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In the quantum Hall effect, the density operators at different wave-vectors generally do not com-
mute and give rise to the Girvin MacDonald Plazmann algebra with important consequences such
as ground-state center of mass degeneracy at fractional filling fraction, and W1+∞ symmetry of
the filled Landau levels. We show that the natural generalization of the GMP algebra to higher
dimensional topological insulators involves the concept of a D-commutator. For insulators in even
dimensional space, the D-commutator is isotropic and closes, and its structure factors are propor-
tional to the D/2-Chern number. In odd dimensions, the algebra is not isotropic, contains the weak
topological insulator index (layers of the topological insulator in one less dimension) and does not

contain the Chern-Simons θ form. This algebraic structure paves the way towards the identification
of fractional topological insulators through the counting of their excitations. The possible relation
to D-dimensional volume preserving diffeomorphisms and parallel transport of extended objects is
also discussed.

PACS numbers: 73.43.Cd, 05.30.Fk, 05.30.Pr

Introduction: Fractional topological insulators
(FTI) are the strongly correlated states that may appear
when a narrow bandwidth bulk band of a topological in-
sulator [1, 2] is fractionally filled and subject to strong
interactions. Evidence for their existence has been pro-
vided in a series of analytical and numerical works in two-
dimensional Chern insulators[3–11] and time-reversal in-
variant topological insulators [12–14]. The plethora of
new experimental facts and theoretical ideas discovered
in the non-interacting topological insulators suggests that
their fractional (i.e. interacting) counterparts will also
exhibit new physical properties of topological phases, es-
pecially in space dimensions higher than two.

The excitation counting of a topological state of mat-
ter is an imprint of the the underlying topological phase.
It contains information about the nature of both the ex-
citations and the edge states. The most studied frac-
tional topological insulator, the two-dimensional Frac-
tional Chern Insulator (FCI), has been identified through
the counting of its excitations (in both the energy and the
entanglement spectrum) [15]. This progress was made
possible by the non trivial algebra obeyed by its projected
density operators [16]. For a smooth enough Berry cur-
vature in the Brillouin zone (BZ), this algebra is nothing
but the celebrated Girvin-MacDonald-Plazmann (GMP)
algebra of the Fractional Quantum Hall effect [17]. This
algebra has far reaching consequences: it is identical to
the algebra of area-preserving diffeomorphisms, thereby
providing for an explanation of the edge modes of an in-
teger quantum Hall liquid as shape deformations of the
liquid droplet. It allows for the construction of nontrivial
many-body symmetry operators of the Hilbert space, it
provides for a center of mass degeneracy (exact in the
FQH but approximate in the FCI), and is related to the
Hall viscosity, q4 form factor, as well as the edge dipole-
moment [18].

All numerical studies of FTI in higher dimensions relies
on excitation counting as a smoking gun. A prerequisite
is to develop analytical tools that apply to dimensions
greater than two. In this letter, we present a general-
ization of the GMP algebra to topological insulators in
higher dimensions. In even space dimensions we consider
Chern insulators (A class[19, 20]), which are character-
ized by a Chern number. In odd dimensions we consider
Z2 topological insulators, whose topological number is
the average over the Brillouin zone of the Chern-Simons
form. We generalize the usual commutator structure in
D spatial dimensions to a D-commutator by contract-
ing with the antisymmetric tensor in D-dimensions. If
this commutator is closed, the relation is called a D-
algebra. We find that for topological insulators in even
dimensions, the commutator is closed, and the algebra
is isotropic, under a condition similar to that of the ex-
istence of the GMP in the 2-D Chern insulator[16]. Its
structure factors are proportional to the D/2’th Chern
number. In odd space dimensions however the density
algebra does not probe the relevant topological number,
as the Chern-Simons form (F ∧A+ i/3A∧A∧A in 3D)
does not appear. This algebra is anisotropic in nature, as
it is sensitive to layers of (D−1)-dimensional topological
insulators in the system. This algebraic structure opens
a way towards the identification of fractional topological
insulators through the counting of their excitations.

