, this occurs at any of the three kL

x

points in Fig. 3(a). Such an edge state has almost per-
fect projection onto the A subsystem, hence its depopu-
lation leads to a sudden rearrangement of entanglement
levels with large negative quasienergies γa (fa ≈ 1) and
a loss of one such level. For kx = kU

x , where the change
∆ rank(G) = +1, the ‘extra’ level enters via a discon-
tinuous rearrangement of the levels with large positive
quasienergies (fa ≈ 0). (The situation is reversed if EF

lies within the first gap, in which case ∆ rank(G) = +1
at each kL

x and ∆ rank(G) = −1 at each kU

x .) We see this
clearly in Fig. 4(a), where the number of finite γ levels
changes from 20 to 19 when kx lies between consecutive
kL

x and kU

x values.

2.2.4. Entanglement eigenfunctions

In Fig. 5 we plot the eigenfunctions ψ̃a of G(kx =
2π/7) for a larger p/q = 3/7 system, with Ny = 112,
M = 56, and ν = 3 at kx = 2π/7. The Chern number
of the filled bands is Cocc = 1. States with finite γa
are spatially resolved. The rank of G is νNy/q = 48,
corresponding to states #9 through #56 in the plot. The
dimension of the kernel ofG is then dim(G)−rank(G) = 8.
These states all have fa = 0, i.e. γa = +∞, which is
rendered as the flat ceiling of the black curve in the figure.
They form the speckled region in the left of the figure.
Note that states with γa ≈ 0 (f ≈ 1

2 ) are localized near
the cut y =M , and that those with large γa are localized
away from the cut. We shall return to this point later,
toward the end of the paper, after we discuss Wannier
center flows.

2.2.5. Effect of changing M

Since the magnetic unit cell is set along the y-direction,
Ny and M must be chosen as integer multiples of q if
there are to be an integer number of unit cells in the full
system and/or the lower (A) subsystem, respectively. As
shown in Appendix A, changing Ny to Ny +m (m ∈ Z)
keeps the lower edge modes intact, but shifts the kx val-
ues for the upper edge modes by −2πmp/q. For example,
the lower edge modes (red lines) are the same in Figs. 1
and 2, but the upper edge modes (blue lines) in Fig. 2
are shifted in kx by −6π/7 relative to those in Fig. 1.
It turns out that changing M affects the entanglement

occupancy in the same way as changing Ny would affect
the edge modes. This is shown in the bottom rows of
Figs. 1 and 2. We should mention that keeping M fixed
while changing Ny will not change the occupancy spec-
trum in any appreciable way because that only shifts the
upper edge modes. Changing Ny will thus change the
kU

x values, and consequently where the rearrangements
of the f ≈ 0 parts of the entanglement spectrum occur,
but will not affect the spectral flow for γ ≈ 0. The reason
will become more clear in the next section.

3. ADIABATIC PUMPING OF BAND

PROJECTORS

The entanglement level occupancies fa are eigenval-
ues of the restricted correlation matrix G = RGRT. In
searching for an intuitive picture of the various features
of the entanglement spectrum, it is then natural to ex-
amine the unrestricted projector G. We found that much
information can be extracted from G itself.
In this section, we will use periodic boundary condition

in the y-direction, i.e. z = 1 and Ny mod q = 0 in eqn. 3.
The Hamiltonian of eqn. 3 then satisfies

H(kx + φ) = T †
y H(kx)Ty , (9)



7

y1

7

14

21

28

y2 7 14 21 28

B1(y1, y2), κ = 1

y1

7

14

21

28

y2 7 14 21 28

B1(y1, y2), κ = 1.5

(a) B1

y1

7

14

21

28

y2 7 14 21 28

B2(y1, y2), κ = 1

y1

7

14

21

28

y2 7 14 21 28

B2(y1, y2), κ = 1.5

(b) B2

y1

7

14

21

28

y2 7 14 21 28

B3(y1, y2), κ = 1

y1

7

14

21

28

y2 7 14 21 28

B3(y1, y2), κ = 1.5

(c) B3

y1

7

14

21

28

y2 7 14 21 28

G2(y1, y2), κ = 1

y1

7

14

21

28

y2 7 14 21 28

G2(y1, y2), κ = 1.5

(d) G2

y1

7

14

21

28

y2 7 14 21 28

G3(y1, y2), κ = 1

y1

7

14

21

28

y2 7 14 21 28

G3(y1, y2), κ = 1.5

(e) G3

FIG. 6: (Color online) Full system band projectors for p/q = 3/7, Ny = 28, with periodic boundary conditions in y and
kx = 2πκ/q. Bj is the projector onto the jth band, and Gν = B1 + . . . + Bν the projector onto the lowest ν bands. The
magnitude of the matrix elements are represented by intensity and their sign by color (red positive, blue negative, white zero).
y1 and y2 are the row and column indices of the projectors. Blue rules mark boundary of the magnetic unit cells. Red rules
mark the bipartite cut, so the top-left quadrant of G corresponds to the restricted correlation matrix G. Only κ = 1 and 3/2
are shown here due to space restriction. Corresponding plots for other κ values can be inferred from those shown here after
shifting all matrix elements along the diagonal by t as the solution of eqn. 16. Similarly, projectors of all half odd-integer κ are
obtained by shifting those of κ = 3/2. As kx is increased from 0 to 2π (κ from 0 to q), the adiabatic pumping is evident in the
diagonal motion of all matrix elements of the projectors. Note in particular that at integer κ, each diagonal block of G3 consists
of three sharply localized packets: the top-left one is contributed by B1, whereas the rest two result from the constructive
addition of the diagonal blocks of B2 and B3. Similarly, at half odd-integer κ, B1 and B2 add constructively, yielding the two
sharp packets in each diagonal block of G2. The Chern number corresponds to how many magnetic unit cell boundaries (blue
and red rules) any diagonal matrix element has passed by in one pumping period. Equivalently, it is the sum of diagonal matrix
elements which are transferred across any magnetic unit cell boundary in one pumping period. For the Gν type, it is intuitively
how many packets are transferred.

where φ = 2πp/q as before and where Ty is the transla-
tion operator by one lattice spacing in the y-direction:

Ty =

(
0 1

1Ny−1 0

)
. (10)

