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Abstract

A new kinetic Monte Carlo algorithm that efficiently accounts for elastic strain is presented
and applied to study various phenomena that take place during heteroepitaxial growth. For
example, it is demonstrated that faceted quantum dots occur via the layer-by-layer nucleation
of pre-pyramids on top of a critical layer with faceting occurring by anisotropic surface diffusion.
It is also shown that the dot growth is enhanced by the depletion of the critical layer which
leaves behind a wetting layer. Capping simulations provide insight into the mechanisms behind
dot erosion and ring formation. The algorithm used for the simulations presented here is based
on the observation that adatom and dimer motion is essentially decoupled from the elastic
field. This is exploited by decomposing the film into two parts: the weakly bonded portion and
the strongly bonded portion. The weakly bonded portion is taken to evolve independent of the
elastic field. In this way the elastic field need only be updated infrequently. Extensive validation
reveals that there is little loss of fidelity but the algorithm is fifteen to twenty times faster.

1 Introduction

The simulation of heteroepitaxial growth using kinetic Monte Carlo (KMC) is a promising alter-
native to continuum formulations such as island dynamics (e.g. Refs. [1, 2, 3]), phase field models
(e.g. Refs. [4, 5]), or sharp interface models (e.g. Refs. [6, 7, 8, 9]). The potential benefit of
KMC lies in that it can naturally include both discrete and stochastic effects that occur at the
nanoscale. Unfortunately, the computational cost incurred by the need to repeatedly update the
elastic displacement field makes the use of KMC challenging. However, starting with the work of
Lam, Lee, and Sander[10], it became clear that it could be practical to use KMC as a tool to simu-
late strained epitaxial growth. Since then there have been a number of papers that have improved
the state-of-the-art in this area (e.g. Refs. [11, 12, 13, 14, 15, 16]).

In this paper, we present an approach that offers significantly improved computation times for
simulating heteroepitaxial growth. Indeed, our simulations are fifteen to twenty times faster than
previous ones. Importantly, this has allowed us to access physically relevant parameter regimes in
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three dimensions. The new approach takes advantage of a natural separation of length scales that
occurs in strained heteroepitaxial growth. Specifically, we use a surface decomposition formulation
in which the weakly bonded atoms (e.g. adatoms and dimers ) are decoupled from the rest of the
film and the associated elastic fields. Before we describe the method further, we wish to emphasize
several physical issues the improved method has allowed us to explore.

1.1 Heteroepitaxial Phenomena

To begin, we revisit what is typically referred to as Stranski-Krastanov (SK) growth. This is the
scenario normally encountered during strained heteroepitaxial growth, starting off as layer-by-layer,
but then suddenly transitioning to island-mode growth after a number of monolayers have been
deposited. For example, when depositing InAs on GaAs it is observed that three dimensional
dots form after 1.5 ML of deposition [17]. This suggests some sort of instability has occurred;
however, the issue is rather more complicated than that. The early work of Asaro & Tiller [18] and
Grinfeld [19] reveals a critical thickness of zero—all strained films are unstable irrespective of their
thickness. This, in turn, lead Spencer, Voorhees and Davis [8] to suggest that the critical thickness
observed in experiments is an “apparent critical thickness,” the suggestion being instability is
there at all thicknesses, but is not readily observed until it reaches a certain stage of development.
An alternative explanation originated with the work of Tersoff [20]. Based on calculations using
intermolecular potentials, he argued that up to three layers of Ge would be stable on Si. This led to
models with wetting potentials, e.g. Ref. [7], with a specified critical thicknesses “hard-wired” into
the form of the potential. More recently, Baskaran and Smereka [21], have used a 1+1 dimensional
KMC theory to show that there is indeed a critical thickness, but that subsequent growth of the
islands actually leads to a depletion of the original critical layer, leaving behind what we will refer
to as a wetting layer.

Although kinetic Monte Carlo models in 1+1 dimensions (e.g. [10, 21, 22, 23, 24, 25]) offer much
insight into strained epitaxial growth, they cannot be considered definitive, as there are significant
differences between the behavior of atomistic models in 2+1 and 1+1 dimensions. For example,
in equilibrium it is known that a one dimensional surface cannot have true facets, whereas two
dimensional surfaces can form facets below the roughening temperature (e.g. [26], p. 60). This
is also reflected by the fact that the equilibrium shape of an island for a bond counting model is
convex in two dimensions [27, 28] but not so in three dimensions [29]. Other differences between
two and three dimensions are discussed by Leamy, Gilmer, and Jackson [30]. These differences can
be hidden in the context of continuum models. For example, the Wulff shape can be arbitrarily
specified to give facets irrespective of dimension.

With this discussion in mind, our first aim here is to closely examine the emergence of faceted
islands—quantum dots. Again, this issue is especially confusing and cannot be completely un-
derstood from a continuum perspective. The very existence of a wetting layer indicates that the
initial growth direction should be a facet, and as such it should be very difficult to change this
growth direction since “nearby” directions have much greater surface energies (e.g. [34]). Often,
continuum models have dealt with this issue by modifying the surface energy to induce the growth
of new facets [43, 6]. While this gives the correct growth shapes, it cannot offer a mechanism by
which this happens. Our KMC simulations suggest, in agreement with the prediction of Xiang et

al. [31], that the mechanism is the layer-by-layer nucleation of a pre-pyramid which then evolves
into a fully faceted pyramid by anisotropic surface diffusion. By “pre-pryamid” we mean a small
multilayer three dimensional island whose sides are not faceted. Pre-pryamids can be either circular
or irregular in shape.
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We next turn to the topic of capping of the quantum dots with additional layers of the substrate
material. Our KMC simulations show that the capping procedure can lead to significant erosion
of the quantum dots, in agreement with experimental observations. In addition the simulations
reveal a possible mechanism for this erosion: it is energetically favorable for the wetting layer to
be composed of dot material, therefore as the capping proceeds dot material is driven from dots
onto the wetting layer by capillary-like forces. Our simulations can also reproduce a particularly
striking result: the act of capping can produce ring-shaped dots. This result seems to indicate that
ring formation is the result of strain relaxation. Finally, our simulations provide some new insight
into the mechanisms that lead to the alignment of stacked quantum dots.

