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Abstract 

We propose a density decomposition scheme using a Wang-Govind-Carter (WGC)-based kinetic 

energy density functional (KEDF) to accurately and efficiently simulate various covalently 

bonded molecules and materials within orbital free (OF) density functional theory (DFT). By 

using a local, density-dependent scale function, the total density is decomposed into a highly 

localized density within covalent bond regions and a flattened delocalized density, with the 

former described by semilocal KEDFs and the latter treated by the WGC KEDF. The new model 

predicts reasonable equilibrium volumes, bulk moduli, and phase ordering energies for various 

semiconductors compared to Kohn-Sham (KS) DFT benchmarks. The decomposition formalism 

greatly improves numerical stability and accuracy while retaining computational speed compared 

to simply applying the original WGC KEDF to covalent materials. The surface energy of Si(100) 

and various diatomic molecule properties can be stably calculated and also agree well with 

KSDFT benchmarks. This linear scaling, computationally efficient, density-partitioned/multi-

KEDF scheme opens the door to large scale simulations of molecules, semiconductors, and 

insulators with OFDFT. 
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I. Introduction 

In modern materials science and engineering modeling, first principles quantum 

mechanics methods are widely used because they can offer reliable results and predictions at the 

atomic scale, explaining many interesting phenomena that classical theories cannot. Among them, 

Kohn-Sham density functional theory (KSDFT)1, 2 is the most popular one at present because of 

its excellent balance between accuracy and efficiency. However, orbital orthonormalization and 

k-point sampling in KSDFT typically make the computational cost scale cubically with respect 

to system size with a significant prefactor, effectively prohibiting extensive simulation of more 

than a few hundred atoms. Although many linear scaling KSDFT methods have been proposed,3-

10 most of them rely on orbital localization in insulators and hence are not applicable to metals. 

Furthermore, the relatively large prefactor of those linear scaling methods makes studying 

interesting large scale scientific problems still prohibitive with KSDFT, unless one has access to 

extraordinary computing resources.11, 12 

On the other hand, an alternative DFT formalism, orbital-free density functional theory 

(OFDFT)13 is a much more efficient first principles approach capable of treating much larger 

numbers of atoms. The Hohenberg-Kohn theorems1 proved that the electron density uniquely 

determines the ground state of an electronic system, thereby providing the foundation for 

OFDFT, which uses the electron density as the basic variable. The number of degrees of freedom 

is thereby reduced from 3N electron coordinates to only three spatial coordinates, where N is the 

number of electrons in the system. OFDFT significantly decreases the computational cost, 

exhibiting quasi-linear scaling with system size with a small prefactor.14, 15 A number of practical 

applications of OFDFT to predict mesoscale materials properties have been reported in recent 

years.14-23 OFDFT provides an efficient and robust approach to study large samples with many 
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thousands of atoms, such as nanowire deformation,18, 19 crack tip propagation,20 and dislocation 

formation in metals.16, 21 

However, a trade-off between accuracy and efficiency is inevitable. Instead of using 

orbitals to compute the electron kinetic energy, OFDFT uses approximate kinetic energy density 

functionals (KEDFs), which renders it less accurate than KSDFT in most cases. Only in some 

extreme limits like the uniform electron gas or a single orbital, are exact KEDF forms known: 

the local Thomas-Fermi (TF)24-26 and the semilocal von Weizsäcker (vW)27 KEDFs, respectively. 

The exact KEDF remains unknown. In recent decades, many forms of nonlocal KEDFs have 

been proposed, such as the Chacon-Alvarellos-Tarazona (CAT),28-30 Wang-Teter (WT),31 and 

Wang-Govind-Carter (WGC)32, 33 functionals, etc.,34-37 all based on Lindhard linear response 

theory.38, 39 Some others involve higher-order response theories.31, 40, 41 Generally, these KEDFs 

can model nearly-free-electron-like systems, such as main group metals and alloys, with 

accuracy comparable to KSDFT.14-21, 33, 42-45 However, the narrow applicable area of current 

KEDF models inhibits OFDFT studies of many other interesting problems involving, e.g., 

semiconductors, transition metals, or molecules. In these latter cases, the electron density 

significantly deviates from the uniform electron gas scenario due to highly localized electrons. 

Consequently, the abovementioned nonlocal KEDFs become both physically and numerically 

unsound.46 Only limited success was achieved when applying them to treat semiconductors or 

transition metals.46-48 

Not until very recently have some successful OFDFT models been proposed for covalent 

materials and transition metals.49-51 In 2010, the Huang-Carter (HC) KEDF49 was proposed to 

account for the linear response properties of semiconductors, exhibiting much improved 

accuracy for bulk Si and III-V semiconductors and later for covalently-bonded molecules as 
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well.52 The HC KEDF undoubtedly broadens OFDFT’s range of applications. However, it still 

has several remaining drawbacks,49 including insufficiently accurate properties of Si metallic 

phases, underestimated electron density in the bonding regions of Si and III-V semiconductors, 

unphysical shear moduli and self-interstitial formation energy. Furthermore, the optimal 

parameters in the HC KEDF change with the coordination number without a quantitative and 

systematic way to determine their values despite predicted qualitative trends.49 Numerically, the 

HC functional employs interpolation to preserve the quasi-linear scaling,50 which greatly 

increases the scaling prefactor, especially when density variations are large. For example, for a 

molecule or a solid surface with vacuum present in the periodic cell, an HC KEDF calculation 

can be hundreds of times slower than a WGC KEDF calculation. As a result, HC KEDF 

calculations on large systems containing large density variations become prohibitively time 

consuming. Therefore, an accurate and computationally efficient OFDFT model is still needed 

for covalently-bonded systems. 

