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Symmetry protected topological (SPT) states are short-range entangled states with symmetry.
The boundary of a SPT phases has either gapless excitations or degenerate ground states, around a
gapped bulk. Recently, we proposed a systematic construction of SPT phases in interacting bosonic
systems, however it is not very clear what is the form of the low energy excitations on the gapless
edge. In this paper, we answer this question for two dimensional bosonic SPT phases with ZN

and U(1) symmetry. We find that while the low energy modes of the gapless edges are non-chiral,
symmetry acts on them in a “chiral” way, i.e. acts on the right movers and the left movers differently.
This special realization of symmetry protects the gaplessness of the otherwise unstable edge states
by prohibiting a direct scattering between the left and right movers. Moreover, understanding of the
low energy effective theory leads to experimental predictions about the SPT phases. In particular,
we find that all the 2D U(1) SPT phases have even integer quantized Hall conductance.

PACS numbers: 71.27.+a, 02.40.Re

I. INTRODUCTION

A recent study shows that gapped quantum states be-
long to two classes: short-range entangled and long-range
entangled.1 The long-range entanglement (i.e. the topo-
logical order2) in the bulk of states is manifested in the
existence of gapless edge modes or degenerate edge sec-
tors. The short-range entangled states are trivial and all
belong to the same phase if there is no symmetry. How-
ever, with symmetry, even short-range entangled states
can belong to different phases. Those phases are called
symmetry protected topological (SPT) phases. The sym-
metric short-range entanglement (i.e. the SPT order) is
also manifested in the existence of gapless edge modes
or degenerate edge sectors around a gapped bulk if the
symmetry is not explicitely broken. For example, two
and three dimensional topological insulators3–8 have a
gapped insulating bulk but host gapless fermion modes
with special spin configurations7,9,10 on the edge under
the protection of time reversal symmetry. The experi-
mental detection of such edge modes11–13 has attracted
much attention and a lot of efforts have been put into
the exploration of new SPT phases.

Recently, we presented a systematic construction of
SPT phases in bosonic systems14,15, hence extending the
understanding of SPT phases from free fermion systems
like topological insulators to systems with strong inter-
actions. We showed that there is a one-to-one correspon-
dence between 2D bosonic SPT phases with symmetry G
and elements in the third cohomology groupH3[G,U(1)].
Moreover, we proved that15 due to the existence of the
special effective non-onsite symmetries on the edge of the
constructed SPT phases which are related to the non-
trivial elements in H3[G,U(1)], the edge states must be
gapless as long as symmetry is not broken. However, it
is not clear what is the form of the gapless edge states,
especially the experimentally more relevant low energy
part.

A low energy effective edge theory is desired because
it could provide a simple understanding of why the gap-
less edge is stable in these SPT phases. For example,
understanding of the low energy ‘helical’ edge9 in 2D
topological insulators enables us to see that some of the
relevant gapping terms are prohibited due to time re-
versal symmetry. Moreover, low energy excitations are
directly related to the response of the SPT phases to var-
ious experimental probes, which has led to many propos-
als about detecting the exotic properties of topological
insulators8,16–20. Such an understanding is hence also im-
portant for the experimental realization of bosonic SPT
phases.

In this paper, we study the low energy effective edge
theory of the 2D bosonic SPT phases with ZN and U(1)
symmetry. We find that the gapless states on the 1D edge
is non-chiral (i.e. the left-moving and right-moving exci-
tations have the same contribution to the heat capacity if
they have the same velocity). This is expected since the
SPT state has no intrinsic topological order21. The spe-
cial feature of the edge states lies in the way symmetry is
realized. In particular, we find that symmetry is realized
chirally at low energy, i.e. in an inequivalent way on the
right and left movers. Because of the existence of this
chiral symmetry, the direct scattering between the left
and right moving branches of the low energy excitations
is prohibited which provides protection to the gapless
edge.

We would like to mention that people have used
U(1) × U(1) Chern-Simons theory22,23 and SU(2) non-
linear σ-model24 to construct the edge states of the U(1)
SPT phases. However, it is not clear whether they have
obtained the edge states for all of the U(1) SPT phases
using those field theory approaches. The construction
presented in this paper has the advantage of having
a direction connection to the third cohomology group
H3[U(1), U(1)]. So we are sure that we have obtained
the edge states for all of the U(1) SPT phases.
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We would also like to point out that the chiral symme-
try leads to a chiral response of the system to externally
coupled gauge field even though the edge state as a whole
is non-chiral. In particular, we find that all of the U(1)
SPT phases have an even-integer quantized electric Hall
conductance and a zero thermal Hall conductance, which
could be used as experimental signatures in the detection
of such phases.

Ref. 14 and 15 show that, due to the short range entan-
glement in SPT phases, the edge of the systems exists as
a purely local 1D system with a special non-onsite sym-
metry related to group cohomology. This enables us to
study the edge physics in 1D without worrying about the
2D bulk. We will start with an exact diagonalization of
the edge Hamiltonian in the Z2 SPT phase constructed
in Ref. 15. Insights from this model are then general-
ized to construct a 1D rotor model with different sym-
metries realizing the edge states of all ZN and U(1) SPT
phases. Some useful formulas of the third group coho-
mology H3[G,U(1)] are reviewed in appendix A.