1.2 Computational Framework

Our method is based on the observation that adatoms and dimers are weakly coupled to the elastic
field. Several tests reveal that this is an excellent assumption which also sheds light on aspects
of heteroepitaxial growth. For example, our calculations show that the mechanism involved in
the stacking of quantum dots involves a collective phenomena and is not the result of enhanced
nucleation in the region above the buried dot.

To get at the issues outlined above, we needed to introduce further modifications to our earlier
methods aimed at improving computational speed [15, 16]. Our goal is to perform simulations
on length scales close to one hundred nanometers and time scales of tens of seconds in physically
realistic parameter regimes. Unfortunately, simulating epitaxial systems with strain is orders of
magnitude more expensive than simulating systems without strain because the elastic displacement
field is nonlocal and often sensitive to atomistic scale detail. As a result, the bulk of KMC simula-
tions of heteroepitaxial growth have implemented some form of elastic update after each atomistic
event. Much of the recent effort in this area has focussed on efficient algorithms for computing this
displacement field using a combination of both local and global updates [13, 14, 15, 16, 22]. Even
with the techniques and approximations introduced in these earlier works, to complete the sort of
computations we are striving for it would take something like year on a typical single core machine
(e.g. Intel Xeon 5650, 2.66 GHz).

To achieve our goals, the current simulations exploit a separation of scales based on the local
coordination of surface atoms. More specifically, the surface of the film is partitioned into two
nonoverlapping regions, S = Sw ∪ Ss, according to how strongly individual atoms are bonded to
the surface.

Following the work of Burton, Cabrerra and Frank (BCF) [32], there has been a long tradition
in the epitaxial growth literature of partitioning the film surface into a height profile, h(x), and an
“adatom” density, ρ(x), of uncoordinated surface atoms. This recognizes the fact that, to a good
approximation, these atoms diffuse independently on the surface of the film. This idea has been
extended to heteroepitaxial growth, and used to perform simulations using the island dynamics
formulation of a BCF-like model [1, 2, 3]. The approximation we have in mind is inspired by these
simulations. A key observation made by these investigators is that it should not really be necessary
to update the elastic displacement field based on the motion of individual adatoms. In the case
of island dynamics, this observation is very naturally incorporated since an implicit time stepping
strategy is employed when updating the adatom field. In this way, many adatoms will attach or
detach from the island boundary before the elastic field is updated.

Within the KMC literature, which aims for a more resolved atomistic view of the film surface,
the adatom concept has also occasionally found uses, as the motion of adatoms invariably dominates
the computational cost of KMC simulations. In Ref. [33], for example, the surface of the film is
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partitioned into regions surrounding steps, where KMC simulations are performed, and “vicinal”
regions, where diffusion equations conserve the flux of adatoms to the steps. Adatom motion is
treated using a “big-hop” approximation in Ref. [28]. More recently, in Ref. [16] it was observed
that the influence of the elastic field on the rates of adatoms was relatively weak, and that adatoms
had a correspondingly weak influence on the elastic field of neighboring sites. Thus, omitting
the elastic computations for adatom motion is both highly efficient, due to the dominance of
these events, and reasonably accurate. This latter study again relied on a version of the big-hop
approximation that, while effective, proved somewhat difficult to implement. Here, we adopt an
alternative approach, based on the domain decomposition mentioned above, that offers both a
streamlined implementation and is readily extended to include any sort of weakly bonded atom.
The result is surprisingly effective, yielding simulations that are fifteen to twenty times faster while
retaining a high degree of accuracy.

In the next section, we review the model and previous numerical approximations of this model
before continuing with the present approach.

2 KMC Model

Like most KMC models, we assume a Markov chain dynamics that has the system making transi-
tions between states that consist of nearest neighbor single-atom moves on the surface.

2.1 General Considerations

In an off-lattice KMC, based on transition state theory and an empirical potential or perhaps even
a density functional theory, one would compute hopping rates between states w and w′ as

rw→w′ = K exp [−EB/kT ],

where k is Boltzmann’s constant, T is the temperature of the film, and 1/K is a time scale deter-
mined by details of the crystal, typically K = 1012 to 1013 sec−1, and EB = ET −EW is the energy
needed to rise out of a local minimum of the potential with energy EW , cross a transition/saddle
point with energy ET , and escape to a neighboring local energy well. It is easy to show that these
models satisfy detailed balance.

In a lattice-based model without elastic effects, the energy is only defined for lattice configura-
tions, and the energy barrier EB is often taken to be linear in the number and types of bonds to
adjacent lattice sites. If one defines an Ising model potential,

U = −Nε,

based on a similar bond-counting scheme with N the total number of bonds in the system and ε a
bond energy, then one can see that such bond-counting models for the rates are equivalent to the
following:

EB = −∆U, where

∆U = U(with surface atom (i, j))− U(without surface atom (i, j)). (1)

In equilibrium, the probability of being in state w is

ρw = C exp(−U(w)/kT ),
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where C is a normalization constant. Detailed balance requires

rw→w′ρw = rw′→wρw′ .

The bond-counting model for the rates in the form (1) is readily seen to satisfy this relationship.
Notice that the term U(without surface atom(i, j)) is playing the role of the transition-state

energy. It is important that this quantity is the same between any pair of communicating states.
By defining the “transition state” in this way, this condition is automatically satisfied, as the “atom
off” state is the same for both the original configuration and the destination regardless of which
way the transition takes place.

