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We report the theoretical discovery of a systematic scheme to produce topological flat bands
(TFBs) with arbitrary Chern numbers. We find that generically a multi-orbital high Chern number
TFB model can be constructed by considering multi-layer Chern number C = 1 TFB models with
enhanced translational symmetry. A series of models are presented as examples, including a two-
band model on a triangular lattice with a Chern number C = 3 and an N -band square lattice model
with C = N for an arbitrary integer N . In all these models, the flatness ratio for the TFBs is larger
than 30 and increases with increasing Chern number. In the presence of appropriate inter-particle
interactions, these models are likely to lead to the formation of novel Abelian and Non-Abelian
fractional Chern insulators. As a simple example, we test the C = 2 model with hardcore bosons
at 1/3 filling and an intriguing fractional quantum Hall (FQH) state is observed.
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Introduction —The experimental fractional quantum
Hall effect (FQHE) arises from the highly degenerate
Landau levels of continuum 2D electron systems, and is
described by variational wave functions, first proposed by
Laughlin for the primary FQHE states [1] and later gener-
alized by Jain for composite fermion states [2], which are
analytic functions of the 2D spatial coordinates. Many
important properties of the FQHE, e.g., the hierarchy
structures and fractionalized excitations [3, 4], can be un-
derstood within this framework. It even leads to the pre-
dictions of intriguing non-Abelian FQH states at certain
filling fractions [5–8]. Moreover, based on a classification
of the pattern of zeros of symmetric (analytic) polyno-
mials, a systematic way to classify FQH states [9, 10]
has been proposed. Thus, our current theoretical knowl-
edge of FQHE is based on the analytic structure the 2D
Landau level (LL) Hilbert space.

A key question of fundamental importance in this con-
text is whether the analytic structure of the candidate
microscopic wavefunction [1] associated with the LL sub-
space is essential to the existence of the FQHE phe-
nomenon. The answer turns out to be no. Conceptually,
we know that the essential physics of the FQHE can be re-
garded as the emergence of a macroscopic topological or-
der [11] at low energy, which is, in principle, independent
of the microscopic details of the underlying wavefunction.
Very recently, it has been shown that various Abelian and
non-Abelian FQH states (also known as fractional Chern
insulators) can be realized in a large class of so-called
topological flat band (TFB) lattice models [12–14] with-
out any Landau levels [15–22]. The basic idea of the
TFB models is the following: (a) use a 2D lattice-based
tight-binding topological-band model to mimic the non-
trivial topology of a LL characterized by a nonzero Chern
number [23], as first proposed by Haldane [24], and (b)
find a parameter region to realize a narrow bandwidth
with a smooth Berry curvature to quench the kinetic en-

ergy. These new theoretical flatband FQHE discoveries
not only improve our understanding about the nature
of the FQHE, but also provide us new ways to realize
the FQHE in solid state materials [25–29] and ultracold
atomic systems [14, 30].

Although considerable progress has been made along
this new direction, the observed FQH states in TFB sys-
tems have so far been more or less expected since all of
them can be realized in a LL. This is mainly because the
Chern number of all these TFB models is C = 1. To ex-
plore new physics beyond single LLs, it is natural to con-
sider TFB models with higher Chern numbers [31, 32].
However, higher Chern number TFBs with large flatness
ratio (band gap/bandwidth) are much harder to obtain
without long range hopping. Very recently, a TFB with
Chern number C = 2 (with a flatness ratio 15) was pro-
posed [33].

In this Letter, we propose a generic and systematic
scheme to produce arbitrary Chern number TFBs with
short-range hopping using multi-orbital structures.We
believe that these high Chern number TFBs will pro-
duce novel topological phases when proper interactions
are introduced. As a simple example, we test the C = 2
model with hardcore bosons at 1/3 filling and an intrigu-
ing FQH state is observed. Moreover, TFBs with Chern
number C = 2 have the potential to realize many new bi-
layer non-Abelian FQH states [34] predicted by the pat-
tern of zeros classification and TFBs with Chern numbers
C = 8n (n is an integer) may result in a class of bosonic
integer quantum Hall (IQH) states (known as Kitaev’s
E8 states [35]).