II. EDGE STATE OF Z2 SPT PHASE

In Ref. 15 we presented an explicit construction of a
nontrivial bosonic SPT phase with Z2 symmetry. The
edge Hilbert space is identified as a local 1D spin 1/2
chain. The spin chain satisfies a Z2 symmetry constraint
given by

U2 =
∏
i

Xi

∏
i

CZi,i+1 (1)

where X,Y and Z are the Pauli matrices and CZ acts on
two spins as CZ = |00〉〈00|+|01〉〈01|+|10〉〈10|−|11〉〈11|.
We showed in Ref. 15 that this non-onsite symmetry op-
erator is related to the nontrivial element in the third
cohomology group of Z2 and hence the edge state must
be gapless if symmetry is not broken. Here we study one
possible form of the edge Hamiltonian which satisfies this
symmetry

H2 =
∑
i

Xi + Zi−1XiZi+1 (2)

This Hamiltonian is gapless because we can map this
model to an XY model. The mapping proceeds as fol-
lows: conjugate the Hamiltonian with CZ operators on
spin 2i − 1 and 2i and then change between X and Z
basis on every (2i − 1)th spin. The Hamiltonian then
becomes

H ′2 =
∑
i

Xi−1Xi + Zi−1Zi (3)

Therefore, the low energy effective theory of this model is
that of a compactified boson field ϕ(x) with Lagrangian
density

L =
1

2

[
(∂tϕ)2 − v2(∂xϕ)2

]
(4)
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FIG. 1. Low energy states of XY model H ′
2(Eqn.(3)). x-axis

is lattice momentum k/(π/a), where a is the lattice spacing.
y-axis is energy with ground state energy set to 0 and first
excited state energy normalized to 1/4. + represents positive
Z2 quantum number and × represents negative Z2 quantum
number. The total angular momentum l and winding number
m are labeled as (l,m) for each primary field, represented by
the shaded + or ×. States in the same conformal tower have
the same l and m.

This is a simple gapless state with both left and right
movers and can be easily gapped out with a mass term
such as the magnetic field in the z direction Bz(

∑
i Zi).

However, such a term is no longer allowed when the trans-
formed Z2 symmetry operation is taken into account:

U ′2 =
∏
2i

CX2i,2i−1

∏
2i

Z2i−1X2i

∏
2i

CX2i,2i+1 (5)

where CXi,j acts on spin i and j as CX = |00〉〈00| +
|01〉〈01|+ |11〉〈10|+ |10〉〈11|. This symmetry constraint
prevents any term from gapping the Hamiltonian without
breaking the symmetry.

To see more clearly how this symmetry protects the
gaplessness of the system, we study how it acts on the
low energies modes. We perform an exact diagonalization
of the XY Hamiltonian Eqn.(3) for a system of 16 spins
and identify the free boson modes. Then we calculate
the Z2 quantum number on these modes as shown in Fig.
1. Note that U ′2 is not translational invariant and does
not commute with the U(1) symmetry of the XY model∏
j e
iθYj , therefore the free boson modes are not exact

eigenstates of the Z2 symmetry. However, at low energy,
the Z2 quantum number becomes exact as the system
size gets larger and in Fig. 1 we plot the asymptotic Z2

quantum number of the low energy states.
According to conformal field theory, the eigenstates

in the compactified free boson model fall into conformal
towers, as shown in Fig. 1. Each conformal tower is built
upon a primary field which are marked by a shaded dot
in Fig. 1. In the primary fields, the compactified boson
field does not fluctuate but can have synchronized angu-
lar rotation motion labeled by total angular momentum
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l. Moreover, because the boson field is compactified, it
can take a nontrivial configuration along the spacial di-
mension by winding around the one dimensional ring an
integer number of times. Therefore, the primary fields are
further labeled by the winding numberm. Other states in
the same conformal tower can be generated from the pri-
mary field by exciting fluctuations in the boson field while
the same l and m quantum numbers are maintained. The
total angular momentum l and winding number m are la-
beled besides each primary field in Fig. 1. From Fig. 1,
we can see that the Z2 quantum number of each state is
the same as the primary field in the same conformal tower
and the Z2 symmetry at low energy acts as U ′2 ∼ (−)l+m.

The synchronized angular motion and the nontrivial
winding of the boson field along the chain constitutes
the ‘zero mode’ motion of the boson field without any
field fluctuation. The zero mode motion decomposes
into a right moving part and a left moving part (sim-
ilar to the fluctuating modes) which are characterized
by quantum numbers l + 2m and l − 2m respectively.
From Fig. 1, we can see that the primary fields la-
beled by (l,m) have left- and right-scaling dimensions

(hR, hL) = ( (l+2m)2

8 , (l−2m)2

8 ) and hR + hL gives the en-
ergy of the field.