In reality −∆U is a fairly poor approximation to EB . To gain additional flexibility in the model
without altering the detailed balance relationship, we can modify this to EB = −(U0 +∆U). This
is the most commonly used model in the KMC literature.

The type of model that we consider in this paper was proposed by Orr et al. [25] and has been
extended by a number of different investigators (e.g. [10, 12, 14, 15, 22]). In short, this is a cube-
on-cube, bond counting model that has been modified to include elastic effects. The state of the
system is described by a discrete height array hij , supplemented by a discrete displacement field,
uijk. Associated with each of these is a potential energy—the former corresponding to an Ising
type potential U , the latter a discrete elastic energy W . We assume these quantities add to give
the total energy of the system E = U +W . This model is capable of capturing many qualitative
aspects of heterepitaxial growth. It is, however, still limited in that it uses a simple cubic lattice
and cannot account for crystal defects, e.g. dislocations.

In a fashion similar to the bond-counting model (1), the transitions occur with rates that only
depend on the initial state and the location of the hopping particle:

rij = K exp [(E0 +∆E)/kBT ], (2)

where {ij} indicates the initial position of the atom making the move and −(E0+∆E) is the energy
barrier that must be overcome in making the transition. As with U0 above, we take E0 as a fixed
constant and

∆E = E(with surface atom (i, j))− E(without surface atom (i, j)). (3)

Like the energy, ∆E now consists of two pieces: one that depends only on hij and that is of the type
found in bond-counting schemes without elastic effects and one that depends only on the elastic
energy,

∆E = ∆U +∆W.

Finally, W is the total elastic contribution to the energy and, in analogy with (1), we have

∆W = W (with surface atom (i, j))−W (without surface atom (i, j)). (4)

The rates given by (2) also satisfy detail balance.

2.2 Model Parameters

As described in Ref. [16], we shall consider two species of atoms denoted type 1 and type 2. For
most of our simulations we will consider the situation in which atoms of type 2 are deposited on a
substrate of type 1. We will let γαβ denote the bond strength between atoms of type α and type
β. For this model, ∆U for a surface atom at site (i, j) is given by

∆U = −(B11 +B22 +B12), (5)

5



with
Bαβ =

(
aN

(1)
αβ + bN

(2)
αβ + cN

(3)
αβ

)
γαβ , (6)

where γαβ is strength of the interaction, N
(1)
α,β denotes the total number of bonds of type α and β

connecting the atom at site (i, j) and its nearest neighbors, N
(2)
αβ and N

(3)
αβ are analogously defined

but for next nearest neighbors and next to next nearest neighbors respectively. We choose

E0 = −ED + (a+ 4b+ 4c)γ12.

This implies that ED is the energy barrier for the diffusion of a type 2 adatom on a type 1 substrate
(ignoring the ∆W term for now). We point out that more sophisticated bond counting models have
been proposed in Refs. [23, 24] in the context of heteroepitaxy.

The parameters a, b, and c allow one vary the anisotropy of the crystal. For example, the
surface energy per unit area for (100) facet of material 1 is

σ001 =
(a+ 4b+ 4c)γ11

2ℓ2
, (7)

where ℓ is the size of the cubic unit cell. In addition the surface energy per unit area for the (011)
and (111) facets are, respectively, given by

σ011 =
(2a+ 6b+ 4c)γ11

2ℓ2
√
2

(8)

and

σ111 =
(3a+ 6b+ 5c)γ11

2ℓ2
√
3

. (9)

These expressions are computed by counting the number of broken bonds. The values σ001 and
σ011 can be found in the book by Markov [34].

The elastic interactions are accounted for by using a ball and spring model with longitudinal and
diagonal springs having spring constants kL and kD respectively. The elastic effects arise because
the natural bond length of materials 1 and 2 are different. We will denote these lengths as a1 and
a2. The misfit is then µ = (a2 − a1)/a1. The details of this model can be found in Russo and
Smereka [14] and Baskaran et al. [22]. For this model, if one has a flat film of material 2 on a
substrate of material 1 then the elastic energy per bulk atom in the film is

wfilm =
4k2D + 5kLkD + k2L

kL + 2kD
µ2.

The spring constants will be estimated by using the continuum limit of the ball and spring
model. For the single species case, the energy per atom can be written as

watom = (ℓ2/2)
[
(kL + 2kD)(e

2
11 + e222 + e233) + 2kD(e11e22 + e11e33 + e22e33) + 4kD(e

2
12 + e213 + e223)

]
,

where eij is the strain tensor. The energy density per unit volume is then w = watom/ℓ3. Therefore
we can write

w =
1

2
C11(e

2
11 + e222 + e233) + C12(e11e22 + e11e33 + e22e33) + 2C44(e

2
12 + e213 + e223),

where
C11 = (kL + 2kD)/ℓ, C12 = kD/ℓ, and C44 = kD/ℓ. (10)

The above formulas will be used later in the paper.
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3 KMC Implementation

In this section, we start by reviewing the Local Energy Method which was introduced in Ref.
[16]. While this was a significant advance, allowing the computation of three-dimensional films on
scales previously unreachable, we were unable to access physically realistic parameter regimes which
have lower deposition rates and larger islands than we were able to compute with that method.
In Section 3.2, we gain another leap in computational performance through the use of a surface
decomposition technique, allowing us to access physically realistic regimes. The rest of the section
is spent validating the method by comparing to the results of the previous method.

3.1 Local Energy Method

It is specifically the computation of ∆W (Eq. 4) that makes these simulations so much more
costly than simulations that involve only a bond-counting formula, as each rate requires one to
solve a linear system, and, in principal, one needs to update the hopping rate of all of the surface
atoms after each event. In Ref. [16], an approximation is introduced that goes a long way toward
mitigating this problem. It is observed that ∆W is close to being proportional to the energy in the
springs immediately adjacent to the atom whose rate is being calculated; in other words

∆W = Cwij, (11)

where wij is the energy in the springs connected to the surface atom at site (i, j) and C depends
only on the ratio of the spring constants kL and kD. For example, if kL = 2kD then C = 1.33 and
if kD = (10/3)kL, C = 1.5 (see Figure 1 of Ref. [16] for the first case).