Generalized Haldane model with Chern number C = 3
— We first consider a triangular lattice model with two
orbitals per site as shown in Fig. 1(a). Here, every site
is colored in red and blue (dark gray and light gray) to
present the two orbitals A and B. The nearest-neighbor
(NN) and next-next-nearest-neighbor (NNNN) hoppings
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FIG. 1: (Color online) The two band model with Chern num-
ber C = 3 on a triangular lattice. (a) Lattice structure and
NN (solid bond) and NNNN (dashed curve) hoppings. The
end point of a link is red (blue) if it is connected to a A (B) or-
bital. (b) Lattice structure and NNN hoppings. Arrows show
the sign of the phases. The green disk indicates that each unit
cell contains one lattice site and the green rectangle represents
the enlarged unit cell. (c) Single-particle energy spectrum as
a function of kx and ky. (d) Chiral edge states of the two-
orbital triangular lattice model, where k1 = kx/2 +

√
3ky/2.

Each band has Chern number C = ±3.

are shown in Fig. 1(a), while Fig. 1(b) shows the next-
nearest-neighbor (NNN) hoppings. The inter-orbital NN
and NNNN (intra-orbital NNN) hoppings are illustrated
by gradient-colored (even-colored) links. The end point
of a link is red (blue) if it is connected to the A (B)
orbital. The Hamiltonian of this model is

H [C=3] =− t1
∑
〈i,j〉

A†iBj − t2
∑
〈〈i,j〉〉

eiφij

(
A†iAj +B†iBj

)
− t3

∑
〈〈〈i,j〉〉〉

A†iBj + H.c., (1)

where A†i and B†i are the fermion creation operators of
the two orbitals at site i. The NN, NNN, and NNNN
bonds are represented by 〈i, j〉, 〈〈i, j〉〉, and 〈〈〈i, j〉〉〉. The
phase factors in the NNN hopping terms are φij = ±π/2
with the sign determined by the direction of the ar-
row [36].

In this model, each unit cell contains two orbitals, as
shown by the green disk in Figs. 1(a) and 1(b), and there-
fore the model has two bands. In order to reach a flat
band, we adopt t1 = 1, t2 = 0.39, and t3 = −0.34. The
NNN hopping is purely imaginary, and hence it is eas-
ier to realize in optical lattices or solid state materials
through spin orbit couplings. The band structure of this
model is shown in Fig. 1(c). Due to the particle-hole
symmetry at φij = ±π/2, the top and bottom bands
have the same bandwidth, which is about 1/30 of the
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FIG. 2: (Color online) (a)-(c) Tri-layer Haldane model in an
ABC-type tri-layer structure. The green rectangle in each
layer indicates the unit cell of the Haldane model. The dashed
black circles mark the positions of some sites in the other two
layers. (d) Chiral edge state of the Haldane model, where
k1 = kx/2 +

√
3ky/2.

band gap. Each of the two bands carries Chern number
±3 [37]. The nontrivial topological structure can also be
observed by computing the edge states of the system on
a cylinder [Fig. 1(d)].

Here we provide an intuitive understanding for this
C = 3 model and demonstrate its connection to the
model of Haldane [24] and the ABC-type tri-layer
graphene structure. We first consider Haldane’s model
on a honeycomb lattice. As shown in Fig. 2(a), this lat-
tice has two sites per unit cell, a[1] and b[1], highlighted
by the green rectangle. The primitive vectors for this
lattice are ~a1,2 = (3a0/2,±

√
3a0/2) with a0 being the

length of the NN bond. Now we stack three layers of
this model in an ABC-type tri-layer pattern as shown in
Figs. 2(a)-2(c). In the absence of interlayer hopping, all
three layers share the same Hamiltonian

H
[l]
Haldane = −t1

∑
〈i,j〉

a
[l]†
i b

[l]
j − t3

∑
〈〈〈i,j〉〉〉

a
[l]†
i b

[l]
j

− t2
∑
〈〈i,j〉〉

eiφij

(
a
[l]†
i a

[l]
j + b

[l]†
i b

[l]
j

)
+ H.c., (2)

where l = 1, 2, 3 denotes the different layers. It is well-
known that the lowest band of the Haldane model carries
a Chern number C = 1 and there exists one chiral edge
mode at each edge as shown in Fig. 2(d). Therefore, one
naively expects the tri-layer structure to contain three
degenerate topological bands with C = 1. However, in
addition to increasing the number of bands, the tri-layer
structure also enhances the translational symmetry of the
system. In the absence of inter-layer hopping, the tri-
layer structure is invariant under the translation by the
vector (a0, 0) = (~a1+~a2)/3, which is a fraction of the lat-
tice vector of the original honeycomb lattice, if we also
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FIG. 3: (Color online) (a)-(d) Dispersions of the N -orbital square lattice model along high symmetry directions for N = 3,