With such a left-right decomposition, we can determine
the chirality of the symmetry action. For the trivial Z2

SPT phase, the onsite Z2 transformation at low energy
acts as U ′2 ∼ (−)l. Because l = [(l + 2m) + (l − 2m)]/2,
U ′2 is a non-chiral action in the trivial SPT phase. For
the non-trivial Z2 SPT phase, we see that the non-onsite
Z2 transformation at low energy acts as U ′2 ∼ (−)l+m.
As l +m cannot be written as a non-chiral combination
of l+ 2m and l− 2m, we call such an m-dependent U ′2 a
chiral symmetry operation.

From the chiral symmetry operation, we can have a
simple (although not general) understanding of why some
of the gap opening perturbations cannot appear in this
edge theory. For example, the simplest mass term in
the free boson theory

∫
dx cos(ϕ(x)) contains a direct

scattering term ϕR(x)ϕL(x) between the left and right
movers which carries a nontrivial quantum number under
this Z2 symmetry and is hence not allowed. This result
is consistent with that obtained by Levin & Gu25.

III. EDGE STATE OF ZN SPT PHASE

Understanding of how symmetry acts chirally on the
edge state of the Z2 SPT phase suggests that similar situ-
ations might appear in other SPT phases as well. In this
section we are going to show that it is indeed the case
for ZN bosonic SPT phases. From the group cohomology
construction, we know that there are N ZN -SPT phases
which form a ZN group among themselves. We are going
to construct 1D rotor models to realize the edge state in
each SPT phase which satisfies certain non-onsite sym-
metry related to the nontrivial elements in H3[ZN , U(1)].
From these models we can see explicitly how the symme-

try acts in a chiral way on the low energy states. Taking
the limit of N →∞ in ZN will lead to the understanding
of the edge states in U(1) SPT phases which we discuss
in the next section. Note that the choice of the local
Hilbert space on the edge, here a quantum rotor, is arbi-
trary and will not affect the universal physics of the SPT
phase as long as the effective symmetry belongs to the
same cohomology class.

Consider a 1D chain of quantum rotors describe by
{ϕi} ∈ (−π, π] with conjugate momentum {Li}. The
dynamics of the chain is given by Hamiltonian

Hr =
∑
i

(Li)
2 + V cos(ϕi − ϕi−1) (6)

When V >> 1, the system is in the gapless superfluid
phase. At low energy, ϕ varies smoothly along the chain.
The gapless low energy effective theory is again described
by a compactified boson field ϕ(x) with compactification
radius 1 and Lagrangian density given in Eqn. 4. The
low energy excitations contain both left and right moving
bosons.

The generator of the non-onsite ZN symmetry related
to the Mth element (M = 0, ..., N−1) of the cohomology
group, hence the Mth SPT phase with ZN symmetry,
takes the following form in this rotor chain:

U
(M)
N =

∏
i

CP
(M)
i,i+1

∏
i

ei2πLi/N (7)

where CP
(M)
i,i+1 acts on two neighboring rotors and de-

pends on M as

CP
(M)
i,i+1 =

∫
dϕidϕi+1e

iM(ϕi+1−ϕi)r/N |ϕiϕi+1〉〈ϕiϕi+1|

Here we need to be careful with the phase factor
eiM(ϕi+1−ϕi)/N because it is not a single-valued function.
We confine ϕi+1 − ϕi to be within (−π, π] and denote
it as (ϕi+1 − ϕi)r. Then eiM(ϕi+1−ϕi)r/N becomes sin-
gle valued but also discontinuous when ϕi+1 − ϕi ∼ ±π.
The discontinuity will not be a problem for us in the
following discussion. Note that it is important that
eiM(ϕi+1−ϕi)r/N 6= eiMϕi+1/N/eiMϕi/N , because other-
wise the symmetry factors into onsite operations and
becomes trivial. We show in appendix C that UMN in-
deed generates a ZN symmetry. Moreover from its ma-
trix product unitary operator representation we find that
the transformation among the representing tensors are
indeed related to the Mth element in the cohomology
group H3[ZN , U(1)]. Therefore, the 1D rotor model rep-
resents one possible realization of the edge states in the
corresponding SPT phases. (The matrix product unitary
operator formalism and its relation to group cohomology
was studied in Ref. 15 and we review the main results in
appendix B).

The symmetry operator U
(M)
N has a complicated form

but its physical meaning will become clear if we consider
its action on the low energy states of the rotor model in
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Eqn.(6). First the
∏
i e
i2πLi/N part rotates all rotors by

the same angle 2π/N , which can be equivalently writ-
ten as ei2πL/N with L =

∑
i Li being the total angular

momentum of the rotors. At low energy, L is the to-
tal angular momentum of the compactified boson field
l. Moreover, at low energy ϕ varies smoothly along the

chain therefore (ϕi+1 − ϕi)r ∼ ∂xϕ(x)dx and CP
(M)
i,i+1

adds a phase factor to the differential change in ϕ along

the chain. Multiplied along the whole chain
∏
i CP

(M)
i,i+1 is

equal to ei2πM(
∫
dx∂xϕ(x))/N = ei2πMm/N where m is the

winding number of the boson field ϕ(x) along the chain.
Put together we find that the symmetry acts on the low
energy modes as

U
(M)
N ∼ ei2π(l+Mm)/N (8)

If M is zero, this symmetry comes from a trivial SPT

phase and U
(0)
N depends only on l which involves the left

and right movers equally,as one can see from right- and

left-scaling dimensions (hR, hL) = ( (l+2m)2

8 , (l−2m)2

8 ).
However, when M is nonzero, this symmetry comes from

a nontrivial SPT phase and U
(M)
N depends on l + Mm

which involves the left and right mover in an unequal
way. Put it differently, the symmetry on the edge of non-
trivial ZN SPT phases acts chirally. In particular, when
M = 2, the symmetry will act only on the right movers.
Similar to the discussion in the Z2 case, we can see that
the chiral symmetry protects the gaplessness of the edge
by preventing direct scattering between the left and right
branches.

