
This is the accepted manuscript made available via CHORUS, the article has been
published as:

Enhancing phonon transmission across a Si/Ge interface by
atomic roughness: First-principles study with the Green's

function method
Zhiting Tian, Keivan Esfarjani, and Gang Chen

Phys. Rev. B 86, 235304 — Published 10 December 2012
DOI: 10.1103/PhysRevB.86.235304

http://dx.doi.org/10.1103/PhysRevB.86.235304


1 
 

Enhancing Phonon Transmission across Si/Ge Interface by Atomic Roughness: A First-
principles Study with the Green's Function Method 

 

Zhiting Tian, Keivan Esfarjani, and Gang Chen* 

Department of Mechanical Engineering 

Massachusetts Institute of technology 

Cambridge, MA 02139, USA 

 

Abstract 

Knowledge on the phonon transmittance as a function of phonon frequency and incidence 
angle at interfaces is vital for multiscale modeling of heat transport in nanostructured 
materials.  Although thermal conductivity reduction in nanostructured materials can 
usually be described by phonon scattering due to interface roughness, we show how a 
Green’s function method in conjunction with the Laudauer formalism suggests that 
interface roughness induced by atomic mixing can increase phonon transmission and 
interfacial thermal conductance.  This is the first attempt to incorporate first-principles 
force constants derived from ab initio density functional theory (DFT) into Green’s 
function calculation for infinitely large 3D crystal structure.  We also demonstrate the 
importance of accurate force constants by comparing the phonon transmission and 
thermal conductance using force constants obtained from semi-empirical Stillinger and 
Weber (SW) potential, and first-principles DFT calculations.  
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I. INTRODUCTION 

 

The reduced lattice thermal conductivity observed in many nanostructured materials has 
significant implications for applications from thermoelectric energy conversion to 
microelectronics thermal management.  The Boltzmann transport equation (BTE) can be 
used to accurately model the phonon transport in nanostructures if the input parameters, 
such as phonon mean free paths and interfacial transmission, can be properly represented.  
In recent years, excellent progress has been made in computing the mode-dependent 
phonon mean free paths in bulk materials using first-principles approaches1-4.  In contrast, 
research on phonon transmission across interfaces is still limited and first-principles 
studies of phonon interfacial transport are rather scarce.  First-principles based 
approaches have been recently applied to nanotubes5, 6; however, their applications to 
interfaces between bulk 3D materials are significantly more demanding due to the large 
number of transverse wavevectors required.   

Interface roughness due to atomic disorder and defects commonly occurs at interfaces 
during material synthesis.  A thorough understanding of the influence of interface 
roughness on phonon transport is crucial for surface engineering and improved device 
design.  It is generally accepted that interface roughness is a very important driving 
mechanism for thermal conductivity reduction in different nanostructures such as 
nanowires and superlattices.  However, it is not clear how interface roughness affects 
interfacial phonon transmission.  Using a lattice Green's function formalism, Fagas et al.7 
found that the phonon transmittance is strongly dependent on phonon frequency and the 
disorder correlation length by varying the atomic masses in a two-dimensional disordered 
atomic layer.  Following the same approach, Zhao and Freund8 studied the phonon 
scattering at a rough interface induced by atomic mixing between two FCC lattices, and 
found that the transmittance is insensitive to the roughness parameters.  Using molecular 
dynamics (MD) simulations, Sun and Murthy9 focused on the transmittance change as the 
roughness thickness was increased.  For long wavelength phonons, they concluded that 
the transmittance is independent of roughness thickness.  For mid-range wavelength 
phonons, the transmittance is reduced as roughness thickness increases but eventually 
saturates to become independent of the roughness.  Nevertheless, the above studies have 
not drawn a comparison between the ideal and rough interface, furthermore, the 
conclusions were derived from empirical potentials.  Using a simplified lattice dynamics 
model, Kechrakos10 found that the interface conductance can be enhanced by as much as 
a factor of three for highly mismatched materials.  The calculation only included one 
monolayer roughness and one branch mode.  Stevens et al.11 observed that interface 
mixing improved thermal transport by nearly a factor of 2 through non-equilibrium 



3 
 

molecular dynamics (NEMD) simulations.  Most recently, using NEMD, English et al.12 
found that by sandwiching an intermediate layer between two dissimilar materials, the 
interfacial thermal conductance can be enhanced compared to that of the two dissimilar 
materials.  NEMD, however, is unable to unveil any information about the mode-
dependent transmission.  Additionally, an empirical potential was used in their 
simulations.  The behavior of different phonon modes at a rough interface using reliably 
accurate force constants would be preferable, and as we will show in this paper, results 
can differ by up to 50% depending on the choice of the force field. 

