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The energetics of the interplay between superconductivity and the pseudogap in high temperature
superconductivity is examined using the eight-site dynamical cluster approximation to the two
dimensional Hubbard model. Two regimes of superconductivity are found: a weak coupling/large
doping regime in which the onset of superconductivity causes a reduction in potential energy and
an increase in kinetic energy, and a strong coupling regime in which superconductivity is associated
with an increase in potential energy and decrease in kinetic energy. The crossover between the two
regimes is found to coincide with the boundary of the normal state pseudogap, providing further
evidence of the unconventional nature of superconductivity in the pseudogap regime. However the
absence, in the strongly correlated but non-superconducting state, of discernibly nonlinear response
to an applied pairing field, suggests that resonating valence bond physics is not the origin of the
kinetic-energy driven superconductivity.

PACS numbers: 74.20.-z,71.10.Fd,74.25.Dw,74.72.h,

The high transition temperature superconductivity ex-
hibited by layered copper-oxide materials has been an
important topic in condensed matter physics since its
discovery in 1986.1 Broadly speaking, two views are cur-
rently held. One is that despite the various anomalous
features of the materials the superconductivity may be
understood in more or less conventional Bardeen-Cooper-
Schrieffer (BCS) terms as arising from the exchange of a
pairing (‘glue’) particle, most likely of magnetic origin.2

An alternative view is that the superconductivity is an
intrinsic property of a strongly correlated state of mat-
ter that should not be interpreted as arising from the
exchange of a well-defined excitation.3

The issue may be cast in energetic terms. In the con-
ventional BCS view, the driving force for superconduc-
tivity is in essence a reduction of potential energy: by
forming the superconducting state the electrons can take
greater advantage of an attractive term in an interparticle
potential. Changing the wave function to reduce the po-
tential energy however costs kinetic energy, so that in the
weak coupling limit the change from normal to supercon-
ducting states leads to an increase in the kinetic energy.4

In an alternative view,3 the driving force for supercon-
ductivity is an optimization of kinetic energy: by forming
the superconducting state the electrons can move more
easily through the crystal despite their need to avoid the
other electrons. In this case going from the normal to
the superconducting state lowers the kinetic energy and
one expects that the potential energy increases.
The repulsive-U Hubbard model on the two dimen-

sional square lattice is widely believed3,5,6 to contain the
essential physics of high-Tc copper-oxide superconductiv-
ity. It is defined by the Hamiltonian

H =
∑

kσ

(εk − µ)c†kσckσ + U
∑

i

ni↑ni↓ (1)

Here i labels the sites in a lattice and k a momentum in
the corresponding Brillouin zone. The two dimensional

FIG. 1. (Color online) Phase diagram of two dimensional
square lattice Hubbard model in plane of density n and
interaction strength U/t at inverse temperature β = 60/t
as obtained in 8-site cluster dynamical mean field the-
ory. Mott insulator at half filling for U/t ' 6.4 indi-
cated by heavy bar (green online); superconducting region
indicated by circles (black online), pseudogapped but non-
superconducting region, diamonds (blue online) and Fermi
liquid non-superconducting state by squares (yellow online).
Boundary of normal state pseudogap, defined as in Ref. 10,
indicated as dashed line (purple online). Trajectories along
which the energy is computed are shown as arrows.

repulsive (U > 0) version of the model has been shown
rigorously to have a dx2−y2 superconducting ground state
in at least some regions of the U, n phase diagram.7–9

In this paper we investigate the electronic energy E =
〈H〉, decomposed into kinetic K and potential V terms
as E = K + V with

K=
∑

kσ

εk〈c
†
kσckσ〉 = 2T

∑

k,n

(εk − µ)Tr [τ3G(k, ωn)] (2)

V=U
∑

i

〈ni↑ni↓〉 = 2T
∑

k,n

Tr [Σ(k, ωn)G(k, ωn)] (3)
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In the second equality we have used standard formulae to
reexpress the expectation values in terms of the Nambu
matrix Matsubara frequency electron Green function G
and self energy Σ.

The energetics of superconductivity have been pre-
viously studied. One important class of approaches
has used variational wavefunctions, often starting from
a single Slater determinant with doubly occupied sites
then being projected out.11–18 Information about pair-
ing comes from comparing results obtained from free
fermion and BCS-paired starting points. These works in-
dicated that pairing was present for dopings from x = 0
to x ∼ 0.25 and that over most of the phase diagram the
kinetic energy of the paired state was lower than that of
the unpaired state. However, variational results are con-
strained by the choice of variational space; in particular
by the choice of projective BCS-type wave functions.