The unitarity of Ty guarantees that the bulk bands re-
peat themselves for q times over the interval kx ∈ [0, 2π].
With each successive increase of kx by 2πp/q, the spec-
trum repeats and the corresponding energy eigenstates
are shifted by ∆y = 1. Denoting Bj(kx) as the projector
onto the jth band, we have that G(kx) ≡ Gν(kx) is the
projector onto the lowest ν filled bands,

Gν(kx) =

ν∑

j=1

Bj(kx) . (11)

The covariance in kx and y is reflected as

Bj(kx + φ ; y1 , y2) = Bj(kx ; y1 + 1 , y2 + 1) , (12)

where y1 and y2 are row and column indices for Bj(kx).
Translational invariance on a scale of the magnetic unit
cell corresponds to

Bj(kx ; y1 , y2) = Bj(kx ; y1 + q , y2 + q) (13)

The same relations hold for Gν .
While these projectors are explicitly constructed us-

ing the Bloch states, which are spatially extended, the
fact that their eigenvalues are degenerate (either 0 or 1)
means one may construct localized eigenstates around
the cylinder, for each kx, by recombining Bloch states of
different ky with the same eigenvalue. In the continuum
limit, where q → ∞ with p finite, these correspond to
the familiar Landau strip basis. In fact, the projectors
themselves are localized: An illustration is provided in
Fig. 6, which shows several Bj and Gν for p/q = 3/7 at
kx = 2πκ/q for κ = 1 and κ = 3/2, both of which are
local extrema of the energy bands. The size of the mag-
netic unit cell naturally divides the projectors into blocks
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of size q × q. It is not surprising that the off-diagonal
blocks drop exponentially, a consequence of the analytic-
ity of Bj in complex ky

19. What is perhaps unexpected
is that at band troughs (integer κ for odd j and half-odd-
integer κ for even j in Fig. 6), the projectors Bj , and es-
pecially Gν , are quite well-localized even within the diag-
onal blocks. The diagonal matrix elements of the projec-
tors correspond to electron density at the corresponding
y coordinate. For single bands (Bj), any q consecutive
diagonal elements sum to 1, thus one may think of them
as constituting a wavepacket, and the projector Bj as
consisting of Ny/q such wavepackets (one per magnetic
unit cell). For each wavepacket, the weight is dominated
by one or two elements, as one can see in Fig. 6. The
localization of the projector sums Gν is even more promi-
nent: when the gap between two neighboring bands is at
a minimum, their projectors add constructively, resulting
in two sharply localized dots on the diagonal line of Gν .
For example, in Fig. 6, B2 and B3 add constructively at
κ = 1, yielding the lower two dots in each diagonal block
of G3, and similarly, B1 and B2 add up to G2 for κ = 3/2.
Now, q consecutive diagonal elements in Gν must sum to
ν, thus each of the ν dots can be intuitively understood
as one localized wavepacket. The constructive superposi-
tion of neighboring bands then indicates the correspond-
ing single-band wavepackets have opposite parity so that
the off-diagonal elements cancel each other. To relate to
the aforementioned “strip” states, we note that any col-
umn of a projector is an eigenstate of the same projector,
with eigenvalue 127. The diagonal nature of these band
projectors thus ensures the existence of such strip states.
We now establish a connection between the band pro-

jectors and the seminal work of Thouless et al.1 on the
Chern numbers for the Hofstadter bands. Consider first
the individual band projectors Bj . We write

y = qℓ+m , kx =
2πκ

q
, (14)

where ℓ and m are integers. Thus ℓ is the magnetic unit
cell coordinate, and m the coordinate within each such
cell. For a single band, denote the position of any of its
wavepackets as m(κ), then (kx, y) covariance implies

m(κ+ tp) = m(κ)− t , t ∈ Z . (15)

Of course both m and κ are only defined modulo q. The
relevant quantity in the kx pumping is the ‘velocity’ of
the packet (with kx as ‘time’), i.e., the number of sites it
traverses when κ is effectively increased by 1:

tp = sq + 1 , s ∈ Z , |t| < q . (16)

A graphical construction is shown in Fig. 7. Clearly, t
will be the number of packets transported through any
given boundary during the cycle kx → kx + 2π (number
of blue flow lines in the figure). It is also equal to the
number of magnetic cells traversed by a single packet.
There is however a mod q ambiguity associated with the
sign indeterminancy of t, e.g. for p/q = 3/7, one has
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FIG. 7: (Color online) (m,κ) construction for p/q = 3/7,
assuming m = 0 when κ = 0. Red line: flow in the order
of Ty translation whereby κ → κ + p and y → y − 1. Blue
lines: flow in the order of kx pumping. The number of time
a packet is transferred across any boundary line, e.g. m = 0
line, is the same as the number of blue flow lines crossing the
boundary line. There is a mod q ambiguity as can be seen
from the validity of both the solid and dashed blue flows.

that (t, s) = (5, 2) and (−2,−1) both satisfy eqn. 16. In
general, without looking at intermediate κ snapshots, one
cannot tell if the packet had advanced by t or retreated
by q − t. We have examined different p/q ratios on both
square and triangular lattices, and we find that for the
lowest band on a square lattice, the ambiguity can always
be resolved, without needing to inspect intermediate κ,
by picking the value of t which has the smaller magnitude
|t|, e.g. t = −2 instead of 5 for B1 in Fig. 6. Intuitively,
this means the packet moves toward the nearest possible
position allowed by eqn. 15.

Eqn. 16 is recognized as the Diophantine equation of
TKNN1 with r = 1, according to which t is simply C1,
the Chern number of the lowest band. The heuristic of
taking the smaller |C1| in resolving the mod q ambiguity
agrees with ref. 1. Since this picture does not distinguish
between different bands, the Chern numbers of all bands
are equivalent mod q.