One may notice that Hr(Eqn.(6)) does not exactly

commute with the symmetry U
(M)
N , but this will not be

a problem for our discussions. We note that the po-

tential term cos(ϕi − ϕi−1) does commute with U
(M)
N .

The kinetic term (Li)
2 commute with the part that ro-

tates ϕ but not the phase factor eiM(ϕi+1−ϕi)r/N . How-
ever, at low energy, (ϕi+1 − ϕi) → 0, therefore this
term becomes irrelevant locally and commutation be-
tween the Hamiltonian and the symmetry operator is re-
stored. At high energy, in order for the Hamiltonian to
satisfy the symmetry, we can change the kinetic term to∑N−1
k=0

(
U

(M)
N

)k
(Li)

2
(
U

(M)
N

)−k
. The high energy dy-

namics will be changed. However, because V >> 1 and
we know that the modified Hamiltonian does not break
the U(1) symmetry of the rotor model and the system
cannot be gapped (due to the nontrivial cohomology class
related to the symmetry), the system remains in the su-
perfluid phase. The change in the kinetic term does not
affect our discussion about low energy effective physics.

IV. EDGE STATE OF U(1) SPT PHASE

Taking the limit of N → ∞, we can generalize our
understanding of ZN SPT phases to U(1) SPT phases.
As we show in this section, the chiral symmetry action

on the low energy effective modes on the edge of the
U(1) SPT phases leads to a chiral response of the system
to externally coupled U(1) gauge field, even though the
low energy edge state is non-chiral. We calculate explic-
itly the quantized Hall conductance in these SPT phases
from the commutator of local density operators on the
edge and find that they are quantized to even integer
multiples of σH = e2/h. In these SPT phases, a nonzero
U(1) Hall conductance exists despite a zero thermal Hall
conductance.

¿From group cohomology, we know that there are infi-
nite 2D bosonic SPT phases with U(1) symmetry which
form the integer group Z among themselves. General-
izing the discussion in the previous section we find that
the low energy effective theory can be a c = 1 free boson
theory and the U(1) symmetry acts on the low energy
modes as eiα(l+Mm), where α ∈ [0, 2π), l is the total an-
gular momentum, m is the winding number and M ∈ Z
labels the U(1) SPT phase. The local density operator
of this U(1) charge is given by

ρ(x) = Π(x) +
M

2π
∂xϕ(x), (9)

with Π(x) being the conjugate momentum of the boson
field ϕ(x), because the spatial integration of this density
operator gives rise to the generator of the U(1) symmetry∫
dxρ(x) = l + Mm. The commutator between local

density operators is given by

[ρ(x), ρ(x′)] = −i2M
2π

δ′(x− x′). (10)

This term will give rise to a quantized Hall conductance
along the edge when the system is coupled to an external
U(1) gauge field. Compared to the commutator between
local density operators of a single chiral fermion

[ρcf (x), ρcf (x′)] = −i 1

2π
δ′(x− x′), (11)

we see that the Hall conductance is quantized to even
integer 2M multiples of σH = e2/h.

As a consistency check we see that the quantized Hall
conductance is a universal feature of the edge states in
the bosonic U(1) SPT phases and does not depend on
the particular form the U(1) symmetry is realized on
the edge. Indeed, the U(1) symmetry can be realized

as eiα(Kl+K′m), with arbitrary K,K ′ ∈ Z. From the
group cohomology calculation (reviewed in appendix B)
we find that it belongs to the cohomology class labeled by
M = KK ′. From the calculation of the commutator be-
tween local density operators, we see that the magnitude
of the commutator is proportional also to M = KK ′.
Therefore, the Hall conductance depends only on the co-
homology class–hence the SPT phase–the system is in
and not on the details of the dynamics in the system.
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V. DISCUSSION

In this paper, we have construct the gapless edge states
for each of the bosonic ZN or U(1) SPT phases in 2D.
We show that those edge states are described by a c = 1
non-chiral free boson theory where the symmetry acts
chirally on the low energy modes. The chiral realiza-
tion of the symmetry not only prevents some simple mass
terms from gapping out the system but also leads to a
chiral response of the system to external gauge fields. We
demonstrate this by constructing explicit 1D lattice mod-
els constrained by a non-onsite symmetry related to each
nontrivial cohomology classes. Our result indicates that
the field theory approach based on the U(1)×U(1) Chern-
Simons theory22,23 and SU(2) non-linear σ-model24 in-
deed produce all of the U(1) SPT phases.