Projected density operators and flat-band limit:

We start by fixing notations and recalling some well
known results about band structure and projected den-
sity operators for topological insulators. We consider aN
band topological insulator described by a translationally
invariant Hamiltonian, and we work on a D dimensional
lattice (with LD sites) with periodic boundary condi-
tions. After diagonalization of the the Bloch matrix, the
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one-body Hamiltonian takes the form

H =
∑

k,n

En(k)γ
n†
k γn

k , (1)

where the normal modes γn
k can be written as a ma-

trix rotation of the original electron operators γn
k =

∑

β u
n⋆
k,βck,β. We consider the physics of the (possibly

fractionally) occupied bands and look only at projec-
tors into these bands. The projection operator in the
occupied bands is P =

∑

n,k |k, n〉〈n,k| where |n,k〉 =

γn†
k |0〉 and the band index n ranges over all occupied

bands n = 1, · · · , Nocc . The density operator e−iq·r =
∑

j,α e−iq·jc†jαcjα becomes when projected to the occu-
pied bands of a topological insulator:

ρq =
∑

k,n,m

〈un
k|u

m
k+q〉γ

n†
k |0〉 〈0| γm

k+q, (2)

where n,m ranges over the set of occupied bands.
Fractional topological insulators are usually con-

structed and observed in models with fractionally filled
bands whose bandwidth is very small, such that interac-
tions and not the kinetic energy dominate the physics.
The ideal example of such an insulator is the flat-band
model, which gives an energy −1 to occupied bands, and
+1 otherwise

HFB = 1− 2P . (3)

All projected operators commute with the this deformed
one-body Hamiltonian. Therefore projected density op-
erators are an exact symmetry of the flat-band Hamil-
tonian, to which the true one-body Hamiltonian (1) is
adiabatically connected.
Two-dimensional algebra and first Chern num-

ber: Before moving to higher dimensions, we quickly
review what is known about the algebra of projected
density operators in two dimensions, with an emphasis
to its main characteristics. We focus on the appearance
of the Chern number in the algebra and on the link be-
tween projected densities and parallel transport in the
background of the Berry curvature. At long wavelength
(q1,q2 → 0), the reference [16] finds the following com-
mutation relation :

[ρq1
, ρq2

] = −iqµ1 q
ν
2

∑

k,n,m

Fn,m
µν (k)γn†

k |0〉 〈0|γm
k+q1+q2

,

(4)
where the Einstein summation convention after repeating
indices is assumed. This result holds in any dimension.
Fµν = ∂µAν −∂νAµ− i[Aµ, Aν ] is the non-Abelian Berry
field strength in the Brillouin zone, while the vector po-
tential is Anm

µ (k) = i〈un
k|∂kµ

|um
k 〉.

In two dimensions Fµν(k) = B(k)ǫµν , and its integral
over the whole Brillouin zone yields the first Chern num-
ber C1 = 1

4π

∫

BZ
d2kǫµνTr (Fµν(k)) . The commutator of

two densities has to be non-zero in a nontrivial Chern in-
sulator. That is so because the Chern number C1 of the
two-dimensional insulator can be expressed as a trace
over the Brillouin zone of the density commutator

Tr ([ρq1
, ρq2

]ρ−q1−q2
)) ∼q→0

L2

2πi
(q1 ∧ q2)C1 (5)

where q1 ∧ q2 = ǫµνq
µ
1 q

ν
2 . In the continuum limit of

the Quantum Hall effect, the projected density algebra
of the Lowest Landau Level is called the GMP algebra.
Its generators are the generators of the area-preserving
diffeomorphisms in two-dimensions. This result is re-
covered for two-dimensional topological insulators with
an Abelian U(1) uniform Berry curvature, in the long
wavelength limit. As pointed out in [16] (see also [21]
and [15]), if the local Berry curvature can be replaced
by its average Fxy(k) = B = C1

2π then [ρq1
, ρq2

] =
−iB q1 ∧ q2 ρq1+q2

. Note that q1 ∧ q2 is the area en-
closed in the parallelogram delimited by q1 and q2. This
algebra is nothing but the two-dimensional Aharonov-
Bohm effect in momentum space, in the background of
the ”magnetic field” Fxy = B. Expanding the projected
densities at long wave-vectors as ρq = 1+ iq ·R+O(q2),
the algebra of the guiding center is recovered

[R1, R2] = iB =
i

2π
C1 . (6)

The Chern number quantifies the non-commutativity of
the guiding center operators. This Abelian treatment ap-
plies to two-band models (insulators with one band below
and above the gap) or to many-band insulators where the
non-Abelian components of the field strength can be ne-
glected (up to an overall prefactor Nocc). We remark
that in a two-band insulator, it is impossible to have a
constant Berry curvature due to the no-hair theorem[22],
although this seems possible in insulators with four or
more bands [22].
Since projected density operators commute with the

flat-band Hamiltonian (3), it would seem that they are
the generators of a proper symmetry group of the sys-
tem. However this is not quite true, as they suffer from
a serious deficiency. Because of the projection, they are
not unitary. The density operator translates states in
momentum space but does not keep their norm:

ρq |n,k〉 =
∑

m

〈um
k−q|u

n
k〉 |m,k− q〉 . (7)

It is possible to replace the projected density operator
ρq by a unitary operator ρ̃q , while not spoiling the long
wavelength behavior from Eq.(4). For a uniform Abelian
Berry curvature, the answer is quite straightforward, and
is simply the exponentiation of the guiding center oper-
ator. Doing so, one recovers the GMP algebra

[ρ̃q1
, ρ̃q2

] = −2i sin
(

B
q1 ∧ q2

2

)

ρ̃q1+q2
. (8)
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More generally, for a non-Abelian and non-uniform Berry
field strength, the answer is parallel transport in the
background of the Berry gauge potential Aµ(k) :

ρ̃q =
∑

k;n,m

(

Pe−i
∫

k+q

k
A(k′)dk′

)

nm
γn†
k |0〉 〈0|γm

k+q . (9)

In the Abelian case this result was pointed out in [16].
Note that the parallel transport also commutes with the
Flat-Band Hamiltonian, and at small momenta coincides
with the projected density operator ρ̃q = ρq +O(q2).
Density algebra in even-space dimensions: The

density commutator is natural in two dimensions. In
higher space dimension D > 2, the commutator alge-
bra Eq.(4) reveals whether a two dimensional quantum
Hall effect exists on a given plane of the D-dimensional
space defined by the two vectors q1 and q2. It is apparent
then that the commutator algebra Eq.(4) cannot probe
isotropic quantities such as the topological number. In
order to find an isotropic algebraic structure in higher di-
mensions, we must look somewhere else. We first realize
that the commutator [ρq1

, ρq2
] is, in two dimensions, sim-

ply a re-writing of the operators ǫαβρqα
ρqβ

. In D space
dimensions, it is then suggestive to look at the operator

[

ρqα1
, ρqα2

, · · · , ρqαD

]

= ǫα1α2···αD
ρqα1

ρqα2
· · · ρqαD

,

(10)

where ǫα1,α2,...,αD
is the totally antisymmetric tensor in

D-dimensions. and α = 1 . . .D. These generalized com-
mutators are called D-commutators. We will now com-
pute this object in the longe wavelength limit and find it
is closed, thereby generating a D-algebra.
The density algebra in even space dimensions is simpler

to obtain than in odd-space dimensions for reasons that
will become apparent. In even space dimensions we have
the Chern-insulator (QH)-classes, so we anticipate that
the algebra closes. We first re-express the D-commutator
as a product of 2-commutators: [ρq1

, · · · , ρqD
] =

2−D/2ǫα1...αD
[ρqα1

, ρqα2
] · · · [ρqαD−1

, ρqαD
]. Using the

long wavelength two dimensional algebra Eq.(4) and
working at order qD we obtained :

[ρq1
, ρq2

, · · · , ρqD
] = (−i)D/2 (q1 ∧ q2 ∧ · · · ∧ qD)×

∑

k,n,m

(F (k) ∧ · · · ∧ F (k))nm γn†
k |0〉 〈0| γm

k+q1+···+qD
.

(11)

This equation is the D-dimensional analogue of Eq.(4).
In the D-commutator appear the matrix F ∧ · · · ∧
F = 2−D/2ǫµ1···µDFµ1µ2

· · ·FµD−1µD
which is the D/2’th

Berry curvature density of the D/2’th Chern number:

CD/2 =
1

(D/2)!(2π)D/2

∫

dDkTr (F (k) ∧ · · · ∧ F (k)) .

(12)

For even dimensional topological insulators, the D/2’th
Chern number can be expressed as the the trace over the
D-commutator of the projected density operator:

Tr
(

[ρq1
, ρq2

, · · · , ρqD
]ρ−(q1+...+qD)

)

∼q→0

LD

(2πi)D/2
(D/2)! (q1 ∧ q2 ∧ · · · ∧ qD)CD/2. (13)

This is the exact analog of the two-dimensional relation
(5).

It is possible to obtain an analog of the GMP algebra
in D-dimensions. As for topological insulators in two
dimensions, this algebra holds when the Berry density
F (k) ∧ · · · ∧ F (k) is uniform in the Brillouin zone, and
proportional to the identity matrix. This situation is
not as restrictive as it may seem, and we conjecture that
Chern insulators are adiabatically connected to this uni-
form case. For instance the integer quantum Hall effect
in 2, 4 and 8 dimensions [23, 24] enjoy these properties,
as inherited from the underlying monopole field configu-
rations. Under these assumptions the projected density
operators algebra closes in the long wavelength limit

[ρq1
, ρq2

, · · · , ρqD
] = (D/2)!