The correlation matrix Gν for ν occupied bands has ν
packets per diagonal block, with each moving according
to eqn. 16, as required by the (kx, y) covariance. How-
ever, their collective motion depends on their relative
spacing. Consider for example the diagonal blocks of
G3 for κ = 1, as shown in top right panel of Fig. 6. In
each diagonal block, the diagonal elements with domi-
nant weight (packets) are at y = (2, 4, 7). Then (kx, y)
covariance requires that at κ = 2, they are moved to
y = (2 − t, 4 − t, 7 − t) = (4, 6, 9) where t = −2 is the
solution to eqn. 16 as discussed before. Since y = 9 is
simply the y = 2 element of the next diagonal block,
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thus in each diagonal block, the packets of κ = 2 are
at y = (4, 6, 9 mod 7 = 2). Comparing this with those
of κ = 1, one can see that, effectively, only one packet
moved from y = 7 to y = 6.
We found that for any ν 6= q, this observation holds

true (for ν = q, Gν is identity). That is to say, as
κ→ κ+ 1, the net effect is for only one of the ν packets
to change position. We will not attempt to explain this
observation, but rather take it as a starting point, and ex-
plore its implications. Mathematically, this observation
– the reduction of the motion of multiple wavepackets to
that of a single mobile packet at a time – means that
the positions of dominant diagonal elements (the pack-
ets) can be labeled in such a way that

mi(κ+ 1) = mi+1(κ) , i = 1, 2, . . . , ν − 1 (17)

with each mi still satisfying eqn. 15, i.e. mi(κ + tp) =
mi(κ) − t. Note that this does not mean mi can be
identified with the wavepacket of a single band: they re-
sult from constructive superposition of single-band pro-
jectors, as discussed earlier.
To illustrate eqn. 17, take again G3 as an example:

at κ = 1, (m1,m2,m3) = (7, 2, 4), while at κ = 2,
(m1,m2,m3) = (9 mod 7 = 2, 4, 6). Then as κ increases
by 1, the effective change is of one packet (the mobile
one) moving from m1(κ) to mν(κ+ 1) with stride tν ,

mν(κ+ 1) = m1(κ)− tν , |tν | < q . (18)

The RHS is therefore m1(κ+ tνp), while the LHS is

mν(κ+ 1) = mν−1(κ+ 2) = · · · = m1(κ+ ν) (19)

from eqn. 17. Thus tν is determined by

tνp = sq + ν , s ∈ Z , |tν | < q . (20)

Again, there is a mod q ambiguity because of the sign
indeterminancy of tν . For square lattice, the heuristic of
using the smaller |tν | still seems to hold, e.g. while both
(t3, s) = (1, 0) and (t3, s) = (−6,−3) satisfy eqn. 20, the
actual system picks t3 = 1. Ref. 20 mentioned that s and
tν cannot simultaneously be odd for either the hexagonal
or triangular lattices. Incidentally, for ν = p, tp = 1 is
always a solution with the corresponding s = 0, i.e. the
total Chern number of the lowest p bands is always 1.

Eqn. 20 is the TKNN Diophantine equation1 for r = ν.
There, tν is the total Hall conductivity (the sum of the
Chern numbers) of the ν occupied bands. It is also the
winding number of the energy edge states in the νth gap3.
We now have a third interpretation: it is the number of
sites traversed by the mobile packet during each κ incre-
ment. Equivalently, it is the number of mobile packets
transported across any magnetic unit cell boundary dur-
ing the cycle kx → kx + 2π.

The entanglement spectrum can now be understood
intuitively. Whenever the mobile packet leaves the lower
half-cylinder through the cut between M and M + 1 (in
Fig. 6, proceeding from top-left quadrant through the red

line into the lower-right quadrant), there is an occupancy
flow from f = 1 to 0. The number of flow lines is then
equal to the number of packets which move through the
cut, which is the total Chern number. In the periodic
y boundary case, where the cylinder is compactified into
a torus, the flow across M = Ny/2, is always concomi-
tant with another packet moving from y = Ny to y = 1,
hence a symmetric flow from 0 to 1 with its wavefunction
localized at the opposite end. (Entanglement occupancy
with periodic y boundary is shown in Fig. 8 in the next
section). Furthermore, If we change the position of the
entanglement cut M (not necessarily along a magnetic
cell boundary, for example), this will simply change the
value of kx when a packet hits the cut, whence the kx
translation shown in Figs. 1 and 2.
While the entanglement spectrum only reveals the to-

tal Chern number, the correlation matrix retains some
information about the individual Chern numbers of con-
stituent bands, manifested as the separation between its
wavepackets. Note that eqn. 18 can be taken as a defi-
nition of tν with arbitrary ν < q, without interpreting ν
as the number of filled bands. After all, the total Chern
number of the lowest ν bands is the same whether or not
they are filled. We explicitly replace ν with n < q below
to avoid any such connotation. From eqn. 17 and 18, we
have

mn+1(κ)−mn(κ) = tn−1 − tn = −Cn , (21)

thus the two packets at mn+1 and mn are separated by
a distance of Cn. Quantities such as the four-point cor-

relation F(∆) = 〈 c†y cy c†y+∆ cy+∆ 〉 thus have peaks at
∆ = Ci apart from ∆ = q, 2q, etc.
On a square lattice, the Hofstadter model exhibits a

particle-hole symmetry. This implies that Cj = Cq+1−j .
For even q, the bulk spectrum is known to have no cen-
tral gap21,22, therefore the Chern numbers of the two
central bands are not individually well defined, and one
can speak only of a Chern number for the pair. It is in-
teresting to notice its implication on the distribution of
the wavepackets within each unit cell: if on the contrary
there is a central gap, then tq/2 = C1+C2+ . . .+Cq/2 =
Cq + Cq−1 + · · ·Cq/2+1. Since the total Chern number
of all bands must be zero, we must have tq/2 = 0. Now
according to eqn. 17 and 18, mq/2+1(κ) = m1(κ)− tq/2 =

m1(κ), so the ( q2+1)th packet and the first one are forced
onto the same site. Thus, the fact that there is no central
gap in this case guarantees that there will be no packet
‘collisions’.
The natural question to ask next is how the wave pack-

ets are arranged when ν > q/2. To illustrate this, con-
sider a specific case with p/q = 5/8 and ν = 7 filled
bands. The Chern numbers of the lowest three bands are
−3, 5, and −3, respectively, and particle-hole symmetry
guarantees that these values repeat for the upper three
bands. The central two bands therefore have a combined
Chern number of C4,5 = 2. Since Chern numbers rep-
resent the separation between wave packets, we can fill
in the first four packets with no difficulty (the position
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of the first packet being arbitrary). The location of the
fifth packet cannot be determined because C4 is not well-
defined, but the location of the sixth packet is found by
shifting the fourth one by C4,5 = 2. The rest of the pack-
ets can be filled in a similar fashion. Thus the vanishing
of the central gap implies an indeterminacy of the po-
sition of the ( q2 + 1)th wavepacket. To resolve this, one
can add in an infinitesimal second-neighbor hopping that
breaks the particle-hole symmetry and results in a small
central gap. For example, one can introduce a second-
neighbor hopping t′ along one of the two diagonals in
each unit cell (say in the direction x̂− ŷ). This construc-
tion interpolates between the square lattice when t′ = 0,
and the triangular lattice when t′ = 1 (see Appendix B).
For t′ ≪ 1, we find that the Chern numbers of the central
two bands are resolved as C4 = 5 and C5 = −3. C4 can
now be used to determine the position of the fifth packet.