We want to emphasize that although we have focused
exclusively on the 1D edge, a 2D bulk having the 1D

chain as its edge always exists and can be constructed by
treating a 1D ring as a single site and then putting the
sites together. Note that while the stability and chiral
response of the edge in SPT phases are very similar to
that of the edge in quantum Hall systems, the underlying
reason is very different. The quantum Hall edge states
are chiral in its own, which remains gapless without the
protection of any symmetry and leads to a nonzero ther-
mal Hall conductance.

Finally, we want to point out that the edge theory
constructed in this paper is only one possible form of
realization. It is possible that other gapless theories can
be realized on the edge of SPT phases, for example with
central charge not equal to 1. It would be interesting to
understand in general what kind of gapless theories are
possible and what their universal features are.

We would like to thank Zheng-Cheng Gu and Senthil
Todadri for discussions. This work is supported by NSF
DMR-1005541 and NSFC 11074140.
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Appendix A: The third group cohomology
H3[G,U(1)] for symmetry G

In this section, we will briefly describe the group co-
homology theory. As we are focusing on 2D SPT phases,
we will be interested in the third cohomology group.

For a group G, let M be a G-module, which is an
abelian group (with multiplication operation) on which G
acts compatibly with the multiplication operation (ie the
abelian group structure) on M :

g · (ab) = (g · a)(g · b), g ∈ G, a, b ∈M. (A1)

For the cases studied in this paper, M is simply the U(1)
group and a an U(1) phase. The multiplication operation
ab is the usual multiplication of the U(1) phases. The
group action is trivial: g · a = a, g ∈ G, a =∈ U(1).

Let ωn(g1, ..., gn) be a function of n group elements
whose value is in the G-module M . In other words,
ωn : Gn → M . Let Cn[G,M ] = {ωn} be the space of
all such functions. Note that Cn[G,M ] is an Abelian
group under the function multiplication ω′′n(g1, ..., gn) =
ωn(g1, ..., gn)ω′n(g1, ..., gn). We define a map dn from
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Cn[G,U(1)] to Cn+1[G,U(1)]:

(dnωn)(g1, ..., gn+1) =

g1 · ωn(g2, ..., gn+1)ω(−1)n+1

n (g1, ..., gn)×
n∏
i=1

ω(−1)i

n (g1, ..., gi−1, gigi+1, gi+2, ...gn+1) (A2)

Let

Bn[G,M ] = {ωn|ωn = dn−1ωn−1|ωn−1 ∈ Cn−1[G,M ]}
(A3)

and

Zn[G,M ] = {ωn|dnωn = 1, ωn ∈ Cn[G,M ]} (A4)

Bn[G,M ] and Zn[G,M ] are also Abelian groups which
satisfy Bn[G,M ] ⊂ Zn[G,M ] where B1[G,M ] ≡ {1}.
Zn[G,M ] is the group of n-cocycles and Bn[G,M ] is the
group of n-coboundaries. The nth cohomology group of
G is defined as

Hn[G,M ] = Zn[G,M ]/Bn[G,M ] (A5)

In particular, when n = 3, from

(d3ω3)(g1, g2, g3, g4)

=
ω3(g2, g3, g4)ω3(g1, g2g3, g4)ω3(g1, g2, g3)

ω3(g1g2, g3, g4)ω3(g1, g2, g3g4)
(A6)

we see that

Z3[G,U(1)] = {ω3| (A7)

ω3(g2, g3, g4)ω3(g1, g2g3, g4)ω3(g1, g2, g3)

ω3(g1g2, g3, g4)ω3(g1, g2, g3g4)
= 1}.

and

B3[G,U(1)] = {ω3|ω3(g1, g2, g3) =
ω2(g2, g3)ω2(g1, g2g3)

ω2(g1g2, g3)ω2(g1, g2)
},

(A8)

which give us the third cohomology group H3[G,U(1)] =
Z3[G,U(1)]/B3[G,U(1)].

Appendix B: Matrix Product Operator
Representation of Symmetry

In Ref. 15 the symmetry operators on the edge of
bosonic SPT phases were represented in the matrix prod-
uct operator formalism from which their connection to
group cohomology is revealed and the non-existence of
gapped symmetric states was proved. In this section, we
review the matrix product representation of the unitary
symmetry operators and how the corresponding cocycle
can be calculated from the tensors in the representation.

A matrix product operator acting on a 1D system is
given by,26

O =
∑

{ik},{i′k}

Tr(T i1,i
′
1T i2,i

′
2 ...T iN ,i

′
N )|i′1i′2...i′N 〉〈i1i2...iN |

(B1)

where for fixed i and i′, T i,i
′

is a matrix with index α and
β. Here we are interested in symmetry transformations,
therefore we restrict O to be a unitary operator U . Using
matrix product representation, U does not have to be an
onsite symmetry. U is represented by a rank-four tensor

T i,i
′

α,β on each site, where i and i′ are input and output
physical indices and α, β are inner indices.