1

(2πi)D/2

CD/2

Nocc

(q1 ∧ q2 ∧ · · · ∧ qD) ρq1+...+qD
, (14)

and we recover a D-algebra. It is very tempting to
expand the projected densities as ρq = 1 + iq · R +
O(q2). The ”guiding center” algebra is most easily ob-
tained in the continuum limit. From Eq.(7) the guid-
ing center operators are simply the covariant derivative
with the Berry potential in momentum space Rµ(k) =
−i

(

∂kµ
− iAµ(k)

)

. Using the relation [Rµ, Rν ] = iFµν ,
it is straightforward to obtain their D-commutator

[R1(k), · · · , RD(k)] = iD/2F (k) ∧ · · · ∧ F (k). (15)

This elementary derivation in the continuum is not
plagued by the limitations of derivation on the lat-
tice, as there is no need to suppose the Berry density
F (k) ∧ · · · ∧ F (k) to be uniform or proportional to the
identity.
This D-algebra structure may be understood in two

ways. On one hand, as was pointed out in [15], the pro-
jected position operators can be expressed in terms of
the projected density operators. Therefore an immediate
interpretation of Eq.(15) is the non commutativity of the
coordinates of particles projected to the occupied bands
of a topological insulator. This is the D-dimensional ana-
log of Eq.(6) for the Quantum Hall Effect.

On the other hand, the GMP algebra also describes
a two-dimensional Aharonov-Bohm effect: the projected
density operators implement parallel transport of point
like objects in the background of the Berry curvature
F . In higher dimensions, an Aharonov-Bohm effect with
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respect to the D-form F ∧ · · · ∧F requires parallel trans-
port of higher dimensional objects. We conjecture that
the algebra (15) is related to an Aharonov-Bohm effect
involving extended excitations (membranes) coupled to
the Berry curvature F ∧ F ∧ · · · ∧ F . However, unlike in
two dimensions, it is not clear how to interpret the pro-
jected density operators as an implementation of mem-
brane parallel transport.
Density algebra in odd-space dimensions: Pur-

suing the same strategy in odd dimensions leads to an
impasse. The topological invariant in odd dimensions is
defined as the integral over the Brillouin zone of a Chern-
Simons form. For instance in three dimensions the Z2

topological invariant is given by

P3 =
θ

2π
=

1

8π2

∫

d3kTr

[

F ∧ A+
i

3
A ∧A ∧ A

]

. (16)

Defined for all odd dimensions, a characteristic feature of
Chern-Simons form is that their integral is not invariant
under large gauge transformations. However the varia-
tion has to be an integer [25]. Contrary to the even di-
mensional Chern numbers, the odd dimensional Z2 topo-
logical invariant is only gauge invariant modulo integers.
Trying to obtain P3 through the gauge invariant trace
Tr([ρq1

, ρq2
, ρq3

]ρ−q1−q2−q3
) is doomed to fail. A sim-

ple relation like Eq.(13) is ruled out in odd dimensions.
Moreover D-commutators in odd dimensions are known
[26] be more problematic than their even dimensional
counterpart. For instance while even commutators in-
volving the identity matrix do vanish, this is no longer
the case for odd commutators. This is most easily seen
in 3 dimensions:

[A,B, 1] = [A,B] 6= 0. (17)

Consequently, when expanding the 3-commutator of a
projected density operator ρq = 1 + iq ·R + O(q2), the
lowest order contribution is of order q2 and not q3:

[ρq1
, ρq2

, ρq3
] ∼ −i(qµ1 q

ν
2 + qµ3 q

ν
1 + qµ2 q

ν
3 )Fµνρq1+q2+q3

.
(18)

This term is reminiscent of the 2-commutator algebra
Eq.(4), and accounts for a possible two-dimensional topo-
logical structure in the 3D insulator. This would be the
case for a weak 3D Chern insulator, obtained by stacking
layers of the 2D Chern insulator. This structure remains
true in all odd dimensions, where theD-commutator con-
tains an anisotropic O(qD−1) term in contrast with the
isotropic O(qD) term appearing in Eq.(11) for even di-
mensions.
In order to investigate in more details the kind of prob-

lems that arise in odd dimensions, we computed the sub-
leading term in the algebra (18) in three dimensions. If
the Chern-Simons density (16) is to appear at all in the
triple commutator, this has to be as a O(q3) term. Upon
computing the sub-leading term of the 3-commutator