4. WANNIER CENTER FLOW

The Diophantine equation (20) describes a mod-q
property of the Hofstadter problem, which is a result of
the (kx, y) covariance of eqn. 12. No knowledge of in-
termediate values of kx ∈ [κφ , (κ + 1)φ ] is required in
obtaining eqn. 20. This comes at a price of the ambiguity
in t (mod q) and s (mod p), which intuitively contain the
information of the direction in which any given packet
is moving. In this section, we settle this issue by exam-
ining the localized eigenstates of the projectors over the
full range of kx, i.e. the Wannier functions.

4.1. Wannier functions in 1D

The application of Wannier functions to the analy-
sis of topological band structures has recently been de-
veloped in refs. 14, 15, and 23. Following these ref-
erences, consider first a periodic one-dimensional sys-
tem consisting of N unit cells with q internal degrees
of freedom per cell. Let X be a cell coordinate and let
m index the internal degree of freedom; we may take
X ∈ {1, . . . , N} and m ∈ {1, . . . , q}. Bloch’s theorem
says Ψn,k(X,m) = eikX un,k(m), where n labels the q
bands. One may thus decompose the Hilbert space as
H = HX ⊗ Hm, writing |Ψn,k〉 = |k〉 ⊗ |un,k〉. Here
|un,k〉 is an eigenstate of the Fourier transform Hmm′(k)

of Hmm′(X −X ′) ≡ 〈X,m |Ĥ|X ′,m′〉, i.e. it is a Bloch
cell function.
For a system with periodic boundary conditions, the

position operator can be taken to be U = e2πiX̂/N , as

in the work of Yu et al.15 An eigenstate of Ũ ≡ P UP ,
where P is a projector onto a subset of energy bands, is
of the form

|Φλ〉 =
∑

n,k

Φλ
n,k |k〉 ⊗ |un,k〉 , (22)

where the sum on the band index n is over the de-
sired subset, and λ labels the eigenvalues. Demand-

ing Ũ |Φλ〉 = e2πiλ/N |Φλ〉, one obtains Φλ
m,k+∆k =

e−2πiλ/N Mmn(k + 1
2∆k) Φ

λ
n,k (sum on n over selected

bands), where

Mmn(k) = 〈um,k+ 1

2
∆k |un,k− 1

2
∆k 〉 , (23)

with ∆k = 2π/N . The eigenvalue equation, which fol-
lows from setting Φλ

n,0 = Φλ
n,2π, is then

det
(
e2πiλ −W

)
= 0 , (24)

whereW =M(N∆k− 1
2∆k) · · ·M(∆k− 1

2∆k) is a Wilson

loop. Note that λ is not necessarily real since Ũ is the
projection of a unitary operator but is not unitary itself.
In a more general setting, where the wavefunctions um
depend on a set of parameters ~g, one has

〈
um(~g + 1

2∆~g)
∣∣un(~g − 1

2∆~g)
〉

(25)

=
[
exp

(
iAµ∆gµ − 1

2Q
µν∆gµ ∆gν +O(∆g3)

)]

mn
,

where Aµ is the nonabelian Berry connection,

Aµ
mn(~g) = i

〈
um

∣∣∣
∂un
∂gµ

〉
(26)

and Qµν is the quantum geometric tensor24,25,

Qµν
mn(~g) =

〈∂um
∂gµ

∣∣∣ (1− P )
∣∣∣
∂un
∂gν

〉
. (27)

In our case, as N → ∞ we have that the Wilson loop
becomes unitary, and each eigenvalue λ is real.
For a single band, we can write

λI =

2π∫

0

dk

2π
A(k) + I , (28)

where I is an integer and A(k) = i 〈u(k) | ∂
∂k |u(k) 〉.

Thus for a single band, the state |ΦλI
〉 is localized at

unit cell I with an offset γ/2π =
2π∫
0

dk A(k).

When the internal space of |un,k〉 coincides with real
space (e.g. the lattice site m within the magnetic unit
cell in Hofstadter problem), one may refine the definition
of the position operator, writing

U → e2πiX̂/N e2πim̂/qN , (29)

where m̂ =
∑q

m=1m |m〉〈m| measures the position
within each unit cell. For the single band case, this shifts
the offsets γ to

γ̃ = γ + q−1

2π∫

0

dk 〈un,k| m̂ |un,k〉 . (30)
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Equivalently, one may also introduce the modified cell
functions |ũn,k〉,

|ũn,k〉 = q−1/2

q∑

m=1

〈m |un,k〉 e−ikm/q |m〉 (31)

and use them in computing the Berry connection.
When the projector P is onto multiple bands, the Wil-

son loop becomes a matrix, and the eigenvalues of Ũ are
e2πiλI,w/N , where w is an additional label running from
one to the number of bands, i.e. the dimension of the
projector23. One then has

λw,I = I +
θw
2π

. (32)

Again, for systems where the internal ‘orbital space’ cor-
responds to real space, one can refine the position oper-
ator as in eqn. 29.
For two-dimensional lattices, Wannier functions can be

defined at each kx. For a single band n, its y-center is
the Berry phase γn(kx)/2π. The band Chern number is
the negative of the winding number of γn(kx) over the
interval kx ∈ [0, 2π] :

Cn = 1
2πi

∫

BZ

d2k ~∇~k × 〈ψn(~k)| ~∇~k |ψn(~k)〉 · ẑ

=
γn(0)− γn(2π)

2π
. (33)

Thus the Wannier center shifts by −Cn (magnetic) unit
cells over kx → kx + 2π, as found by Qi in ref. 23. We
have seen in §3 that the packet associated with band n is
translated by −Cn lattice sites during kx → kx+2π/q, so
over kx → kx+2π, it will be translated by −Cn magnetic
unit cells, in agreement with the Wannier picture.
For multiple bands, we have

detW = exp



i

2π∫

0

dk TrA(k)