While this is not an exact relationship, arguments based on continuum elasticity suggest the
error is small, and careful comparison with simulations not using this approximation support this
assertion, which has the added advantage of being relatively easy to explain and implement, so
we will use this approach in all of the calculations presented in this paper. We refer to this
as the Local Energy Method. This approximation is similar to that used in Ref. [3]. For a
procedure somewhat more faithful to the model introduced above, an alternative would be to use
the techniques introduced in Ref. [15].

With this approximation in place, only a single linear system need be solved per event. Even this
is a large numerical task when compared to the local update that accompanies an event in a simple,
bond-counting KMC simulation. Ultimately, we will deal with these calculations in one of three
ways. Moves of low-coordinated atoms will use rates that depend only on the bond counting part, as
we will demonstrate that the elastic contribution is negligible. For the highly-coordinated atoms, we
will mostly rely on a locally constrained calculation, where the displacement field beyond a certain
distance from the move is held fixed and serves as a boundary condition for the local update. We
have used these local updates in our earlier work, developing an efficient numerical procedure, the
Expanding Box Method, to perform these calculations [15, 22]. Similar ideas have been used in off-
lattice simulations [35, 36], where this is typically referred to as a “frozen crystal” approximation.
The local calculations leave small residual forces at the boundaries, which accumulate over the
course of the calculation, and must occasionally be relaxed by performing a full, global solution of
the system. The latter calculations use an artificial far-field boundary condition with a multigrid
procedure for solving the linear system [13, 14].
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3.2 Surface Decomposition KMC

The new technique being introduced in this paper is to decompose the surface into two subsets,
one for highly coordinated sites and one for low coordinated sites. Effectively, one has

hij = h̄ij +∆hij ,

where h̄ij is the profile of the film with the weakly bonded atoms removed. For the low-coordinated
sites, the bond-counting term, U , dominates, while both U and W (the elastic energy) are impor-
tant for the highly-coordinates sites. This can be seen by examining Figures 1 and 2. Figure 1
demonstrates how the variation in the elastic energy density is largely confined to the boundary of
islands and is not significantly affected by the removal of the adatoms and dimers from the surface.
Figure 2 shows close-ups of the same calculations shown in Figure 1, but zoomed into the lower
left quarter of the images in Figure 1. This view reveals important details, described below, of the
elastic density field in the vicinity of adatoms and vacancies that are not readily apparent in the
first view.

In the upper left panel of Figures 1 and 2, we have a typical surface configuration, showing two
quantum dots with many adatoms. The dots are resting on one monolayer of material 2 which,
in turn, is on an infinitely deep substrate of material 1. It is important to note there are several
vacancies in the monolayer of material 2. In the panel below this, we plot the local elastic energy,
wij : the sum of the energy in the springs connected to the surface atom at site (i, j). One observes
that this quantity is large around the rim of islands, where it would increase the hopping rate, and
that it is almost zero for both adatoms and vacancies that penetrate to the substrate. More careful
observations reveal that not only is the local elastic energy of the adatoms small, but, unlike the
vacancies, the adatoms do little to disturb their environment. This turns out to be true of all low
coordinated sites, and is easy to understand in terms of the ball-and-spring model—there simply
is not much constraining a low-coordinated atom, so the springs can relax almost completely.

In the upper right panels of Figures 1 and 2, these low-coordinated atoms have been removed
from the surface, and the resulting local elastic energy is plotted directly below in the lower
right panels. Notice that this has had little effect on the regions where the local elastic energy
is large—the rims of the islands. Further, it replaces the local elastic energy at the locations where
low-coordinated atoms have been removed with a local elastic energy that fits smoothly into its
environment. This is important because it means that these values can be used to get a realistic
hopping rate once the low-coordinated atom has moved off of the site without having to update
the elastic field.

3.2.1 Detailed balance

The total energy of the system using the Surface Decomposition Method is approximated by

Ẽ = U +W,

where U is the bond-counting energy defined earlier and W is the elastic energy corresponding to
the profile h̄. When Ẽ is used in place of E in Eq. (2) the rates will still satisfy detailed balance,
which can be seen as follows. As with the earlier model, the “atom off” state can readily be seen to
give the same energy for any two states that are connected by an allowed transition, and this, once
again, mimics the role of the transition-state energy, ensuring that detailed balance is satisfied.
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3.2.2 Algorithm

1. Initialization

(a) Determine ∆U for every surface atom by bound counting.

(b) Determine the denuded configuration h̄ by removing any surface atom with coordination
N ≤ NC = 6.

(c) Perform a global elastic solve for the configuration h̄, computing ∆W = Cw̄ij for every
surface atom of the denuded configuration.

(d) The rates for surface atoms of the actual configuration h are then initialized to

rij =

{
K ′ exp(∆U/kT ) if Nij ≤ Nc,
K ′ exp(∆U/kT +∆W/kT ) if Nij > Nc,

where K ′ = KeE0/kT , ∆U is given by Eq. (5), and ∆W is given by Eq. (11).

2. Select an event by choosing a uniformly distributed random number r ∈ [0, R), with R =
rdep +

∑
rij . The event to which r corresponds is located using a binary tree search [37].

3. If the event selected is a deposition, a site is selected at random and an atom is added there;
otherwise the event is a hop and the selected atom is moved to one of the four lateral neighbor
sites selected at random.

4. The values of ∆Uij are updated as needed.

5. If the denuded configuration is changed then one performs a local elastic solve using an
expanding box of size S centered at the site of the selected atom.