If U(g)’s form a representation of group G, then they
satisfy U(g1)U(g2) = U(g1g2). Correspondingly, the ten-
sors T (g1) and T (g2) should have a combined action
equivalent to T (g1g2). However, the tensor T (g1, g2) ob-
tained by contracting the output physical index of T (g2)
with the input physical index of T (g1), see Fig. 2, is
usually more redundant than T (g1g2) and can only be
reduced to T (g1g2) if certain projection Pg1,g2 is applied
to the inner indices (see Fig. 2).

FIG. 2. Reduce combination of T (g2) and T (g1) into T (g1g2).

Pg1,g2 is only defined up to an arbitrary phase factor

eiµ(g1,g2). If the projection operator on the right side
Pg1,g2 is changed by the phase factor eiµ(g1,g2), the pro-
jection operator P †g1,g2 on the left side is changed by phase

factor e−iµ(g1,g2). Therefore the total action of Pg1,g2 and
P †g1,g2 on T (g1, g2) does not change and the reduction
procedure illustrated in Fig.2 still works. In the follow-
ing discussion, we will assume that a particular choice of
phase factors have been made for each Pg1,g2 .

Nontrivial phase factors appear when we consider the
combination of three symmetry tensors T (g1), T (g2) and
T (g3). See Fig. 3.

There are two different ways to reduce the tensors. We
can either first reduce the combination of T (g1), T (g2)
and then combine T (g3) or first reduce the combination
of T (g2),T (g3) and then combine T (g1). The two differ-
ent ways should be equivalent. More specifically, they
should be the same up to phase on the unique block
of T (g1, g2, g3) which contributes to matrix contraction
along the chain. Denote the projection onto the unique
block of T (g1, g2, g3) as Qg1,g2,g3 . We find that

Qg1,g2,g3(I3 ⊗ Pg1,g2)Pg1g2,g3 =
φ(g1, g2, g3)Qg1,g2,g3(Pg2,g3 ⊗ I1)Pg1,g2g3

(B2)

¿From this we see that the reduction procedure is associa-
tive up to a phase factor φ(g1, g2, g3). If we then consider
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FIG. 3. Different ways to reduce combination of T (g3), T (g2)
and T (g1) into T (g1g2g3). Only the right projection operators
are shown. Their combined actions differ by a phase factor
φ(g1, g2, g3).

the combination of four symmetry tensors in different or-
ders, we can see that φ(g1, g2, g3) forms a 3-cocycle of
group G. That is, φ(g1, g2, g3) satisfies

φ(g2, g3, g4)φ(g1, g2g3, g4)φ(g1, g2, g3)

φ(g1g2, g3, g4)φ(g1, g2, g3g4)
= 1 (B3)

The arbitrary phase factor of Pg1,g2 contributes a
coboundary term to φ(g1, g2, g3). That is, if we change
the phase factor of Pg1,g2 by µ(g1, g2), then φ(g1, g2, g3)
is changed to

φ̃(g1, g2, g3) = φ(g1, g2, g3)
µ(g2, g3)µ(g1, g2g3)

µ(g1, g2)µ(g1g2, g3)
(B4)

φ̃(g1, g2, g3) still satisfies the cocycle condition and be-
longs to the same cohomology class as φ(g1, g2, g3).

Appendix C: Cohomology class of symmetry

operator U
(M)
N in Eqn.(7)

In this section, we discuss the property of the symme-

try operator U
(M)
N given in Eqn.(7). First we show that

U
(M)
N indeed generates a ZN symmetry. Next from its

matrix product unitary operator representation we find
that the transformation among the tensors are indeed
related to the Mth element in the cohomology group
H3[ZN , U(1)]. The calculation of cohomology class goes
as described in the previous section. We repeat the defi-

nition of U
(M)
N here

U
(M)
N =

∏
i

CP
(M)
i,i+1

∏
i

ei2πLi/N (C1)

where CP
(M)
i,i+1 acts on two neighboring rotors and de-

pends on M as

CP
(M)
i,i+1 =

∫
dϕidϕi+1e

iM(ϕi+1−ϕi)r/N |ϕiϕi+1〉〈ϕiϕi+1|

Note that (ϕi+1−ϕi)r represents ϕi+1−ϕi to be confined
within (−π, π].

As
∏
i e
i2πLi/N rotates all the ϕi’s by the same angle

and
∏
i CP

(M)
i,i+1 only depends on the difference between

neighboring ϕ’s, the two parts in the symmetry operator
commutes. Therefore(

U
(M)
N

)N
=
∏
i

(
CP

(M)
i,i+1

)N∏
i

(
ei2πLi/N

)N
(C2)

As
∏
i

(
CP

(M)
i,i+1

)N
= I and

∏
i

(
ei2πLi/N

)N
= ei2πL = I,

U
(M)
N indeed generators a ZN symmetry on the 1D rotor

system.