[ρq1
, ρq2

, ρq3
], a term (q1 ∧ q2 ∧ q3)F ∧A appears. This

promising term is part of the Chern-Simons form, though
the i

3A ∧ A ∧ A part is missing. However in order to
close the algebra we need to multiply the 3-commutator
by ρ−q1−q2−q3

, and rather than completing the Chern-
Simons term, it kills it altogether. We are left with

[ρq1
, ρq2

, ρq3
]ρ−q1−q2−q3

=

−i
∑

k,n,m

(qµ1 q
ν
2 + qµ2 q

ν
3 + qµ3 q

ν
1 )(Fµν )nmγn†

k |0〉 〈0| γm
k

+ǫα1α2α3
qµα1

qνα1
qσα2

1

2

∑

k,n,m

(Cµνσ)nm γn†
k |0〉 〈0| γm

k

(19)

The sub-leading term does not contain the expected an-
tisymmetric tensor (q1 ∧ q2 ∧ q3)ǫ

µνσ . Instead we have
the tensor ǫα1α2α3

qµα1
qνα1

qσα2
, which is symmetric under

µ ↔ ν, and cannot be contracted to the antisymmetric
Chern-Simons tensor. Instead it comes with the tensor

Cµνσ = iDσBµν − i∂µ∂νAσ − (Aµ∂ν +Aν∂µ)Aσ

+ FµσAν + FνσAµ, (20)

where Dσ· = ∂σ · +i[Aσ, ·] and Bµν is the
O(q2) regularization of the density operator ρq =
∑

k,n,m

(

1− iqµAµ − i
2q

µqνBµν

)

nm
γn†
k |0〉 〈0|γm

k+q. The
3-tensor Cµνσ being µ ↔ ν symmetric, it can never yield
the fully antisymmetric Chern-Simons term, and this cal-
culation shows explicitly that the Berry curvature does
appear in the algebra of projected density operators in
three dimensions, no matter what regularization Bµν is
chosen for the density operator.
A way to get around this no-go theorem is to involve

non gauge invariant operators, such as the pure transla-
tion Tq |n,k〉 = |n,k− q〉. This can be used to generate
the Chern-Simons form as

P3 =
1

32π2
ǫijkTr

[

(ρqi
ρqj

(ρqk
− Tqk

)−

1

3
(ρqi

− Iqi
)(ρqj

− Tqj
)(ρqk

− Tqk
))ρ−qi−qj−qk

]

, (21)

but the physical picture behind this relation is still un-
clear.
Concluding remarks: We have presented a generaliza-
tion of the GMP algebra to D-dimensional topological
insulators by generalizing the commutator, algebra and
Berry phase to their higher-dimensional counterparts. At
this level, the even and odd-dimensions are fundamen-
tally different - in even dimensions, the structure factors
of the algebra are proportional to the D/2’th Chern num-
ber, while in odd dimensions they are not proportional
to the expected Chern-Simons form. The D-commutator
hints at a different group structure from the usual gauge
theories, such as higher gauge theories [27, 28]. In light
of this, the recent proposal [29] to describe topological
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insulators by a BF theory [30] looks very promising. In
two dimensions, the classical limit of the GMP algebra is
isomorphic to the algebra of area preserving diffeomor-
phisms, and is related to incompressibility. A D-algebra
on the other hand is related to volume preserving dif-
feromorphisms [31]. Indeed it is a quantization of the
classical Nambu-Poisson bracket [32], which is known to
be invariant under volume preserving diffeomorphisms.
It would be interesting to make this connection more ex-
plicit and to understand its link to the incompressibility
of TIs in higher dimensions.
Moreover, the GMP algebra is related to a two-

dimensional Aharonov-Bohm effect of point like objects
moving in the background of the Berry curvature F . In
higher dimensions, the D-algebra involves the D-form
F ∧ · · · ∧ F . The natural objects that can couple to a
D-form are D − 2 dimensional membranes [28]. Inter-
estingly, the classical limit of the D-commutator is the
Nambu-Poisson bracket [33], which is a natural setup to
describe the dynamics of classical membranes [32]. The
appearance of extended objects in the field theory de-
scription of topological insulators in dimensions greater
than three is also expected from the BF proposal of [29].
This suggests that the correct ”effective” description of
the higher-dimensional topological insulators is in terms
of parallel transport not of electrons but of extended ob-
jects, such as strings in 3 dimensions. We speculate the
the Chern-simons term could appear when such algebras
are constructed.
Note: During the redaction of this letter, we became

aware of a related paper[34]. While most of our results
are similar, our conclusions in odd space dimensions are
exactly the opposite. We have shown that it is not pos-
sible to obtain the Z2 topological invariant through the
algebra of the projected density operators.
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