6. Every NG = 105 steps, update the entire displacement field of the denuded configuration.
The results are quite insensitive to the choice of NG; for example changing NG to 106 gives
similar results for all the cases presented in this paper.

7. Repeat steps 2 through 6.

3.3 Verification

It turns out that the new approach is fast enough that one can get much closer to simulating
physically relevant systems. However, we wish to compare with our old approach [16] in order
to establish the validity of the new formulation, which is now roughly fifteen times faster. This
comparison is not feasible using physically relevant parameters, so we choose more convenient
parameters for this purpose.

Roughly speaking the surface energies are on the low side for semiconductor materials, while
the spring constants are on the high side, but this allows us to observe island formation on time
and length scales accessible to our previous code.

In this section we take

a = 0.3, b = 0.5, c = 1, γ11 = 0.26 eV, γ12 = 0.2425 eV, and γ22 = 0.225 eV.
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Figure 1: The upper panels show surface configurations with and without low coordinated atoms,
whereas the lower panels show the respective elastic energy densities (wij). Notice that the elastic
energy is low on the tops of the islands because the film is relaxed compared to the single monolayer
of coverage on the rest of the surface. Also, notice that the largest concentration of energy density
is on the boundary of the islands. Recall wij is the sum of the energy in the springs connected to
the surface atom at site (i, j).

If one takes ℓ = 2.7 Å, then using Eqs. (7 - 9), for material 1 we find the following surface energies
for the indicated facets:

σ100 = 1800 erg/cm2, σ110 = 1535 erg/cm2 and σ111 = 1468 erg/cm2.

In addition, we take µ = .05, kL = 15eV/ℓ2 and kD = 7.5eV/ℓ2, which, using Eq. 10, corresponds
to

C11 = 30eV/ℓ3 and C12 = C44 = 7.5eV/ℓ3,

or
C11 = 24.42 × 1011 dynes/cm2 and C12 = C44 = 6.104 × 1011 dynes/cm2.

We take ED = 0.8 eV, K = 1012 sec−1, and T = 700 K.
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Figure 2: This is the same as figure 1 except each panel is zoomed in to the lower right corner.
This allows one to see individual adatom and vacancies. Notice that removal of adatoms has little
affect on the surrounding energy density.

3.3.1 Submonolayer Growth

In our first test, we consider the deposition of 0.2 ML, at a rate of 0.5 ML/sec, of material 2 on a
substrate composed of material 1. The lattice is 512×512, which corresponds to roughly 138 nm ×
138 nm. We compute the island size distribution for an ensemble with ten realizations using both
the Surface Decomposition Method and the Local Energy Method. The results are presented in
Figure 3 and show good agreement. In addition, for further comparison, we present the island size
distribution when elastic interactions are ignored. This shows that the effect of elastic interactions is
to both narrow the size distribution and reduce the average size of the islands. This is in agreement
with the island dynamics simulation of Ratsch et al. [3].
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Figure 3: Island size distributions for the Local Energy Method (grey line), Surface Decomposition
Method (black line), and with no elastic effects (dashed black line).

3.3.2 Three Dimensional Islands

Here we consider multilayer growth of material 2 on material 1 using a substrate of size 128× 128.
The deposition rate is 1 ML/sec. In this simulation we see the formation of a wettng layer with
subsequent growth of three dimensional islands. Our basic tool for comparing results of different
simulations is a radially averaged autocorrelation function. First, we define h̃ = h− 〈h〉, where 〈h〉
is the mean surface height and compute the discrete form of

I(u, v) =

∫ ∫
h̃(x− u, y − v)h̃(x, y) dxdy,

followed by

g(R) =
1

2πR

∫ ∫
I (u(r, θ), v(r, θ)) δa(r −R) drdθ,

where δa is a mollified delta function. This gives a fairly robust measure of film characteristics at
different length scales.

The results are summarized in Figure 4 which shows the ensemble average of 10 autocorrelation
functions for each method. The figure shows that both methods produce autocorrelation functions
that are in good agreement with each other. There is one slight difference, however. It seems that
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Figure 4: The black and grey curves are the ensemble averaged auto correlation function for the
Surface Decomposition Method and the Local Energy Method, respectively. Ten simulations were
used for each ensemble.

Figure 5: Three dimensional island formation after three monolayers of deposition computed using
both the Local Energy Method and the Surface Decomposition Method. The qualitative similarity
reinforces the detailed statistics presented in Figures 3 and 4.

the Local Energy Method produces results that are slightly rougher than the Surface Decomposition
Method. Figure 5 shows two simulations after three monolayers of deposition, one with each of the
two methods. The qualitative similarity of the two surfaces reflects the agreement seen in the data
presented in Figures 3 and 4.
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Figure 6: Cross sections after 1.4 monolayers of deposition. The upper figure results from using
the Local Energy Method, while the lower one uses the Surface Decomposition Method.
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Figure 7: Dot height as a function of the number of deposited monolayers. The Surface Decompo-
sition Method is plotted in black, whereas the Local Energy Method is plotted in grey.

3.3.3 Quantum Dot Alignment

In this test, we consider the situation in which a cylindrical region of material 2 is buried in the
center of a substrate of material 1, henceforth referred to as a buried dot. For this test case, g12
was changed to 0.23 to suppress the amount of intermixing. Material 2 is then deposited on to the
substrate at a rate of 0.1 ML/sec. Due to the presence of the buried dot it is energetically preferred
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for a three dimensional island to form directly above the buried dot. Indeed this is exactly what
happens. Figure 6 shows a cross section of our system after 1.4 ML of deposition. One can clearly
see the three dimensional island has aligned itself with the buried dot for both approaches. To
assess whether or not the dynamics of both approaches agree, we consider the following quantity
referred to as the dot height:

hdot =
1

πR2

∫ ∫

|x−xc|<R
h(x, y) dxdy,

which is the average height in a local region centered over the buried dot. In the above formula
x = (x, y)T and xc is the horizontal location of the center of the buried dot. Figure 7 shows a plot
of the ensemble averaged island height as function of the amount of material deposited for both
methods with R = 10. The agreement is quite good.