Another important class of theoretical approaches in-
volves phenomenological spin-fermion models.19–25 In
these approaches it is assumed that the important physics
arises from the interaction of electrons with spin fluctua-
tions (treated as bosons but with boson self-energy effects
arising from coupling to fermions playing a crucial role).
These models are amenable to semi-analytic treatment.
Their analysis revealed that in the strong coupling limit
the superconducting state could have lower kinetic en-
ergy than the normal state. However, these models do
not fully capture the strong correlation effects associated
with the Mott transition or the formation of the pseudo-
gap, and rely on assumptions about the most physically
relevant interactions.

We use the dynamical cluster approximation (DCA)
version of dynamical mean field theory26 to evaluate
Eqs. [2,3] for the two dimensional repulsive-U Hubbard
model with εk = −2t(coskx + cos ky). In the DCA the
Brillouin zone is tiled with N patches and the electron
self energy is taken to be piecewise constant, with a differ-
ent value in each sector of momentum space. The sector
self energies are obtained from the solution of an auxil-
iary quantum impurity model with parameters fixed by
the Hubbard interaction and a self-consistency condition
discussed in detail in Ref. 26. The method yields a dx2−y2

superconducting state.5,27–38 For the Hubbard model the
method becomes exact as N → ∞ and considerable ev-
idence is now available39–42 concerning the status of the
finite N results achievable numerically. Here we study
the case N = 8, which has been shown to be large enough
for the results to be representative of the infinite cluster
size limit9 but small enough to enable calculations of the
necessary accuracy.40

We obtained the superconducting kinetic and potential
energies KES and PES from superconducting solutions
obtained as described in Ref. 38 and the normal state en-
ergiesKEN and PEN by solving the DMFT equations in
the paramagnetic phase with the same code but subject
to the constraint that the anomalous (〈cc〉) terms in the
Green function and self energy vanished. Our results are
obtained using the CT-AUX version43 of the continuous-

time quantum Monte Carlo method44 with submatrix
updates45 and an extension to superconductivity.38 The
energy differences are found to be very small and careful
attention to the high frequency behavior is required for
reliable results. The submatrix methods are essential in
obtaining data of the requisite accuracy.

Fig. 1 shows the phase diagram obtained from the
N = 8 DCA method in the interaction strength and
doping plane38 along with two arrows indicating the
parameter-space trajectories along which energies are
computed in this paper. At U & 6.4t and carrier con-
centration n = 1 per site the approximation yields a
paramagnetic (‘Mott’) insulating state which is at lower
temperatures unstable to antiferromagnetism. As elec-
trons are removed the state evolves to a conventional
Fermi liquid metal via an intermediate ‘strange metal’
phase characterized by a ‘pseudogap’, a suppression of
electronic density of states in the (0, π) region of the
Brillouin zone.10,40,46–54 Superconductivity is found in a
strip,38 near to the Mott insulator but separated from
it by a region of pseudogapped but nonsuperconducting
states.53 At carrier concentration n = 1 (vertical arrow)
the ground state of the model is believed to be antifer-
romagnetic at all U . The n = 1 results were obtained
by suppressing long-ranged antiferromagnetic order (al-
though short-ranged antiferromagnetic correlations are
still present) and are representative of the properties of a
metastable state. They are included because the qualita-
tive properties are seen to be the same as in the doping-
driven transition but the particle-hole symmetry at n = 1
permits the acquisition of much higher quality data, en-
abling a clearer view of the phenomena.

The two panels of Fig. 2 show the energy differences
obtained by subtracting the superconducting and normal
state energies computed at inverse temperature β = 60/t
along the two parameter-space trajectories shown by the
arrows in Fig. 1, i.e. crossing the superconducting re-
gion by varying the interaction strength or varying the
carrier concentration. The results obtained along the two
trajectories are remarkably similar, although the absence
of a fermion sign problem at n = 1 means we are able
to obtain much better statistics in this case. The con-
densation energy is of order 0.001t, although the changes
in kinetic and potential energy separately are typically
much larger, especially in the pseudogap regime.