4, 8, and 20, where t1 = 1, t2 = −1/
√
N , and φ = π/N . In each case the bottom band (red line) is very flat with Chern

number C = N . (d) The flatness ratio of the bottom flat band increases exponentially with the number of orbitals N (the
Chern number N).

permute the layer indices 1 → 2, 2 → 3, and 3 → 1.
Due to such an enhancement of the translational sym-
metry, the area of a unit cell for the tri-layer system is
reduced by a factor of three containing only a single site
with two orbitals. As a result, the Brillouin zone is en-
larged by three times and thus the three-fold degenerate
C = 1 bands form a single band with C = 3. It is easy
to check that this tri-layer model is identical to the tri-
angular lattice model presented above, if we introduce a
unitary transformation

A†i1 = a[3]†, A†i2 = a[1]†, A†i3 = a[2]†,

B†i1 = b[2]†, B†i2 = b[3]†, B†i3 = b[1]†, (3)

where the subscripts i1, i2 and i3 mark different lattice
sites.

Generalization to Chern number N topological flat
bands — The same idea can also be used to generate
TFBs with arbitrary Chern numbers. Without loss of
generality, we consider a square lattice model. We first
demonstrate this construction using the simplest case
with Chern number C = 2. The lattice and hoppings are
shown in Figs. 4(a) and 4(b), where each site contains
two orbitals (A and B) and the arrows on NN bonds mark
the directions of positive phase hopping. The Hamilto-
nian of this model is

H [C=2] = t1
∑
〈i,j〉

eiφijA†iBj +
∑
〈〈i,j〉〉

t′ij

(
A†iAj +B†iBj

)
+ t3

∑
〈〈〈i,j〉〉〉

(
A†iAj +B†iBj

)
+ H.c., (4)

The NNN hopping amplitudes t′ij are t2 (−t2) along the
solid (dashed) lines in Fig. 4(b). Here we adopt the pa-
rameters t1 = 1, t2 = 1/(2 +

√
2), t3 = 1/(2 + 2

√
2), and

φij = ±π/4 [36]. In this two-band model, the bottom
band carries Chern number C = 2 and the flatness ra-
tio is about 30. This Chern number two model can be
constructed from a bi-layer version of the checkerboard
lattice model first proposed in Ref. [14] (See SI for de-
tails). Similar to the tri-layer case presented above, this
bi-layer structure also enhances the translational sym-
metry and reduces the size of the unit cell by a factor of
two.

The generalization to flat band models carrying an ar-
bitrary Chern number C = N is straightforward. Con-
sider a square-lattice model with N orbitals per site. For
N ≥ 3, we only need NN and NNN hoppings. The real
space Hamiltonian is

H [C=N ] =
∑
i,j

N∑
l=1

{
t1

(
C

[l+1]†
i+1,j + ei2lφC

[l+1]†
i,j−1

)
C

[l]
i,j

+ t2

[
e−i(2l−1)φC

[l]†
i+1,j+1 + ei(2l−1)φC

[l]†
i−1,j−1

+ei(2l+1)φC
[l+2]†
i+1,j−1

]
C

[l]
i,j + H.c.

}
, (5)

The k-space Hamiltonian is shown in the Supplementary
Materials.

For N = 3, the flatness ratio is maximized (' 58) at
t2/t1 = −1/

√
3 and φ = π/3 [Fig. 3(a)]. For the generic

case with C = N , we adopt t1 = 1, t2 = −1/
√
N , and

φ = π/N for the N -orbital model. With these values,
the flat band is always located at the bottom and the
Chern number is C = N . In the absence of any band
crossings, one of the higher bands carries Chern number
C = −(N − 1)N , while each of the other (N − 1) bands
carries Chern number C = N . The band structures of
the C = 3, 4, 8, and 20 cases are shown in Figs. 3(a)-
3(d). We see that the bottom flatband becomes more and
more flat with an increasingN . As shown in Fig. 3(e), the
flatness ratio grows exponentially with the Chern number
N . The condition t2 = −1/

√
N can be further relaxed

for larger N systems. In particular, it suffices to only
include NN hoppings when N ≥ 5.