Figure 8: Results after a very small amount of deposition. From left to right and top to bottom the
amount of material deposited is .02 ML, .05ML and .1 ML, respectively. The buried dot is centered
in the middle of the substrate. A cross section showing the buried dot is displayed in Figure 6.
This figure shows that the islands must become sufficiently large before their elastic interaction
with the buried dot is strong enough to result in alignment.
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Figure 9: The film is shown after 0.5 monolayers of deposition of yellow colored atoms (Material 2)
at T=750 K. At this stage in the growth only two dimensional islands have formed. The presence
of blue colored atoms within the two dimensional islands is due to intermixing.

3.4 Summary

The above comparisions indicate that the Surface Decomposition Method gives excellent quantitive
agreement with the Local Energy Method with the added feature that it is ten to twenty times
faster. This indicates that the approximations used in the Surface Decomposition Method are in
fact quite good in a variety of settings. Given this we can now proceed to use this formulation to
study various aspects of heteroepitaxial growth.

4 Applications and Implications

In this section we turn to the exploration of the issues outlined in Section 1.1.

4.1 Quantum Dot Alignment

The fact that this new, surface decomposition technique offers significant improvement in speed
while at the same time preserving fidelity offers some insight into the importance of various physical
processes that take place during heteroepitaxial growth. In particular, it suggests that elastic
interactions play a very weak role for low coordinated atoms. This conclusion is significant when
one considers what happens during the alignment of stacked quantum dots. In has been suggested

16



Figure 10: The film is shown after 1.0 monolayers of deposition at T=750 K. Here the two dimen-
sional islands have grown into each other to completely cover the surface. While this single layer
of yellow colored atoms is strained, the surface forces prevent the formation of three dimensional
islands.

in the literature (e.g. Ref. [38]) that adatoms move to the strained regions of the substrate that are
over the buried dots, and, as a consequence, islands will nucleate in these regions. The results here
suggest something slightly different happens. Indeed, we observe that islands nucleate essentially
at random without regard to the buried dot, and, only when they become big enough, do they start
to interact elastically with the buried dots. Before that, the islands were small and dominated by
surface forces and entropy. This is demonstrated in Figure 8 which shows results for very small
amounts of deposition. For 0.02 ML of deposition, it is evident that the location of the small islands
has not yet been influenced by the buried dot. There does seem to be some slight bias at 0.05 ML
and by 0.1 ML it is clear that the islands are finally big enough to interact significantly with the
buried dot. The discussion above was developed, in part, from conversations with A. Baskaran.

4.2 Parameter Values

Before we present our other series of simulations, we first discuss the issue of parameter values.
We will consider a system where the parameters are somewhat close the physical properties of a
typical semiconductor material. We are not claiming to simulate a particular system but instead a
system whose phenomena are representative of what happens in a variety of actual heteroepitaxial
experiments.
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Figure 11: The film is shown after 1.5 monolayers of deposition at T=750 K. At this point in
the growth many things have occurred: There are two dimensional islands as would be expected
for layer-by-layer growth, several pre-pyramids have formed due to elastic strain, and one of the
pre-pryamids has started to form into a fully faceted pyramid.

We again take a = 0.3, b = 0.5 and c = 1.0, but now we choose

γ11 = 0.29 eV, γ12 = 0.2599 eV, and γ22 = 0.2510 eV.

If one takes ℓ = 2.7Å then, for material 1, the surface energies for the following facets are

σ100 = 2007 erg/cm2, σ110 = 1712 erg/cm2 and σ111 = 1637 erg/cm2.

We have used Eqs. (7-9) to derive these results. These numbers are somewhat close to the surface
energies of Silicon. Notice that the surface energies of the (100) interface for material 2 is about
13% smaller than material 1. These choices are fairly close to those reported by Jaccodine [39].
The values for the (100) interface are also close to those chosen by Levine et al. [41]. In addition,
the (110) and (111) facets have lower energy than the (100) facet, which is also true for Si and Ge.

We note that Mo et al. [42] report from experiments that the jumping rate of Si on Si(100) is well
approximated by D/ℓ2 where D = 10−3 exp(−Ed/kT ) cm

2/sec and Ed ≈ 0.67 eV. This indicates
that the hopping rate, assuming a nearest neighbor distance of 2.7 Å, is 1.37×1012 exp(−Ed/kT ) sec

−1.
In our simulations we take ED = 0.7 eV and choose the prefactor to be 1012sec−1. This means the
energy barrier for the diffusion of an adatom of material 2 on material 1 is 0.7 eV while for material
1 on material 1 it is 0.890 eV and for material 2 on material 2 is 0.640 eV. The diffusion barriers
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Figure 12: The film is shown after 2 monolayers of deposition at T=750 K. At this stage, most of
the two dimensional islands have been consumed by the larger three dimensional islands. There
are still several pre-pyramids and one fully faceted three dimensional island.

we are choosing are still slightly too large and this is simply because the code is still somewhat
slow. For example, the result shown in Figure 13 took approximately three weeks to generate. If
we had used more realistic energy barriers for adatom hopping the simulations would have taken
much longer. All our simulations are performed on a single core machine (Intel Xeon 5650, 2.66
GHz).

For the elastic strengths we pick kL = 3 eV/ℓ2 and kD = 10 eV/ℓ2. In the continuum limit this
gives

C11 = 23 eV/ℓ3 and C12 = C44 = 10 eV/ℓ3.