Phonon interface transmittance is critical in determining the interfacial thermal resistance. 
Phonon interface transmittance models have yet to reliably predict experimental 
observations.  There are two widely used models for the phonon transmittance at an 
interface: the acoustic mismatch model (AMM)13 and the diffuse mismatch model 
(DMM)14.  As a continuum model, the AMM assumes that phonons undergo specular 
reflection or transmission at the interface.  This model  is valid in the long-wavelength 
limit, where due to their small details compared to the incident phonon wavelength, 
interfaces are seen as sharp.  The DMM, on the other hand, assumes not only purely 
diffuse scattering at the interface, but also an equivalence between phonon reflectance 
from one side to the transmittance from the other.  This model, as opposed to AMM is 
valid for very rough or dirty interfaces and short wavelength phonons.  Neither AMM nor 
DMM consistently predict interface thermal boundary resistance.  Using molecular 
dynamics (MD)9, 15-19, wave-packets can be created and the phonon transmittance can be 
obtained by tracking the energy transmitted and reflected after encountering an interface.  
Although easy to implement, it is computationally expensive since one separate MD 
simulation is needed for every incoming phonon mode, although using the multiple 
phonon wave packets reduces computational intensity16.  Additionally, MD simulations 
cannot capture wide angle of incidence because it requires a large lateral size that is 
difficult to achieve.  Linear lattice dynamics (LD) calculations20-23 have been performed 
to extract the mode-dependent phonon transmittance by solving the reflected and 
transmitted wave functions subject to boundary conditions. However, this method can be 
difficult to implement for complex atomic structures.  As an alternative and more 
straighforward approach, Green’s function methods dedicated to solve for the response 
from point source perturbation are employed to compute the phonon transmission 
function that can be easily related to transmittance as described in Sec. II.  The Green’s 
function approach has been described thoroughly for transmission function calculation in 
electron transport by Datta24.  Mingo et al.25, 26 applied the approach to deal with phonon 
transport within an elastic scattering domain in nanowires and referred to this method as 
the atomistic Green’s function (AGF).  Later, Zhang et al.27 extended the method to 
phonon transport in 3D structures. They calculated the phonon transmission across the Si-
Ge interface using an empirical interatomic potential and investigated the strain effect on 
interfacial transport.  A general formulation and full derivation have been detailed by 
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Zhang et al. 26 and Mingo28, 29.  Several other studies utilize the same framework5, 6, 30-32, 
including the only first-principles based calculations with AGF method in 1D structures5, 

6.  Here we incorporate the first-principles force constants into AGF and demonstrate the 
importance of using accurate force constants.  Without any fitting to experimental data, 
the force constants from first-principles calculations demonstrated the ability to 
accurately reproduce the lattice thermal conductivity of bulk materials1-4, 33.  These force 
constants can also improve the quantitative prediction for interfacial phonon transport.  In 
this study, we employ the AGF method to study the interface roughness stemming from 
atomic mixing between Si and Ge interfaces. 

 

 

II. METHODOLOGY 

 

The detailed methodology of AGF has been presented elsewhere25-30.  In short, the 
system is partitioned into three regions: the left lead, the central region (also known as 
scattering region) and the right lead, as shown in Fig. 1.  The advantage of Green’s 
function lies in its ability to replace the infinite leads by finite leads with self-energies24.  
The self-energy αΣ  describes the effect of the lead α on the central block and is defined 
as 

                                                                            
+=Σ αααα φφ CC g                                                               (1) 

where α stands for left (L) or right (R), C stands for center; φ  's are the harmonic force 

constant matrices divided by corresponding atomic masses: αφ  means the onsite force 

constants of a block in lead α, ααφ means the hopping matrices between two neighboring 

blocks within lead α and +φ is the complex conjugate of φ ; g  is the surface Green’s 
function defined by: 

                                                               12 ][ −+−−= ααααααα φφφω gIg                                      (2)                               

The surface Green’s function corresponds to the uncoupled semi-infinite system and is 
solved iteratively using a fast algorithm34.  The coupled Green’s function for the central 
region is expressed as: 

                                                                 
12 ][ −Σ−Σ−−= RLC

R IG φω                                                   (3) 

where the superscript R  stands for retarded, ω  is phonon frequency, and Cφ  represents 
the onsite force constants of  the central region.   
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Fig. 1 The system is divided into three parts: left (L), center (C) and right (R). Left and 
right leads are semi-infinite crystal lattices. In the transverse direction, all the three 
regions have periodic boundary conditions imposed to represent the infinitely large 
lateral dimension. 