The matrix product representation of U
(M)
N is given by

(Tϕ0,ϕ1)
(M)
N (1) = δ(ϕ1 − (ϕ0 + 2π

N ))×∫
dϕαdϕβ |ϕβ〉〈ϕα|δ(ϕβ − ϕ0)eiM(ϕα−ϕ0)r/N

(C3)

And the tensors representing
(
U

(M)
N

)k
, k ∈ ZN are given

by

(Tϕ0,ϕ1)
(M)
N (k) = δ(ϕ1 − (ϕ0 + 2kπ

N ))×∫
dϕαdϕβ |ϕβ〉〈ϕα|δ(ϕβ − ϕ0)eikM(ϕα−ϕ0)r/N

(C4)

Following the calculation described in the previous sec-
tion, we find that the projection operation when com-

bining T
(M)
N (m1) and T

(M)
N (m2) into T

(M)
N ((m1 +m2)N )

is

P
(M)
N (m1,m2) =

∫
dϕ0|m2

2π
N + ϕ0〉|ϕ0〉〈ϕ0|×

e−iMϕ0(m1+m2−(m1+m2)N )/N
(C5)

where (m1 + m2)N means addition modulo N . When

combining T
(M)
N (m1), T

(M)
N (m2) and T

(M)
N (m3), the

phase angle in combining m1 with m2 first and then com-
bining (m1 +m2)N with m3 is

Mϕ0(−m1 −m2 + (m1 +m2)N − (m1 +m2)N−
m3 + ((m1 +m2)N +m3)N )/N

= Mϕ0(−(m1 +m2 +m3) + (m1 +m2 +m3)N )/N
(C6)

the phase angle in combining m2 with m3 first and then
combining m1 with (m2 +m3)N is

Mϕ0(−m2 −m3 + (m2 +m3)N −m1−
(m2 +m3)N + (m1 + (m1 +m2)N )N )/N+
Mm1

2π
N (−m2 −m3 + (m2 +m3)N )/N

= Mϕ0(−(m1 +m2 +m3) + (m1 +m2 +m3)N )/N+
Mm1

2π
N (−m2 −m3 + (m2 +m3)N )/N

(C7)
Therefore, the phase difference is

φ
(M)
N (m1,m2,m3) =

eiMm1
2π
N (−m2−m3+(m2+m3)N )/N

(C8)

We can check explicitly that φ
(M)
N (m1,m2,m3) satisfies

the cocycle condition

φ
(M)
N (m2,m3,m4)φ

(M)
N (m1,(m2+m3)N ,m4)φ

(M)
N (m1,m2,m3)

φ
(M)
N ((m1+m2)N ,m3,m4)φ

(M)
N (m1,m2,(m3+m4)N )

= 1
(C9)
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Also we see that {φ(M)
N }, M = 0, ..., N − 1, form a ZN

group generated by φ
(1)
N . Therefore, the tensor T

(M)
N cor-

responds to the Mth element in the cohomology group
H3[ZN , U(1)].

Similar calculation holds for the U(1) symmetry gen-

erated by eiα(Kl+K′m), K,K ′ ∈ Z. The cohomology class
is labeled by M = KK ′.

Appendix D: Interpretation in terms of
fermionization

The free boson theory given in Eqn.(4) can be fermion-
ized and the low energy effective action of the symmetry
discussed here can be reinterpreted in terms of a free
Dirac fermion. In particular, the fermionized theory has
Lagrangian density

Lf =
∑
i=1,2

ψLi (∂t + ∂x)ψLi + ψRi (∂t − ∂x)ψRi (D1)

where ψ1 and ψ2 are two real fermions, out of which a
complex fermion can be defined Ψ = ψ1 + iψ2. Note
that in order to have a state to state correspondence be-
tween the boson and fermion theory, the fermion theory
contains both the periodic and anti-periodic sectors.

Since the Z2 symmetry in the nontrivial Z2 SPT phase
only act on, say, the right moving sector, one may
naively guess that only ψR1 change sign, while ψR2 , ψL1 ,
and ψL2 do not change under the Z2 transformation:
(ψR1 , ψ

R
2 , ψ

L
1 , ψ

L
2 )→ (−ψR1 , ψR2 , ψL1 , ψL2 ). In this case, the

fermion mass term, such as (ψR2 )†ψL2 , will be allowed by
the Z2 symmetry. Such a mass term will reduce the c = 1
edge state to a c = 1

2 edge state without breaking the Z2

symmetry. In the following, we will show that the Z2

symmetry is actually realized in a different way. The
c = 1 edge state is stable if the Z2 symmetry is not bro-
ken. So the c = 1 edge state represents the minimal edge
state for the Z2 (as well as the ZN and U(1)) SPT phases.

The situation is best illustrated with explicit Jordan-
Wigner transformation of the XY model in Eqn.(3).
Consider a system of size N = 4n, n ∈ Z+. After the
Jordan Wigner transformation

Ψi = eiπ
∑i−1
j=1 Zj (Xi + iYi) (D2)

Ψ†i = eiπ
∑i−1
j=1 Zj (Xi − iYi)

The Hamiltonian becomes

H = Ha +Hb

Ha =
∑N
i=1(Ψ†i+1Ψi + Ψ†iΨi+1)

Hb = −(P + 1)(Ψ†1ΨN + Ψ†NΨ1)

(D3)

where P = eiπ
∑N
i=1 Ψ†jΨj is the total fermion parity in

the chain and Hb is the boundary term which depends
on P . Therefore, the fermion theory contains two sec-
tors, one with an even number of fermions and therefore
anti-periodic boundary condition and one with an odd

number of fermions and periodic boundary condition.
Without terms mixing the two sectors, we can solve the
free fermion Hamiltonian in each sector separately. After
Fourier transform, the Hamiltonian becomes

H =
∑
k

cos

(
2πk

N

)
Ψ†kΨk (D4)

where k takes value 0, 1, ..., N − 1 in the periodic sec-
tor and 1

2 , 3
2 , ... 2N−1

2 in the anti-periodic sector. The
ground state in each sector has all the modes with en-
ergy ≤ 0 filled. Note that with this filling the parity
constraint in each sector is automatically satisfied. The
ground state energy in the periodic sector is higher than
in the anti-periodic sector and the difference is inverse
proportional to system size N .