 (34)

hence

ν∑

w=1

θw =

ν∑

n=1

γn , (35)

where ν = rank(P ). Then similar to the single band case,
we conclude that in 2D, the total shift of all (inequiva-
lent) Wannier centers is given by the sum of the Chern
numbers. This is reflected in §3 as the number of mobile
packets transported through any given magnetic unit cell
boundary.
When there is no level crossing among {λw,I} over the

period of kx, one can combine the w and I indices. De-
fine a composite index µ(w, I) = w+νI, with λw,I → λµ.
Sending kx from 0 to 2π amounts to an index shift, which
is universal for all θµ since there is no level crossing. Then

the eigenfunctions Θµ(kx) of W (here taken to be peri-
odic in the index modulo q) satisfy

Θµ(2π) = Θµ+σ(0) , σ ∈ Z (36)

which is just a cyclic permutation in the w index with an
offset σ. One may think of the set of {eiθw} as ν points
on the unit circle where different indices I are equivalent.
Then during the σ cyclic permutation, the perimeter of
the circle is covered by these ν points for σ times, i.e.,

1

2π

ν∑

w=1

[
θw,I(2π)− θw,I(0)

]
= σ . (37)

But according to eqn. 35, the LHS is simply the total
Chern number of constituent bands,

σ = −
ν∑

n=1

Cn . (38)

4.2. Wannier center flow in Hofstadter problem

and a general relation with the entanglement

spectrum

For the Hofstadter model, we have numerically di-

agonalized the operator Ũ = P e2πiŶ /Ny e2πim̂/qNyP ,
where Y ∈ {1, . . . , Ny} runs over the unit cells, and
m ∈ {1, . . . , q} runs over the individual sites within each
unit cell. States with zero eigenvalues are those projected
out by P . For a single band, P = Bn, while P = Gν for

ν filled bands. We write Ũ |θ〉 = eiθ | θ 〉, and we compute

three slightly different Wannier centers: yθ ≡ θNy/2π,

〈Y 〉θ ≡ 〈 θ | Ŷ | θ 〉, and 〈y〉θ ≡ 〈 θ | Ŷ + m̂
q | θ 〉, where

θ is wrapped in such a way that yθ is restricted to
[0.5, Ny + 0.5]. The top panel of fig. 8(a) shows the
Wannier centers defined above for the lowest band of
p/q = 3/7 with Ny = 28. The yθ values, shown as col-
ored dots, have a proper translational property: these
values are generated by shifting any single flow by suc-
cessive multiples of q. In the vicinity of half-odd-integer
κ, a Wannier center migrates from one site to the next
one which is −C1 = 2 sites ahead. In terms of the cor-
responding wavefunction (not plotted), what happens is
that around integer κ, it has a single peak at the site

given by its (rounded) eigenvalue yθ. As κ slowly moves
toward the next half-odd-integer value, some weight is

transferred to the next site, causing the eigenvalue yθ to
interpolate between the two values. As kx is increased
by 2π, q such migrations are made, i.e., each Wannier
center is shifted backwards by C1 magnetic unit cells. In

the bulk, 〈y〉θ (colored lines in (a)) and yθ overlap. Near
y = Ny, part of the weight is pushed over the bound-

ary to the y = 1 end, thus 〈y〉θ starts to deviate from

yθ and drops, until all weight is transferred to the other
boundary.



12

y

7

14

21

28

1

Y

1

2

3

4

f

κ = kxq/2π

0

0.5

1

0 1 2 3 4 5 6 7

(a) 1 filled bands

κ = kxq/2π

0 1 2 3 4 5 6 7

(b) 2 filled bands

κ = kxq/2π

0 1 2 3 4 5 6 7

(c) 3 filled bands

FIG. 8: (Color online) Wannier centers vs. entanglement occupancy for p/q = 3/7 with different filling fraction and 4 magnetic
unit cells in the full system and 2 in the half system. Top: Wannier centers using lattice coordinate ŷ as position operator.
Colored dots: yθ. Colored lines: 〈y〉θ. Black-white background: diagonal elements of the lowest band projector B1, black = 1,
white = 0. See also Fig. 6. Center: Wannier center using 〈Y 〉θ (magnetic unit cell coordinate). Corresponding levels have
the same color as in top panels. Bottom: entanglement occupancy (no type/color coding). In (a), each type/color of point in
the top and center panels corresponds to a packet, i.e., related via (kx, y) covariance, in this case advancing by p = 3 in κ as
y → y + 6 (equivalent to y − 1). In (b) and (c), each type/color of point corresponds to a mobile packet (because they are
not related by the (kx, y) covariance). Specifically, in (b), advancing κ by p = 3 does not change y by −1 or 6, and in (c),
advancing κ by 1 does not change y by 2 or −5. It is also clear that within each magnetic cell, only one mobile packet moves
as κ → κ + 1, with κ = half-odd-integer in (b) and integer in (c). Notice the similarity between the Wannier center flow and
the entanglement flow: a packet (a) or mobile packet (b and c) crossing the magnetic cell within the bulk has almost the same
shape as the entanglement downflow; while crossing from y = Ny to y = 1 has the almost the same shape as the entanglement
upflow. The plateau-like feature in the entanglement flow lines can be traced back to the y plot in the top panels as the motion
of a (mobile) packet within one magnetic cell.

If instead of Ũ , we were to diagonalize the operator

Ṽ ≡ P
(

Ŷ
Ny

+ m̂
qNy

)
P , then the behavior in the bulk will

be the same, but near the edge there will be avoided

crossings in the Wannier center flow of 〈y〉θ. The flow of

the magnetic unit cell coordinate 〈Y 〉θ, shown as colored

lines in fig. 8(b), is similar to that of 〈y〉θ, but with an

emphasis on the occasions when 〈y〉θ crosses a magnetic
cell boundary.