 

To tackle the infinitely large size of transverse direction, a Fourier transform is performed 
parallel to the interface to decouple the infinite degrees of freedom into independent 
transverse wavevectors, tk , assuming ideal translational invariance. We can then treat 
them as independent one dimensional chains with different transverse wavectors.  As the 
phonon frequency and transverse momentum are conserved across the interface, the 
transmission function, ),( tkωΞ , as a function of these parameters is given as a trace over 
Green’s function of the center and coupling terms between the leads and the center: 

                                            )],(),(),(),([),( t
A

tRt
R

tLt kGkkGkTrk ωωωωω ΓΓ=Ξ                           (4) 

where ][ ARi ααα Σ−Σ=Γ  describes the rate at which phonons enter and exit the leads.  

Retarded Green’s function, RG , and retarded self-energy, RΣ , are the Hermitian conjugate 
of advanced Green’s function, AG , and advanced self-energy, AΣ , respectively.  The total 
transmission at a given frequency is simply the sum of the transmission function of 
different transverse wavevectors normalized by the total number of transverse k points: 

∑Ξ=Ξ
t

t
k

tk kN ),(/1)( ωω . While the phonon frequency and transverse wavevector are 

conserved, mode conversion is allowed and the longitudinal wavevector can change. In 
other words, the phonons can elastically scatter into different directions at rough 
interfaces.  

The thermal conductance per unit area,σ , based on the total transmission function, )(ωΞ , 
is calculated using Landauer’s formula35                      
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where f is the Bose-Einstein distribution and s is the cross-sectional area of the 
simulation cell perpendicular to the direction of heat flow direction.  Note that this 
definition yields a finite thermal conductance in the limit of an identical material because 
the temperature drop, TΔ , used to derive equation (5a) are between the reservoir 
temperatures,  and , instead of the temperature drop across the interface.  In other 
words, equation (5a) is the formula corresponding to a two-probe setup where the 
thermometer probes the bulk phonons incident on the interface13.  If a thermometer 
probes the temperature drop right across the interface (this corresponds to a four-probe 
setup), equation (5a) needs to be modified36, 37.  Despite highly nonequilibrium 
distribution near the interface, we can define equivalent equilibrium temperatures,  
and , as proposed by Chen37.  The equivalent equilibrium temperature corresponds to 
the final equilibrium temperature of these phonons if we assume they adiabatically 
approach equilibrium.  Then we could use Bose-Einstein distribution as a function of the 
equivalent equilibrium temperature to represent the local energy density. On the other 
hand, we can express the local energy density as a summation of the phonons emitted 
from both ends with the reservoir temperatures.  By equating the two approaches, we 
obtain the relation between the equivalent equilibrium temperature and the heat reservoir 
temperature as and .  Finally, 
we reach a modified expression for the thermal conductance as 

                                     )
)(
)(

)(
)((

2
11

1)()(

21
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T
TTT

σ
σ

σ
σσσ

+−
×=

                                       (5b)
 

where 1σ  and 2σ  are the "thermal conductance" of pure material 1 and pure material 2 
using equation (5a) respectively with )(ωΞ  equaling the number of phonon bands at the 
frequency ω . For a pure material, equation (5b) gives infinite thermal conductance as 
there is no temperature drop across the virtual interface. In the limit of low conductance 
( 21, σσσσ <<<< ), equation 5(a) and 5(b) reach the same value as the denominator 
approaches 1. In the following discussion (Sec. III), equation (5b) is applied.  