The N -orbital C = N model can be constructed us-
ing a N -layer structure. All the N layers are exactly
the same up to lattice translations. Each layer is equiv-
alent to a square lattice subjected to a uniform mag-
netic field. The complex phases of the hopping matrix
elements are arranged in such a way that each square
encircles a φ = 2π/N flux. Due to the flux structure,
the (magnetic) unit cell for each layer contains N sites
and the lowest band of each layer carries Chern number
C = 1. If we naively put the N layers together, the unit
cell has N2 sites with the lowest bands N -fold degen-
erate. However, similar to the models presented above,
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this N -layer structure has a higher translational symme-
try and reduces the size of the (magnetic) unit cell by
N times, if we introduce similar unitary transformations
(simply a permutation of N orbits) as Eqs. (3). As a
result, the Brillouin zone is enlarged N times and thus
the N -fold degenerate C = 1 bands form a single band
with C = N . Here we emphasize that, although each
layer is exposed to a magnetic field, the combined Chern
number N model is realized without an external mag-
netic field (with zero magnetic flux per unit cell and the
translational symmetry is recovered).

1/3 bosonic FQH state for the C = 2 model—Similar to
C = 1 TFB models, various FQH states can be stabilized
in these high Chern number systems once proper interac-
tions are introduced. As an example, we fill the the C = 2
flatband model [Eq. (4)] with hard-core bosons at the fill-
ing fraction 1/3. For a system with Nx×Ny unit cells, we
have NxNy = 3Nb, where Nb is the number of hard-core
bosons. The hard-core condition (no more than one par-
ticle is allowed per site) corresponds to infinite onsite re-

pulsions: limU→∞ U
∑
i(A
†
iAi+B

†
iBi)(A

†
iAi+B

†
iBi−1).

In Fig. 4 (a), we show the low-energy spectra as a func-
tion of momentum kxNy + ky for different lattices under
periodic boundary conditions. Here, a sizeable spectrum
gap can be observed, separating the ground state mani-
fold (GSM) from the other excited states and indicating
the emergence of an incompressible state. As a definite
evidence for the emergence of a FQH state, we also com-
pute the Chern number, which is 2/3 for these three-
fold nearly-degenerate ground states. The scaling of the
spectrum gaps are shown in Fig. 4(c) and in Fig. 4 (b),
we show the low energy spectra as a function of twist
boundary phase along the x direction with Nx = 3 and
Ny = 4. As the phase parameter θx changes by 2π, 4π,
etc., the system goes from one ground state to another,
and it comes back to the original ground state after θx
varies by 6π. According to the double layer picture for
our C = 2 model, the most possible candidate for such a
FQH state is the double layer Halperin (221) state. The
C = 2 model is the simplest model and has the minimal
flatness ratio in our systematic construction. Therefore,
we believe FQH states will exist in any of our C > 2
model.

Conclusion—Before concluding we mention that bi-
layer FQHE is well-known in the 2D LL systems, both ex-
perimentally and theoretically [38–40]. Multilayer QHE
or FQHE (beyond bilayers) has not been considered much
in the continuum systems in contrast to our current work
where we find that N -layer QHE with a Chern number
C = N should be generic in lattice TFB systems. This
is potentially an important finding, establishing the TFB
lattice FQHE to be a much more general theoretical con-
cept than the ordinary continuum LL-based FQHE so far
realized in nature in high magnetic fields.

In conclusion, we propose a generic scheme to con-
struct TFB models with arbitrary Chern number. These
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FIG. 4: (Color online) (a)-(b) The two-orbital Chern number
two model on a square lattice. (a) NN and NNNN hoppings.
(b) NNN hoppings. (c)-(e) The 1/3 bosonic FQHE. (c) Low
energy spectrum En − E1 versus the momentum kxNy + ky
for three lattice sizes Ns = 18, 24, and 48. (d) Low energy
spectrum as a function of boundary phase θx at a fixed θy = 0
at 1/3 filling. (e) Spectrum gaps versus 1/Ns for three lattice
sizes.

new models could be a starting point for many unknown
Abelian or Non-Abelian FQH states with higher Chern
numbers (> 1) which are generically unknown in the con-
tinuum 2D FQHE. A more detailed study of these models
with interactions is beyond the scope of this Letter and
will be discussed in our future works.

This work is supported by DARPA-QuEST, AFOSR
MURI, and JQI-NSF-PFC. ZCG is partially supported
by US NSF Grant No. NSFPHY05-51164. We thank D.
N. Sheng for very helpful discussions on the numerical
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Note added.— After the completion of our work, we
notice that in another recent work [41], a model with high
Chern number bands was discovered. However, both the
band gap and the flatness ratio in this model vanish as
the Chern number increases. After the submission of the
present Letter, another work [42] observes FQH states in
our C = 3 triangular lattice model, and C = 4, 5 square
lattice models.
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