The Wannier centers of two and three filled bands are

shown in Fig. 8. As κ increases by 1, only one Wannier
center per magnetic unit cell flows by σ = −∑ν

i=1 Ci

sites (Eq. 38), corresponding to the motion of a mobile
packet in §3. σ = −3 for two filled bands and 1 for three
filled bands. There is no level crossing in yθ, hence eqn. 38
holds true: following any flow line from kx = 0 to 2π
leads one to −σ levels beneath the starting point. Notice
the same behavior in the entanglement quasienergy of
Fig. 4(a).
There is a striking similarity between the magnetic

cell coordinate flow 〈Y 〉 and the entanglement occupancy
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FIG. 9: (Color online) Normalized eigenfunctions ψa(y) of
GRG for p/q = 3/7, Ny = 112, M = 56, and ν = 3 at kx =
2π/7 (cylindrical boundary conditions). The Chern number
of the filled bands is Cocc = 1. Color corresponds to the sign
of the wavefunction (red for positive, blue for negative), and
intensity to amplitude (white for zero intensity).

spectrum, shown in the center and bottom rows of Fig. 8:
the upward flow of 〈Y 〉 looks exactly like the upward
flow of f , while the downward flow of 〈Y 〉 within each
Y → Y −1 sector looks like the downward flow of f . This
can be understood in the following way: the spectrum of
Ŷ can be thought of as a coarse-grained version of ŷ, and
should look just like 〈Y 〉 and 〈y〉 shown in Fig. 8, so the
effect of coarse-graining is to suppress the flow within a
coarse-grained cell, and enhance the flow migrating be-
tween different cells. One may push the coarse graining
to the extreme where all sites with y ≤M count as ȳ = 0,
and all above M as ȳ = 1. Then the only significant flow
is from ȳ = 0 to 1, corresponding to Y = 2 to Y = 3 in
Fig. 8, and from ȳ = 1 to ȳ = 0, corresponding to Y = 4
through the periodic boundary to Y = 1. In Fig. 8, such
a coarse graining would keep the upward Y flow intact,
while push Y = 3 and Y = 2 lines to top and bottom
respectively for the downward flow, making it look just
like the entanglement occupancy spectrum. In fact, one
can prove that the coarse-grained Wannier spectrum is
identical to the entanglement spectrum: Consider two
arbitrary projectors P and R. One can think of them
as two matrices of the same dimension (zero-padded, if
necessary, to fill out the dimensions). We claim that
PRP and RPR have identical eigenspectra. To see this,
assume |ψa〉 is an eigenstate of PRP with non-zero eigen-

1

28

56

84

112

1 28 56 84 112

-384

-192

0

192

384

y

γ

a

〈y|R|ψa〉/
√
〈ψa|R|ψa〉

FIG. 10: (Color online) Normalized eigenfunctions ψ̃a(y) of
RGR for the parameters given in the caption to Fig. 9. The
entanglement energies are plotted in the top half. Grey points
correspond to γa = ∞ (fa = 0). As expected, states with
entanglement energy γa ≈ 0 are localized in the vicinity of
the cut.

value λa. Then

|ψa〉 = 1
λa
PRP |ψa〉 (39)

and therefore P |ψa〉 = |ψa〉. Thus, |ψa〉 is an eigenstate
of P with eigenvalue 1. It then follows that

RPR |ψa〉 = λaR |ψa〉 , (40)

from which it follows (using R2 = R) that |ψ̃a〉 = R |ψa〉
is an eigenstate of RPR with the same eigenvalue λa.
Thus the non-zero spectrum of PRP belongs in that of
RPR, and vice versa, so they are identical. Since the
coarse-grained position operator R is (the complement
of) the projector used in constructing the restricted cor-
relation matrix G, the entanglement spectrum of G =
RGR is identical to the coarse-grained Wannier centers
GRG, and the entanglement eigenstates are obtained by
projecting the coarse-grained Wannier states onto the rel-
evant half space.
In Fig. 9 we plot the normalized eigenfunctions ψa(y)

of GRG for the case p/q = 3/7, Ny = 112, M = 56,
and ν = 3 at kx = 2π/7. Note how the behavior of the
eigenfunctions mimics that of the Wannier states, with
ψa(y) localized at a position which moves across the en-
tire cylinder as the label a advances through a range cor-
responding to the rank of GRG ( 37×112 = 48 in this case;
see §2.2.2). States #1 through #64 belong to the kernel
of GRG and are all degenerate. The insertion of the real
space projector R thus fails to resolve these wavefunc-
tions in real space, which explains the speckled pattern
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on the left side of the figure. The Wannier states are
better localized however, since R may be considered a
coarse-grained approximation to y.

In Fig. 10, we plot the normalized eigenfunctions ψ̃a(y)
of RGR for the same parameters, along with the corre-
sponding entanglement energies γa. (If we remove the
upper half of the cylinder, where the wavefunctions van-
ish, this is a repeat of Fig. 5.) According to our defini-
tions,

|ψ̃a〉 = R |ψa〉
/√

〈ψa|R |ψa〉 . (41)

Note how states of large positive γa (fa ≈ 0) as well as
states of large negative γa (fa ≈ 1) are localized far from
the A/B boundary.

5. SUMMARY

We have studied the entanglement spectrum and Wan-
nier center flows of the Hofstadter problem. Most of the
data presented in this paper was for the square lattice
with p/q = 3/7 flux quanta per unit cell, but most of
our observations are robust with respect to changing lat-
tices, fluxes, and fillings. The entanglement spectrum of
a subsystem exhibits spectral flow similar to that of the
full system’s energy edge modes: the total Chern num-
ber controls the number of flow lines, and its sign tells
the direction of the flow. When cylindrical boundary
conditions are used in the full system, the entanglement
spectrum exhibits level index discontinuity on the flow
line. This is a manifestation of the crossing of the Fermi
energy with the full system edge modes, which results in
a total occupancy discontinuity. Changing the location
of the entanglement cut shifts the entanglement spec-
trum. This reflects the kx y covariance of the Hamilto-
nian: changing kx to kx +2πp/q is equivalent to shifting
the system in y by ∆y = 1.
The behavior of the entanglement spectrum can be un-

derstood by looking at the full system band projectors.
These projectors are well localized and thus represented
by wavepackets on their diagonals. For single bands, the
packets flow under kx pumping. The (kx, y) covariance
then imposes restrictions on possible flow rate, described
by a Diophantine equation first derived by TKNN1. Since
the Chern numbers are also given by the same equation,
the topological property of the system can be described
equivalently in terms of the motion of these packets: the
number of magnetic unit cells traversed by each packet
during one period of kx is given by the Chern number,
with the direction given by its sign. For multiple bands,
the flow is that of the mobile packets moving under kx
pumping, and the number of mobile packets crossing a
given boundary gives the total Chern number of filled
bands. The entanglement spectrum can then be under-
stood as a measure of detecting when these packets cross
a particular boundary, namely the entanglement cut.
Using the (kx, y) covariance alone (and hence the Dio-