For interactions or carrier concentrations smaller than
required to produce a normal state pseudogap,10,40,49 the
energetics are consistent with the standard expectations
of weak coupling superconductivity: as the material en-
ters the superconducting state the potential energy de-
creases and the kinetic energy increases. The boundary
of the normal state pseudogap marks a significant change
in the energetics of superconductivity: once the pseudo-
gap regime is entered, the kinetic energy decreases and
the potential energy increases on entering the supercon-
ducting state. Further, inside the pseudogap regime the
superconducting/normal changes in potential and kinetic
energy become much larger in magnitude, showing that
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FIG. 2. (Color online) Differences in total, kinetic and poten-
tial energies (per site, in units of hopping t) between normal
and superconducting states, obtained as described in the text
at density n = 1 varying interaction strength (upper panel)
and as function of density at fixed interaction strength U = 6t
(lower panel).

the onset of superconductivity leads to a significant re-
organization of the energetics of the pseudogap states.
The change in character of the superconductivity at the
pseudogap line is consistent with the finding of Yang
et al. 53 that the superconductivity exists in a dome with
the maximal transition temperature occurring where the
superconducting and pseudogap phase boundaries inter-
sect.

Our results differ from previous dynamical mean field
analyses. Ref. 55 (N = 4 study of the Hubbard model)
and Ref. 56 (N = 4 study of the t-J model, with an addi-
tional ‘EDMFT’ approximation) found that most of the
energy gain on entering the superconducting state came
from changes in the interaction term, although Ref. 56
found that the behavior of the kinetic energy was differ-
ent at large than at small doping. Three possible origins
for the discrepancy are the use of the non-crossing ap-
proximation (“NCA”) impurity solver in Refs. 55 and 56
rather than the numerically exact CT-QMC method, the
use of the N = 4 approximation, rather than the N = 8
approximation used here, and the study of the t-J rather
than Hubbard model in Ref. 56. Singh57 has questioned
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FIG. 3. (Color online) Anomalous expectation value in sector
K = (0, π) plotted against pairing field η at doping x = 0 for
interaction strengths indicated.

the relevance of computations based on the t-J model, be-
cause of apparent violations of the virial theorem which
may be traced back to the fact that some parts of the
electron kinetic energy are included in the ‘J’ coupling.

The ‘potential energy-driven’ nature of the supercon-
ductivity found at larger dopings and at weak couplings
is consistent with the notion that in these regimes the
superconductivity is relatively conventional. The change
in energetics as the pseudogap boundary is crossed sug-
gests that at stronger couplings or lower dopings the
superconductivity becomes unconventional. One in-
fluential model of unconventional superconductivity is
the resonating valence bond (RVB) idea of Anderson3

which was motivated in part by the possibility that the
physics of the cuprates could be understood in terms
of a very strong coupling limit of the Hubbard model.
There,configurations with two electrons on a site could
be projected out so that the only important term in the
energy was the kinetic energy term and superconductiv-
ity (and indeed all other interesting physics) is necessarily
‘kinetic energy driven’.

Anderson’s original RVB idea, and subsequent recog-
nition of an SU(2) symmetry in the RVB wave func-
tion which might be weakly broken by doping or small
finite U corrections58 implied that superconducting cor-
relations were present (but not active) in the Mott insu-
lating state and the strongly correlated but not supercon-
ducting state which separates the superconducting and
insulating regimes in Fig. 1. To test this hypothesis we

applied a pairing field ηK(c†K↑c
†
K↓+cK↑cK↓) in our calcu-

lations and computed the effect on the superconducting
order parameter 〈cK↑cK↓〉. We expect that if a near-
SU(2) symmetry existed, then applying a small pairing
field to a state which is non-superconducting but is near
the phase boundary would provide a rapid increase in
the pairing amplitude, which would then saturate to a
value characteristic of the superconducting state. Fig. 3
shows that this is not the case. On the weak coupling
side (U = 4.2), applying a pairing field leads to the be-



4

0.015 0.02 0.025 0.03 0.035
-0.61

-0.6

K
E

 [
t]

KE
N

KE
S

0.015 0.02 0.025 0.03 0.035
T/t

-0.66

-0.65

K
E

 [
t]