Now taking ℓ = 2.7Å and using Eq. (10), we have

C11 = 18.73 × 1011 dynes/cm2 and C12 = C44 = 8.14× 1011 dynes/cm2.

These are not unreasonable values for a semiconductor. For example, the elastic constants of Silicon
[40] are

C11 = 16.6×1011 dynes/cm2, C12 = 6.40×1011 dynes/cm2, and C44 = 7.96×1011 dynes/cm2.

For the rest of our simulations we will take µ = 0.055. This value of the misfit is higher than one
for Si-Ge, but lower than for GaAs-InAs. We will take F = 1 ML/sec and, unless otherwise stated,
T =750 K.
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Figure 13: The film is shown after 3 monolayers of deposition at T=750 K. Here most of the film
is covered in three dimensional, fully faceted island with a small number of pre-pyramids.

4.3 Stranski-Krastanov Growth

The results of our simulations using the Surface Decomposition Method are displayed in Figures 9
to 13. These simulations shed light on the formation of faceted quantum dots on a faceted surface,
what Tersoff et al. [43] have referred to as a puzzling phenomenon. Since the quantum dots and
the surface are fully faceted, they should be nucleated by a thermally activated process. One might
think that the islands would be facetted as soon as they are nucleated, but experiments suggest that
instead the faceted quantum dots evolve from pre-pyramids. Recall that pre-prymids are small,
multilayer, three dimensional islands whose sides are not faceted.

Figure 9 shows the film after 0.5 ML of deposition, and demonstrates the formation of two-
dimensional, i.e. single monolayer, islands. Figure 10 shows that, after 1.0 ML of deposition, the
islands have merged to initiate the formation of the wetting layer. Both the two dimensional islands
and the wetting layer are strained due to the misfit, but surface energy prevents them from evolving
into three-dimensional, i.e. multi-layer, islands.

During the second layer of growth, the surface is now primarily composed of material 2 (yellow
colored atoms) so that the surface energy is now lower (see §4.2). This indicates that strain energy
is now playing a more important role. Indeed, after 1.5 ML of deposition, see Fig. 11, one starts
to see indications of three-dimensional island formation. If one examines Figure 11, one can see
three important features: two-dimensional islands, multi-layer islands with irregular boundaries
(pre-pyramids), and a single large, three-dimensional island that is in the early stages of becoming
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Figure 14: This figure shows the film after 3 monolayers of deposition. The conditions are identical
to the results shown in Figures 9 to 13 except the temperature has been lowered to 725 K. The
lowering of the temperature reduces atom mobility resulting in more islands that are smaller in
size. In addition, the island shapes are more varied, with some rectangular and others square.

faceted. These multilayer islands form one layer at a time. In other words, they nucleate via a
layer-by-layer mechanism as discussed in Ref. [31]. We are confident that the pre-pryamids form
due to strain relaxation since they do not occur when the misfit is set to zero.

After two monolayers of deposition, one fully facetted three-dimensional island has formed (see,
Figure 12). The faceting occurs because the surface energy is anisotropic. There are a number of
additional three-dimensional islands in earlier stages of growth, while the two-dimensional islands
have largely disappeared, having been incorporated into larger islands.

By three monolayers of growth (Figure 13) the film primarily consists of the fully faceted, three-
dimensional islands. It should be pointed out that this morphology is quite stable. Annealing
simulations will cause the very small islands to be incorporated into the bigger islands, but the
big islands do not appreciably change their size or shape. Similar results were reported in the
simulations of Aqua and Frisch [6] and the experiments of Berbezier et al. [50].

In summary, a wetting layer is first formed and then pre-pyramids are created by a layer-by-layer
nucleation mechanism that is driven by elastic strain. The pre-pyramids then evolve by surface
diffusion into faceted quantum dots. Our results confirm the work of Xiang et al. [31] who had
predicted that quantum dots would form by a layer-by-layer nucleation mechanism. This indicates
that one does not need to resort to the assumption (quoting from Ref. [43]) that “for strained
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Figure 15: This figure shows the film after 3 monolayers of deposition. The conditions are identical
to the results shown in Figures 9 to 13 except the temperature has been raised to 775 K which
increases atom mobility resulting in fewer islands that are larger in size. In this case the shapes of
the islands are more uniform.

SiGe, the surface-energy anisotropy allows all orientations near (001), with the first facet being
(105)” to provide a mechanism for faceted quantum dot formation. This scenario is consistent with
experimental results.

The effect of temperature on the morphology is shown in Figures 14 and 15. Comparing Figures
13 and 14, one observes that decreasing the temperature causes the island density to become larger
and there are fewer fully facetted quantum dots. On the other hand, comparing Figures 13 and 15,
we see that increasing the temperature results in all the quantum dots being facetted with a lower
dot density. We attribute these observation to the increased mobility that arises from increasing
the temperature. Finally, we show a simulation at a much higher temperature, namely T = 875 K.
Here we observe an extremely rapid onset of facetted 3D islands. Figure 16 shows that at 1.4 ML
no islands have formed and with just an additional 0.2 ML of deposited material a fairly large (13
nm) facetted 3D island has grown as shown on Figure 17.

4.4 Capping

Capping of quantum dots has been widely studied experimentally, for example [44, 45, 46, 47]. It
has been established that the quantum dots can erode significantly during capping by a process
that is not well understood (e.g. Ref. [44]). In addition it has been observed in some experiments
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Figure 16: This figure shows the film after 1.4 monolayers of deposition. The conditions are identical
to the results shown in Figures 9 to 13 except the temperature has been raised to 875 K. At this
point only one small pre-pryamid has formed. The elevated temperature inhibits the formation of
pre-pryamids due to entropic effects.

that during capping a fraction of the quantum dots evolve into ring-like structures (e.g. Refs.
[45, 46, 47]). Our results not only are able to capture these phenomena, but they also provide
insight into the mechanisms behind them.