Transmittance can be related to transmission function as  

                                              
)(
)()(

)(
)()(

2
21

1
12 ω

ωωτ
ω
ωωτ

Ξ
Ξ=

Ξ
Ξ=                                        (6) 

where )(12 ωτ is the transmittance from material 1 to material 2 while )(21 ωτ is the 

transmittance from material 2 to material 1.  Transmittance describes the fraction of the 
incident phonons of frequency ω that is transmitted.  Consequently, its value lies between 
zero and unity.  The transmission function, on the other hand, can exceed unity because it 
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describes the number of modes transmitted at a specific frequency.  The maximum value 
of the transmission function at a certain frequency would be the total number of phonon 
modes available at that frequency.  Although the transmission function from either side is 
identical, a requirement of detailed balance, the transmittance has directional dependence.  

In this study, we first construct an ideal Si/Ge interface as shown in Fig. 1 with Si on the 
left of the interface and Ge on the right of the interface, using the lattice constant of Si.  
Lattice constants for the SW potential and DFT potential for Si are 43.5=a  Å and 

 5.3976=a Å, respectively.  The transverse direction of all the three regions is set to be 
aa 33 × , which has converged by comparing to the results of the aa 66 × simulation size.  

Periodic boundary conditions are imposed in the transverse directions.  The longitudinal 
length of the central region is a2 , which equals the largest thickness of rough region 
investigated in this study.  For simplicity, we use the force constants obtained from Si 
throughout the system as those of Ge are very similar in magnitude.  The major factor 
affecting the phonons of Si and Ge are their very different masses.  The atomic masses 
for Si and Ge are 28.0855 and 72.63 respectively.  To obtain the force constants from the 
SW potential and DFT, LAMMPS38 and Quantum Espresso39 are used to record the force 
and displacement data, respectively.  For our DFT calculation, we use the local density 
approximation of Perdew and Zunger40 with a cutoff energy of 40 Ryd and  k-
points for a  supercell of 64 atoms.  By fitting the general expression of the 
Taylor expansion of the interatomic potential to the set of force-displacements obtained 
from different atomic configurations41, we extract the harmonic force constants that are 
input into our transmission calculation.  We take exactly the same parameters as Esfarjani 
et al.1 used where they obtained excellent agreement with experimental data for the 
phonon dispersion and thermal conductivity of Si.  This gives us confidence on the DFT 
force constants and corresponding phonon properties. The harmonic force constants that 
determine the phonon frequencies and eigenvectors are essential for the transmission and 
thermal conductance.  To calculate the total transmission, the number of transverse k 
points within the Brillouin zone is chosen to be 1010×  to ensure the convergence.  A 
similar procedure has been followed for rough interfaces except for the system setup that 
obtains the force constants. For rough interfaces, the atoms in the interface region are 
assigned one of the two atomic masses according to some probability (uniform or 
Gaussian), constrained by the thickness of rough region, and then the effective force 
constants � were obtained by dividing the Si force constants by the newly assigned 
masses.  Lattice mismatch between Si and Ge, i.e. strain effects, and anharmonicity are 
not included in this study.  As observed by the NEMD simulations42, anharmonic effects 
were not important for temperatures lower than 500 K.   

To first validate our methodology, we compare our calculated thermal conductance of an 
ideal Si/Ge interface using SW potential and equation (5a) with available data in the 
literature.  Our result yields  at 300 K, which is close to 
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 from lattice dynamics calculation by Zhao and Freund22, and 
 from NEMD calculation by Landry and McGaughey42.  We 

can then focus on the discussion on rough interfaces using equation (5b). 
 

III. RESULTS AND DISCUSSION 

 

A. Rough interface with random distribution 

 

To create random atomic mixing, we select certain number of layers (2, 4, 6, and 8) in the 
central region and randomly shuffle the atoms within these layers. Three independent 
configurations are constructed for each roughness thickness and calculations are 
conducted for each configuration. The average value is plotted for each thickness of the 
rough region. The total transmission function, transmittance and thermal conductance are 
plotted in Fig. 2. The total transmission function, transmittance and thermal conductance 
of ideal interface are plotted in Fig. 2 as a reference.  
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Fig. 2 Total transmission function, transmittance and thermal conductance as a function 
of phonon frequency for an ideal Si/Ge interface (solid black line) and for a random 
rough Si/Ge interface (colored dashed or dotted lines): (a) Total transmission based on 
SW force constants; (b) Transmittance from Si to Ge based on SW force constants; (c) 
Thermal conductance based on SW force constants; (d) Total transmission based on DFT 
force constants; (e) Transmittance from Si to Ge based on DFT force constants; (f) 
Thermal conductance based on DFT force constants. 