phantine equations) only fixes the flow and the Chern

numbers up to mod q because it only relates different
kx points of fixed separation of 2π/q. The localization
of the projectors suggests the use of Wannier functions
for smooth interpolation between these kx points. For
single bands, the Wannier center at each kx is given by
the corresponding Berry phase and is represented by one
packet in the projector diagonal. The flow of the Wan-
nier center is then described by the winding number of
this Berry phase, which is the band Chern number. For
multiple bands, the Berry phase is replaced by a set of
eigenvalues of the Wilson loop operator. If there is no
level crossing over the full range of kx, then all levels ex-
perience a universal index bump of σ as kx → kx + 2π,
and σ is given by the sum of Chern numbers. In com-
puting the Wannier center, the position operator can be
either the (magnetic) unit cell coordinate alone, or one
that also includes the internal coordinates (lattice cell
within each magnetic cell). The spectrum of the former
is a coarse-grained version of the latter. One can take the
coarse graining to the extreme of a bipartition, at which
point the position operator becomes a real space projec-
tor, and the coarse-grained Wannier spectrum becomes
identical to the entanglement occupancy spectrum.
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Appendix A: Incommensurate edge spectrum

Here we first briefly review the edge spectrum with
commensurate Ny and q as studied in ref. 3, and then
extend its argument to the incommensurate case.

1. Review of commensurate edge spectrum

The Schrödinger equation corresponding to the matrix
equation H(kx)yy′ψy′ = εψy is

−ψy−1 − ψy+1 − 2 cos(kx + yφ)ψy = εψy (A1)

cast into transfer matrix form, we have
(
ψy+1

ψy

)
=My

(
ψy

ψy−1

)
, (A2)

My =

(
−ε− 2 cos(kx + yφ) −1

1 0

)
(A3)

Notice that My depends on ε. The following boundary
condition is required for eqn. A2 to also cover the cases
of y = 1 and Ny,

ψ0 = ψNy+1 = 0 . (A4)
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Then

(
ψNy+2

ψNy+1

)
= MNy+1

(
ψ1

ψ0

)
(A5)

My ≡MyMy−1 · · ·M1 (A6)

and eqn. A4 implies MNy+1 is a triangular matrix,

[
MNy+1

]
21

= 0 (A7)

The spectrum {ε} consists of all energies satisfying
eqn. A7.
Notice that My+q = My, so when Ny + 1 = qL with

integer L (“commensurate”),

MNy+1 = QL , Q ≡ Mq (A8)

Now, products of up-triangular matrices are still up-
triangular, so eqn. A7 is satisfied if Q is up-triangular,

Q21 = 0 (A9)

It is then easy to verify that

ψℓq+1 = [Q11]
ℓ
ψ1, ψℓq = 0 (A10)

where ℓ = 1, 2, . . . , L, hence the solution is an edge state
exponentially localized at y = Ny if |Q11| > 1, and at
y = 1 if |Q11| < 1.
The edge spectrum {ε} satisfying the condition

Q21(ε) = 0 is the same as the full spectrum of a
(q − 1) × (q − 1) system, so numerically the edge spec-
trum of H(kx, Ny = Lq − 1, z = 0) can be solved by
diagonalizing its upper-left (q − 1)× (q − 1) submatrix.

Note that eqn. A10 implies the edge states, with ψ0

included, has a direct product form

|ψ〉 =




Q0
11

Q1
11

Q2
11
...

QL−1
11




⊗




ψ0

ψ1

ψ2

...
ψq−1




, (A11)

i.e., ψℓq+m = Qℓ
11ψm with ℓ = 0, 1, · · ·L − 1 and m =

0, 1, · · · q − 1. The N -component magnetic cell part dic-
tates the real-space behavior. In this case it is exponen-
tially localized at either end. The q-component internal
part is obtained by prepending ψ0 = 0 to the solutions of
the (q− 1)× (q− 1) upper-left block of H. This is by no
means a general form of edge states, but we do also no-
tice a similar decomposition in the zigzag edge modes of
the Haldane model26. Note also that all Bloch states
have such a decomposition, |Ψ(k, n)〉 = |k〉 ⊗ |ψn(k)〉
where 〈y|k〉 = eiky/

√
N is the Bloch phase and |ψn(k)〉 is

the nth band eigenstate of the Fourier transformed q× q
Hamiltonian. One may then say that −i log(Q11) is the
imaginary Bloch vector, and which of the UHP or LHP
it resides in tells the localization of the edge states.

2. Incommensurate edge spectrum

In the thermodynamic limit where Ny → ∞, one can
extend the commensurate argument to incommensurate
cases, Ny + 1 = Lq +m, with m = 0, 1, 2, . . . , q − 1.
First, we note two properties of the transfer matrix,

det (My) = 1 (A12)

My+m(kx, ε) =My(kx +mφ, ε) (A13)

both are straightforward from definition. Eqn. A13
expresses the same kx y covariance as eqn. 15. The
(Lq + m)-step transfer matrix can then be divided in
two ways,

MLq+m(kx) = Mm(kx)QL(kx) (A14)

= QL(kx +mφ)Mm(kx) (A15)

If Q(kx) satisfies the commensurate edge condition
eqn. A9, then

QL(kx) =

(
[Q11]

L
x

0 [Q22]
L

)

kx

, (A16)

where x is some number of no interest. We then have

MLq+m(kx) =

(
A11 A12

A21 A22

)

︸ ︷︷ ︸
Mm(kx)

(
[Q11]

L
x

0 [Q22]
L

)

kx

,

(A17)

hence

[MLq+m]21 (kx) = A21 [Q11]
L
(kx) (A18)

= A21 [Q22]
−L

(kx)

where the second equality follows from detQ = 1, a con-
sequence of eqn. A12.
Similarly, if Q(kx + mφ) satisfies the commensurate

edge condition eqn. A9, we have instead

MLq+m(kx) =

(
[Q11]

L
x

0 [Q22]
L

)

kx+mφ

(
A11 A12

A21 A22

)

(A19)

thus

[MLq+m]21 (kx) = [Q22]
L
(kx +mφ)A21 (A20)