U/t = 5.8

U/t = 5

FIG. 4. (Color online) Temperature dependence of kinetic
energy at n = 1 for U = 5.0 (lower panel) and U = 5.8
(upper panel) in normal (filled squares, red dashed line) and
superconducting state (open circles, black solid line).

havior expected near a second order phase transition: a
rapid increase in 〈cc〉 reflecting the enhanced susceptibil-
ity, followed by a saturation to values similar to those
found in the nearby superconducting state. However, on
the strong coupling side the situation is different. Just
at the phase boundary U = 6.0 the situation is similar to
that found at weak coupling, but for any larger U the 〈cc〉
vs η curve is linear with small, weakly U-dependent slope.
The similarity of the U = 6.2 and 6.4 results, and the dif-
ference of both of these to the U = 4.2 trace, indicates
that precursor effects are very weak as the superconduct-
ing phase is approached from the pseudogap indicating
that the pseudogap state has no strong tendency towards
superconductivity. We infer from this calculation that
the origin of the kinetic energy-driven behavior is not a
signature of pairing correlations pre-existing in the wave
function.
It is interesting to consider the normal - superconduct-

ing energy differences in the context of the energetics of
the pseudogap state itself. The two panels of Fig. 4 show
the temperature dependence of the kinetic energy com-
puted for a relatively weak coupling, U = 5.0t, (lower
panel) and relatively strong coupling, U = 5.8t, (upper
panel). We see that in the weak coupling case, the kinetic
energy decreases as the temperature is lowered, and the
onset of superconductivity reverses this decrease, while
in the strongly coupled case the kinetic energy increases
as temperature is lowered but the onset of superconduc-
tivity again reverses the temperature dependence.
We finally consider the observability of these effects.

Norman and co-workers noted that the difference be-
tween normal-state and superconducting state photoe-
mission spectra could be analyzed to obtain estimates of
the normal-superconducting change both in total and in
kinetic energy59 although the analysis is complicated by
the need to accurately monitor small changes occurring
over wide energy and momentum ranges. Specific heat
data can also be used to infer the condensation energy,

although care must be taken both to extrapolate the nor-
mal state to temperatures less than the transition tem-
perature and to include fluctuation effects.60 In narrow-
band systems such as cuprates, an approximate relation
between the kinetic energy and the frequency integral
of the optical conductivity exists.61–63 Interestingly the
idea of examining superconductivity-induced changes in
the optical integral seems to have entered the high-Tc lit-
erature first in the context of the ‘hole superconductiv-
ity’ model of Hirsch64,65 and then by Chakravarty and
collaborators66 in relation to the interlayer coherence
mechanism of Anderson.67 These works motivated sev-
eral experimental groups to examine changes in optical
conductivity across the normal-superconducting phase
boundary.68–72 Unfortunately, the value of the optical
spectral weight depends on the frequency up to which
the conductivity is integrated, and the appropriate up-
per cutoff may be different in the normal and supercon-
ducting state;23,24 also even if the conduction band con-
tribution to the optical sum rule could be determined,
the relation between this and the kinetic energy is only
approximate, and the errors involved in the approxima-
tion may be different in the normal and superconducting
state.25 As can be seen from Fig. 4, the temperature de-
pendent changes are only on the 1% level.
In summary, our results indicate that the nature of

the superconductivity depends crucially on location in
the phase diagram. For the high doping/weak correla-
tion side of the superconducting region, the energetics
of superconductivity appear essentially conventional: on
transition to the superconducting state the potential en-
ergy decreases and the kinetic energy increases. On the
low doping/strong correlation side of the superconduct-
ing region, the energetics appears unconventional: on en-
tering the superconducting state the kinetic energy de-
creases and the potential energy increases. However, we
do not find any indication that the nonsuperconducting
pseudogap state has any significant pairing correlations,
casting doubt on an RVB interpretation of the pseudo-
gap. Interestingly, the crossover between the two regimes
occurs essentially at the point at which the pseudogap
becomes visible in normal state quantities and also in-
terestingly the changes in the individual components of
the energy become much larger in this unconventional
regime, suggesting that superconductivity causes a sub-
stantial rearrangement of the pseudogap electronic state.
In other words, the superconductivity and pseudogap are
competing phases.
Acknowledgments: AJM was supported by NSF-DMR-

1006282. We thank A. Chubukov and M. Norman for
helpful conversations. A portion of this research was con-
ducted at the Center for Nanophase Materials Sciences at
Oak Ridge National Laboratory and at the National En-
ergy Research Scientific Computing Center (DE-AC02-
05CH11231), which are supported by the Office of Science
of the U.S. Department of Energy. Our continuous-time
quantum Monte Carlo codes are based on ALPS.73,74



5

1 J. Bednorz and K. Muller, Z. Phys. B 64, 189 (1986).
2 P. Monthoux, A. V. Balatsky, and D. Pines,
Phys. Rev. B 46, 14803 (1992).