One counter-intuitive finding, arguably the most important highlight, from Fig. 2 is that 
the phonon transmission across a rough Si/Ge interface can be higher than the ideal Si/Ge 
interface for certain frequencies, contributing to a larger thermal conductance at certain 
roughness thicknesses.  In the low frequency limit, the long wave-length phonons do not 
sense the interface roughness and propagate through as if they are traveling across the 
ideal sharp interface.  Due to its short length scale, atomic roughness has negligible 
influence on the long-wavelength phonons.  In the high frequency limit, the transmission 
is zero because there are no available states on the Ge side.  The most interesting 
phenomena are observed for the phonons with mid-range frequencies, where the atomic 
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roughness could play a role in enhancing the transmission.  The roughness softens the 
abrupt change of acoustic impedance at the interface and facilitates phonon propagation. 
It can also allow phonons with large incidence angles, which would otherwise be 
internally reflected at the interface, to be transmitted. More specifically, this can be 
understood by investigating the phonon density of states (DoS) of the two materials 
where incident and outgoing phonons are contained, and the interfacial region where 
reflection and transmission happens.  As shown in Fig. 3, the phonon DoS of pure Si and 
Ge are quite different, while the Si/Ge mixture has intermediate DoS which serve to 
bridge the gap between Si and Ge. Therefore, phonons that originally cannot propagate 
across Si/Ge interface can now transmit via new elastic scattering channels created in the 
Si/Ge mixture.  Accordingly, the phonon transmission and transmittance are boosted in 
the 200 to 300 /cm frequency range where the overlap of the two DoS is enhanced.  This 
frequency range corresponds to the top of the TA branches close to the zone boundary, 
where the typical phonon wavelength is a few lattice constants at the most.  Although one 
configuration of a Si/Ge mixture is used in Fig. 3, it can represent the trend of general 
Si/Ge mixtures at the interface since the atomic ratio of all the configurations involved in 
our calculation is 1:1 with the only difference being atomic positions.  In fact, it has been 
well-known that interface roughness can increase transmittance of photons43-46 and 
electrons47-50.  For phonons, interface roughness leads to reduction in thermal 
conductivity in nanowires51-53 because of back scattering and in superlattices54-56 due to 
loss of coherence.  But for an individual interface, interface roughness is able to increase 
transmittance. This has not received much attention before.  
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Fig. 3. Phonon Density of States (DoS) of pure Si (Black solid line), pure Ge (red dashed 
line) and Si/Ge 1:1 mixture (green dotted line) using DFT force constants. 

 

For the 2-layer rough configuration, SW predicts a ~20% increase in the thermal 
conductance at 300K, while DFT predicts a ~30% increase, compared to perfect 
interfaces.  Empirical potentials can qualitatively capture the trend, but are unable to 
quantitatively predict the difference.  As the thickness of the rough region increases, the 
transmission does not keep increasing, which is consistent with earlier observations9, 12.  
There are two competing factors: 1) overlapping DoS which increases transmission; 2) 
diffuse scattering at the rough interface which reduces transmission. As observed in the 
SW case (Fig. 2(a)), the 2-layer rough configuration gives the highest transmission.  
Above a thickness of two layers, diffuse scattering becomes the more significant 
mechanism that affects thermal conductance. In the DFT case (Fig. 2(d)), however, the 4-
layer rough configuration gives the highest transmission around 120 cm-1 and 2-layer 
roughness gives highest transmission between 230 cm-1 and 300 cm-1, which leads to 
fairly close thermal conductance between 2-layer rough configuration and 4-layer rough 
configuration as shown in Fig. 2(f).  This finding cannot be represented by the calculation 
using SW prediction partly because their phonon bandwidths are different from DFT.    
Compared to the ideal interface, the thermal conductance is larger when the rough region 
is thinner than 6 layers using SW force constants and up to 8 layers using DFT force 
constants.  This discrepancy reiterates the necessity of adopting DFT force constants to 
provide precise guidance in practical applications.  In the following discussion, only DFT 
force constants results are presented.  As thickness increases even further, the thermal 
conductance decrease below that of the ideal interface.  This can be easily understood by 
considering the limiting case.  As the thickness of rough region increases to infinity, 
diffuse scattering becomes dominant and the thermal conductance should approach the 
alloy limit.  