In our simulations we cap the film shown in Figure 13, which was grown at 750 K, with material
1. We then use a capping temperature of 725 K, selecting this temperature so that a wide range
of phenomena would be observed in one realization. If we had picked a much higher temperature,
our simulations show that all of the dots will be almost completely eroded; if we had picked a
lower temperature, the morphology of the dots would have been unchanged during capping. These
observations are consistent with experimental results (e.g. Ref. [44]).

Figure 18 shows the morphology after the quantum dots displayed in Fig. 13 have been capped
with 0.6 monolayers of material 1. We observe that the dots have noticeably eroded. Looking at
this figure, the mechanism behind this erosion becomes fairly clear. As the capping progresses, the
wetting layer becomes more and more covered with material 1 (blue), which has a higher surface
energy that material 2 (yellow). This means there is a driving force for the material in the quantum
dots to spread onto the wetting layer. A close examination of Figure 18 reveals that the dot material
is indeed getting wicked away. Figure 19 presents a cartoon version of this figure to clarify this
mechanism. In this way the size of the dots are reduced. This mechanism will be intensified
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Figure 17: The film is shown after 1.6 monolayers of deposition at T=875 K. This demonstrates
the rapid growth of a pre-pryamid into a fully faceted, three dimensional island.

at higher temperatures due to greater mobility. This explains the experimental observation that
increasing the temperature will increase dot erosion. It should be remarked that this conclusion is
not as obvious as it first sounds, because during the formation of the quantum dots increasing the
temperature will enhance dot formation: compare Figures 13, 14 and 15. Finally we point out that
Reyes et al. [48] have argued that this mechanism is an important feature in liquid drop epitaxy.

Upon further capping, the dots become covered with material 1, and this mechanism is gradually
arrested. Further capping results in a situation where many dots have dissolved but several remain.
Those that remain are surrounded by what is mainly material 1. Figure 20 shows the film after
4.0 monolayers of capping material have been deposited. There are three quantum dots whose tops
are still visible. It is interesting to note that the dot material (yellow colored atoms) is intermixed
with the capping material except for a ring-shaped region immediately near the edge of the dot.
This behavior has been reported in experiments [49].

These dots are elastically compressed by the material 1 that surrounds them. In many cases it
is energetically preferable to relieve this strain energy by ejecting material from the center of the
dots, thereby forming ring-like structures. Figure 21 shows an example of this process. Finally,
Figure 22 shows a horizontal cross section after all of the dots have been completely capped. This
cross section shows that many of the dots originally present have dissolved. Of the four that
survived, three evolved into ring-like structures. We have performed simulations over a wide range
of parameter values, and we find these ring-like structures to be rather ubiquitous.
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Figure 18: The film shown in Figure 13 is capped with material 1 at T=725 K. This figure shows
the result after 0.6 monolayers of capping material (blue colored atoms) have been deposited. The
reader should notice that the wetting layer which was primarily compose of material 2 (yellow
colored atoms, see, Figure13) now has a high concentration of material 1 (blue colored atoms).
This results in a surface with a higher surface energy which in turn provides a driving force for dot
material to cover the surface. This figure clearly shows the quantum dots have been reduced in size
due to dot material being wicked away to replenish the wetting layer.

In closing, we mention that surface decomposition KMC has recently been applied to study
capping of GaAs dots by Ga1−xInxAs [49]. In that paper the reader will find detailed comparisons
of simulations using the algorithm presented here with experimental results.

5 Summary

In this paper we have offered an approximation to a well established KMC model for heteroepitaxial
growth. The key to this approximation is that the elastic interaction of low coordinated atoms with
the rest of crystal is sufficiently weak that it may be ignored. The resulting model still satisfies
detailed balance, and its implementation results in simulation speeds that are close to fifteen times
faster. Various tests quantitatively reveal that this approximation is quite faithful to the evolution
of the original model. One of these tests implies that the alignment that occurs in the stacking
of quantum dots results from interactions between islands and buried dots and not from adatom-
buried dot interactions as suggested by other investigations. It is shown that our method can
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Figure 19: This is a cartoon of Figure 18 that serves to emphasize how the material in the dots is
wicked on to the substrate.

simulate Stranski-Krastanov growth. We provide evidence that faceted 3D islands result from the
layer-by-layer nucleation of pre-pyramids and fully faceted islands result from anisotropic surface
diffusion. The capping of islands is also studied, and it is shown that capping causes erosion of the
quantum dots because the dot material is used to replenish the wetting layer. Our simulations are
also able to capture the formation of ring-like structures.

Acknowledgments

We thank J.N. Aqua, A. Baskaran, P. Koenraad, J.M. Millunchick, K. Reyes, Y. Saito, and V. Sih,
for helpful conversations. This work was supported, in part, by NSF support grants DMS-0810113,
DMS-0854870, and DMS-1115252.

26



dots surrounded
by capping
material

Ring of
depleted
dot material

?

��������������������������

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�/

@
@
@
@
@R

Figure 20: This shows the result after 4 ML of capping at T=725 K. This figure shows three dots
that have been completely surrounded by capping material. The surrounded dots are now being
compressed by the capping material which greatly increases their elastic energy.
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Figure 21: This shows the result after 4.5 ML of capping at T=725 K. The high strain energy
inside the dots provides a driving force for material to leave. If the dot material can leave before
it has been covered by the capping material a crater will form. This figure shows the formation
of a crater in which most of the dot material has left, leaving behind a small ring of material 2
(yellow colored atoms). Further deposition results in the crater being filled with capping material.
The small ring appears to be fairly undisturbed by the subsequent capping process, resulting in a
nanoring.
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Figure 22: A horizontal cross section of the film is presented after 8 ML of capping. This slice is
located 2 ML above the the substrate. This figure shows that 3 nanorings have formed. In addition
it shows that one of the dots managed to survive the capping process.
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