3 P. W. Anderson, Science 235, 1196 (1987).
4 G. V. Chester, Phys. Rev. 103, 1693 (1956).
5 D. Scalapino, in Handbook of High-Temperature Supercon-

ductivity, edited by J. Schrieffer and J. Brooks (Springer
New York, 2007) pp. 495–526.

6 P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys.
78, 17 (2006).

7 D. Zanchi and H. J. Schulz, Phys. Rev. B 54, 9509 (1996).
8 S. Raghu, S. A. Kivelson, and D. J. Scalapino,
Phys. Rev. B 81, 224505 (2010).

9 T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent,
and J. B. White, Phys. Rev. Lett. 95, 237001 (2005).

10 E. Gull, O. Parcollet, P. Werner, and A. J. Millis,
Phys. Rev. B 80, 245102 (2009).

11 C. Gros, Phys. Rev. B 38, 931 (1988).
12 H. YOKOYAMA and H. SHIBA, JPSJ 57, 2482 (1988).
13 F. Becca, M. Capone, and S. Sorella,

Phys. Rev. B 62, 12700 (2000).
14 A. Paramekanti, M. Randeria, and N. Trivedi,

Phys. Rev. Lett. 87, 217002 (2001).
15 A. Paramekanti, M. Randeria, and N. Trivedi,

Phys. Rev. B 70, 054504 (2004).
16 H. Yokoyama, Y. Tanaka, M. Ogata, and H. Tsuchiura,

JPSJ 73, 1119 (2004).
17 H. Yokoyama, M. Ogata, Y. Tanaka, K. Kobayashi,

and H. Tsuchiura, ArXiv e-prints (2012),
arXiv:1208.1102 [cond-mat.supr-con].

18 H. Yokoyama, S. Tamura, K. Kobayashi, and M. Ogata,
ArXiv e-prints (2012), arXiv:1211.6175 [cond-mat.str-el].

19 R. Haslinger and A. V. Chubukov,
Phys. Rev. B 67, 140504 (2003).

20 R. Haslinger and A. V. Chubukov,
Phys. Rev. B 68, 214508 (2003).

21 Y. Yanase and M. Ogata, JPSJ 74, 1534 (2005).
22 L. Benfatto, J. P. Carbotte, and F. Marsiglio,

Phys. Rev. B 74, 155115 (2006).
23 M. R. Norman, A. V. Chubukov, E. van Heumen,

A. B. Kuzmenko, and D. van der Marel,
Phys. Rev. B 76, 220509 (2007).

24 F. Marsiglio, E. van Heumen, and A. B. Kuzmenko,
Phys. Rev. B 77, 144510 (2008).

25 S. Maiti and A. V. Chubukov,
Phys. Rev. B 81, 245111 (2010).

26 T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler,
Rev. Mod. Phys. 77, 1027 (2005).

27 T. Maier, M. Jarrell, T. Pruschke, and J. Keller,
Phys. Rev. Lett. 85, 1524 (2000).

28 A. I. Lichtenstein and M. I. Katsnelson,
Phys. Rev. B 62, R9283 (2000).

29 T. A. Maier, M. S. Jarrell, and D. J. Scalapino,
Phys. Rev. Lett. 96, 047005 (2006).

30 T. A. Maier, M. Jarrell, and D. J. Scalapino,
Phys. Rev. B 75, 134519 (2007).

31 T. A. Maier, A. Macridin, M. Jarrell, and D. J. Scalapino,
Phys. Rev. B 76, 144516 (2007).

32 M. Civelli, M. Capone, A. Georges, K. Haule,
O. Parcollet, T. D. Stanescu, and G. Kotliar,
Phys. Rev. Lett. 100, 046402 (2008).

33 S. S. Kancharla, B. Kyung, D. Sénéchal, M. Civ-
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