Now let’s consider the effect of various perturbations
on the system.

The (l,m) = (1, 0) operator or the (−1, 0) operator in
the boson theory (as shown in Fig. 1) corresponds to
changing the boundary condition of the Dirac fermion
from periodic to anti-periodic. Such operators would to-
tally gap out the edge states. However, from Eqn. (7)
and Eqn. (8), we see that both operators carry nontriv-
ial quantum number in all ZN (and U(1)) SPT phases,
therefore it is forbidden by the symmetry.

The (l,m) = (2, 0) operator in the boson theory corre-

sponds to the pair creation operator Ψ†LΨ†R in the fermion
theory. Its combination with the (−2, 0) operator (ΨRΨL

in the fermion theory) would gap out the system, but
due to the existence of the two sectors the ground state
would be two fold degenerate. To see this more explicitly,
consider the XY model again where the combination of
(l,m) = (2, 0) and (−2, 0) operators can be realized with
an anisotropy term

HXY
(2,0) = γ

∑
i

Xi−1Xi − Zi−1Zi (D5)

Under Jordan Wigner transformation, it is mapped to
the p-wave pairing term

H(2,0) = Ha,(2,0) +Hb,(2,0)

Ha,(2,0) = γ
∑N
i=1(Ψ†i+1Ψ†i + ΨiΨi+1)

Hb,(2,0) = −γ(P + 1)(Ψ†1ΨN + Ψ†NΨ1)

(D6)

Again, we have period boundary condition for P = −1
and anti-periodic boundary condition for P = 1. After
Fourier transform, the Hamiltonian at each pair of k and
N − k is

Hk,N−k = cos
(

2πk
N

)
(Ψ†kΨk + Ψ†N−kΨN−k)+

iγ sin
(

2πk
N

)
(−Ψ†kΨ†N−k + ΨN−kΨk)

(D7)
The Bogoliubov modes changes smoothly with γ and the
ground state parity remains invariant. The ground state

energy is 1
2

∑
k

(
1− (1− γ2) sin2

(
2πk
N

))1/2
and explicit

calculation shows that the energy difference of the two
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sectors (with k = int. and k = int. + 1
2 ) becomes expo-

nentially small with nonzero γ. Therefore, upon adding
the (l,m) = (2, 0) and (−2, 0) terms, the ground state be-
comes two fold degenerate. Such an operator does carry
trivial quantum number in the nontrivial Z2 SPT phase
and renders the gapless edge unstable. However, a two
fold degeneracy would always be left over in the ground
states, indicating a spontaneous Z2 symmetry breaking
at the edge.

The (0, 1) operator in the boson theory corresponds
to a scattering term between the left and right moving

fermions Ψ†LΨR. Its combination with the (0,−1) oper-

ator (Ψ†RΨL in the fermion theory) would gap out the
system. Unlike the (2, 0) operator, there is no degen-
eracy left in the ground state. In the XY model, this
corresponds to a staggered coupling constant

HXY
(0,1) = γ

∑
i

(−1)i (Xi−1Xi + Zi−1Zi) (D8)

Mapped to fermions, the Hamiltonian at k and k + N
2

becomes

Hk,k+N
2

= cos
(

2πk
N

)
(Ψ†kΨk −Ψ†

k+N
2

Ψk+N
2

)+

iγ sin
(

2πk
N

)
(−Ψ†kΨk+N

2
+ Ψ†

k+N
2

Ψk)

(D9)
For each pair of k and k + N

2 , there is one positive en-
ergy mode and one negative energy mode and we want
to fill the negative energy mode with a fermion to ob-
tain to ground state. For the anti-periodic sector, such a
construction works since there is a N/2 = even number
of negative energy modes, and the anti-periodic sector
contains an even number of fermions. However, for the
periodic sector, such a construction fails since there is a
N/2 = even number of negative energy modes, and the
periodic sector must contain an odd number of fermions.
So we have to add an fermion to a positive energy mode
(or have a hole in a negative energy mode), to have an
odd number of fermions. Therefore, the ground state in
the periodic sector has a finite energy gap above the anti-
periodic one and the ground state of the whole system is
nondegenerate. However, because this term carries non-
trivial quantum number in any nontrivial ZN (and U(1))
SPT phases, it is forbidden by the symmetry. For the
trivial Z2 SPT phase, the (0,±1) operators are Z2 sym-
metric operators, and can be added to the edge effective
Hamiltonian. The presence of the (0,±1) operators will
gap the edge state and remove the ground state degener-
acy.