 

B. Rough interface with Gaussian distribution 

 

To mimic atomic diffusion at an interface, we also create the atomic profile of one type to 
obey half Gaussian distribution as shown in the Fig 4(c) inset.  The phonon transmission, 
phonon transmittance and thermal conductance are plotted in Fig. 4.  Significant increase 
in phonon transmission is observed using DFT force constants.  At 300K, there is 32.6% 
increase.  For the same roughness thickness, the Gaussian distribution shows more 
enhanced transmission compared to the uniform roughness distribution.  
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Comparison with experimental data is difficult since there is no experimental data on a 
single Si/Ge interface.  On the other hand, several experiments had reported reduced 
thermal conductivity on Si/Ge superlattices 54, 55.  If we assume that the measured thermal 
conductivity is due to interfacial resistances only, as one would expect in the very thin 
limit when phonon transport is completely incoherent57 and yet ballistic through 
individual layers of the superlattice, the extrapolated thermal conductance is 

 54 (period = 3 nm) and  55 (period = 4.4 nm) at 300 K. 
Both the extrapolated values are close but about one order of magnitude larger than our 
calculated value of  for ideal interface and  for 
Gaussian rough interface based on DFT force constants. The higher than predicted value 
is actually consistent with recent experimental observation58 that long wavelength 
phonons maintain their coherence in thermal transport in superlattices, and hence lead to 
a higher conductance value than that of a single interface as we calculated. 
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Fig. 4 (a)Total transmission function, (b)transmittance, and (c) thermal conductance as a 
function of phonon frequency for an ideal Si/Ge interface (solid black line) and for a 
rough Si/Ge interface with a Gaussian distribution (dashed blue lines) based on DFT 
force constants. Inset of (c): The number of Si atom in each layer for an ideal interface 
(solid black) and for a Gaussian rough interface (dashed blue).  
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Fig. 5 Thermal conductance ratio of a Gaussian rough interface to an ideal interface as a 
function of the mass ratio (lower x-axis) and the acoustic impedance ratio (upper x-axis) 
of the two materials using DFT force constants 

 
To explore the generality of the transmission enhancement between different materials, 
we keep the Gaussian rough configuration and vary the mass of the atoms on the Ge sites 
from 1.25 times that of Si to 10 times that of Si, corresponding to acoustic mismatch from 
1 to 3.16.  The thermal conductance ratio of a Gaussian interface over ideal interface is 
plotted in Fig. 5 as a function of the mass/acoustic impedance ratio of the two materials 
on both sides of the interface. Since the roughness is caused by the mass difference, when 
the mass ratio is 1, there is no atomic mixing and no roughness.  As the mass ratio 
increases, the phonon dispersions of the two materials begin to differ from each other and 
the roughness favors phonon propagation via graded acoustic impedances at the interface.  
The thermal conductance ratio reaches its maximum at 2.586, which happens to be the 
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mass ratio of Si to Ge.  As the mass ratio increases even further, the phonon dispersions 
of two materials fall further apart from each other and it becomes less effective to bridge 
the large gap through the effects of roughness.  Therefore, the thermal conductance ratio 
drops and flattens out with increasing mass ratio.  Nevertheless, the thermal conductance 
ratio is kept over unity up to mass ratio of 10 and will stay above unity in the infinite 
mass mismatch limit as it provides a smooth transition for intermediate frequency 
phonons to transmit across the interface.  Although there are variations in the extent to 
which roughness increases thermal conductance, the enhancement generally holds. 

 

IV. CONCLUSION 

 

In summary, we apply the atomistic Green's function method to calculate the phonon 
transmission across an ideal and rough Si/Ge interface.  The atomistic roughness can 
increase phonon transmission across two dissimilar materials if the roughness thickness 
and profile are properly controlled, contrary to the commonly held notion that rougheness 
reduces transmission.  This effect is more pronounced if the acoustic mismatch between 
the two materials is moderately large.  This finding elucidates new design considerations 
for surface engineering.  As our contribution to the AGF framework, we incorporate the 
first-principles force constants determined from DFT into the AGF method for phonon 
transport in infinitely large 3D structure.  The comparison between the results from SW 
force constants and those from DFT force constants demonstrates that DFT force 
constants are necessary in reliable predictions.  Since interface transmission is crucial for 
bridging the calculation of pure materials to nanocomposites, we can now integrate the 
interfacial transmission and the bulk mean free paths, both calculated from first-
principles DFT, to accurately model heat transport in complex nanostructured materials. 
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