= [Q11]
−L

(kx +mφ)A21

We can then conclude that in the limit L→ ∞,

1. If (kx, ε) is a solution of the commensurate case

Ny + 1 = Lq at the lower edge, [Q11]
L
(kx) → 0,

then by eqn. A18, it is also a solution of incom-
mensurate Ny + 1 = Lq +m. For y ∈ [1, Lq − 1],
the wavefunction ψy coincides with that of the
commensurate case, and in the upper tail where

y = Lq + m, ψy = A11 [Q11]
L
ψ1 → 0, thus it is

also at the lower edge.
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FIG. 11: (Color online) Energy and entanglement spectrum
on a triangular lattice with cylindrical boundary condition.
Parameters used are p/q = 5/8, Ny = 32 and EF = 1. In the
energy spectrum (top panel), black dots represent bulk levels,
red lines represent edge modes localized along the lower edge
(y = 1), and blue lines represent those localized along the
upper edge (y = Ny = 32). Vertical gray line indicates the
kx value at which EF intersects the lower edge state. The
entanglement occupancies (bottom panel) are computed for
the lower half of the cylinder (1 ≤ y ≤ 16), color and symbol-
coded according to a. The sudden color change happens when
the lower edge mode crosses EF.

2. If (kx, ε) is a solution of Ny + 1 = qL at the upper

edge, [Q11]
−L

(kx) → 0, then by eqn. A20, (kx −
mφ, ε) will be a solution of incommensurate Ny +
1 = Lq +m. It is also at the upper edge because
ψy → 0 in the lower tail.

thus for Ny → ∞, an increment of Ny by 1 leaves the
lower edge spectrum unchanged, while shifting the upper
edge spectrum in kx by −2πp/q.

Appendix B: Triangular lattice

The Hofstadter model on a triangular lattice can be
obtained by adding in each square plaquette a diagonal

bond along the x̂− ŷ direction with half-odd-integer vec-
tor potential (in units of φ = 2πp/q), such that the flux
per triangle is φ/2. Instead of eqn. 3, the Hamiltonian
matrix is now

H(kx, Ny, z) = −




c1 v1 0 · · · z∗v∗Ny−1

v∗1 c2 v2 0

0 v∗2
. . .

...
... vNy−1

zvNy
0 · · · v∗Ny−1 cNy




(B1)

where

cy = 2 cos(kx + yφ) , vy = 1 + t′ e−i(kx+yφ+
1
2φ) ,

(B2)

with t′ = 1 for triangular lattice, and 0 for square lattice.
The discussion of edge spectrum in Appendix A remains
essentially the same, except the transfer matrix, eqn. A3,
now becomes

My =



−ε+ cy

vy
−
v∗y−1

vy

1 0


 . (B3)

In the pathological case where certain vỹ = 0, the open
edge Hamiltonian (i.e., z = 0) reduces to two blocks,
{1, . . . , ỹ} and {ỹ + 1, . . . , Ny}, each of which can be in-
dividually solved; alternatively one can shift t slightly
away from 1. Note that while detMy is no longer one,
the q-step transfer matrix Q still has unimodular deter-
minant,

|detQ| =
∣∣∣ v

∗

0
v∗

1
···v∗

q−1

v1v2···vq

∣∣∣ = 1 , (B4)

where we used v0 = vq. Consequently,

|Q22| = |Q11|−1
, (B5)

and eqns. A18 and A20 hold up to a phase. The con-
clusion thus remains unchanged that lower edge states
are unchanged while upper edge states shift in kx with
incommensurate Ny.
In Fig. 11, we plot the cylindrical boundary energy

spectrum, and its entanglement spectrum with ν = 5
filled bulk bands for p/q = 5/8 on the triangular lattice.
The Chern numbers of individual bands are either C =
−3 or 5, which are equivalent modulo q = 8, and the
lowest band has C = −3. Both are in agreement with
what we observed in the square lattice case, namely, all
band Chern numbers are equivalent modulo q, and that
the lowest band Chern number is the one with smaller
magnitude. The number of edge spectral flows in each
gap is the total band Chern number below the gap, and
the entanglement spectral flow mimics the behavior of
edge spectral flow, and has an index discontinuity at kx
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FIG. 12: (Color online) Full system band projectors for p/q = 5/8, Ny = 32, with periodic boundary conditions in y and
kx = 2πκ/q, Bj and Gν are projectors for the jth band and ν lowest bands, repectively, see also Fig. 6. Here we only plot the
24×24 submatrix belonging to the first three magnetic unit cells. Since the Hamiltonian eqn. B1 can no longer be made purely
real, the projectors are in general complex, so we only plot the real part of their matrix elements. Their signs are represented
by color, red for positive and blue for negative, and their magnitudes represented by intensity. The individual bands B1 and
B2 are better localized at κ = 1 where the gap between them is maximal, while their sum, G2, is better localized at κ = 1.5
where the gap between them is minimal. Note that at both κ, the off-diagonal subblocks of both Bj within each 8 × 8 block
tend to cancel (they have different colors). The adiabatic evolution of the wave packets are obvious: for example, at κ = 1.5,
the wave packets of G2, in each unit cell, are at y = 3 and 6 (mod q. Same below). At κ = 2, the wave packet at y = 3 is in
the progress of moving toward y = 1 while the one at y = 6 is “frozen”. At κ = 2.5, the first wave packet arrives at y = 1. In
the next κ → κ + 1 sub-cycle, the first wave packet will be frozen and the second one will migrate in the diagonal line by −2
(negative of the total Chern number).

where Fermi energy intersects the lower edge mode. Note
that for ν = 5 filled bands, the total Chern number is
1, as reflected in the number of edge and entanglement
spectral flows. This agrees with our observation that the
total Chern number of p filled bands is one, see discussion
following eqn. 20 in the text.
As in the square lattice case, the band projectors and

their sums also flow under adiabatic kx pumping, and
the number of wave packets crossing any given bound-

ary during one cycle of the pumping reflects the Chern
number of the projectors. Fig. 12 shows the flow of the
lowest two band projectors, B1 and B2, and their sum G2,
at k = κ ·2π/q with κ = 1 and 1.5. Both Bj and Gν have
better localization at either integer or half-odd-integer κ
where its gap from neighboring bands are maximal.
We thus conclude that the observations as detailed in

the text using square lattice are robust and insensitive to
the underlying lattice used.
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