Among available nonlocal KEDFs, the WGC KEDF predicts exceptionally good results 

for light metals,14-21, 33, 43, 44 which only involve small electron density variations. However, it 

describes covalently-bonded systems such as semiconductors or molecules far less accurately.46, 

52 In those systems, large density variations due to localized electrons challenge both the 

theoretical basis (the Lindhard response function of the perturbed free electron gas) and the 

numerical Taylor expansion.46 However, an earlier re-parameterized WGC KEDF for various Si 

phases, though not entirely satisfactory for Si semiconductor phases,46 features two positive 

aspects. First, it predicts rather reasonable equilibrium volumes, bulk moduli, and even total 

energies for Si metallic phases compared to KSDFT benchmarks, indicating the adequacy of the 

WGC KEDF for the level of density variation in those phases. Moreover, it generates reasonable 
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ground state densities even for Si semiconductor phases. Therefore, we expect that the incorrect 

energies for semiconductor phases mainly arise from the WGC KEDF approximation for regions 

featuring large density variations due to localized electrons in either tightly bound atomic 

orbitals or chemical bonds. The problem also appears for transition metals which feature highly 

localized d electrons around the nuclei. Recently, encouraging improvements towards extending 

OFDFT to transition metals have been made.50, 51 These new models set up a volume around 

each atom that separates the localized (primarily d) electron density from the delocalized density 

and then treats each with different KEDF models. In a similar fashion, here we aim to 

decompose the electron density in covalently-bonded materials, treating the localized electron 

density in chemical bonding regions with local or semilocal KEDFs, while still describing the 

remaining delocalized electron density with the WGC KEDF. In this way, we hope to obtain an 

accurate but also efficiently evaluated model of covalent systems within OFDFT. 

In the following, we first introduce in Section II the WGC-KEDF-based density 

decomposition formalism, in which we use the total density as a metric to identify localized 

electrons, and then further decompose the electron density. Different KEDF models are then 

used to separately treat localized and delocalized electron densities. The numerical details are 

described thereafter in Section III. Section IV presents test of the model for different covalently 

bonded systems including bulk Si and III-V semiconductors, as well as diatomic molecules. The 

conclusions are given in Section V. 

II. Formalism 

According to the Hohenberg-Kohn theorems,1 the electronic total energy is a functional 

of the total electron density, totalρ : 
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rrr dVEJTE )()(][][][][ totalexttotalxctotaltotalstotal ρρρρρ ∫+++= . (1) 

Here Ts is the non-interacting electron kinetic energy, J is the Hartree electron-electron repulsion 

energy, and Exc is the electron exchange-correlation energy. Vext is the external potential, such as 

electron-ion pseudopotentials in the present calculations. 

As discussed above, electrons localized in chemical bonds lead to large density variations 

in covalently bonded systems. Table I shows the ratio of the maximum density to the average 

density in different physical systems, which to some extent reflects the respective level of 

density variation. We observe that covalent materials such as cubic diamond (CD) and hexagonal 

diamond (HD) Si feature significantly higher ratios than metallic Si phases, Al, or Mg. To apply 

the WGC KEDF to these covalently-bonded materials, we introduce an electron density 

decomposition formalism, where we separate localized and delocalized electron densities, 

describing the localized part with semilocal KEDFs and treating only the delocalized component 

with the WGC functional. We refer to this method as the WGCD model in what follows.  

In each calculation, we define a scale function )(rF over all space. The delocalized 

electron density delρ  is then computed as: 

)()()( totaldel rrr F×= ρρ . (2) 

Accordingly, 

)()()( deltotalloc rrr ρρρ −= , (3) 

where locρ  is the localized electron density. After decomposing the density, the kinetic energy is 

calculated as: 

][])[][(][ delsdelstotalstotals ρρρρ TTTT +−= , (4) 
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similar to previous work for transition metals.50 We can re-write the two terms in parentheses as: 

])[][][(][][][ locsdelstotalslocsdelstotals ρρρρρρ TTTTTT −−+=− . (5) 

In this way, we can identify these two terms as the localized electron kinetic energy (first term on 

the right hand side of Eq. 5) and the interaction kinetic energy between localized and delocalized 

electrons (second term on the right hand side of Eq. 5). One may recognize the latter interaction 

term from embedding theories or as the non-additive KEDF (Tnad).53 A number of Tnad models 

exist in the literature,53-56 which generally utilize complicated forms of enhancement factors with 

the reduced density gradient. In this work, we mainly aim to test the physics of the 

decomposition formalism, so we simply employ the semilocal vWTF bTaT +  KEDF model for the 

interaction kinetic energy as well as for the localized kinetic energy terms, which has been 

justified in previous literature.50, 53, 56-59 For the last term on the right hand side of Equation (4), 

the delocalized electron kinetic energy, we utilize the WGC KEDF, since it should possess the 

correct physics for those electrons. The total kinetic energy is now approximated as 

][])[][(][ del
WGC

sdel
semilocal

stotal
semilocal

stotals ρρρρ TTTT +−= . (6) 

The corresponding kinetic energy potential is also easily derived: 

)(][)(][][][

del

del

del

del
semilocal

total

total
semilocal

total

totals rr FTFTTT WGC

⋅+⎥
⎦

⎤
⎢
⎣

⎡
⋅−=

δρ
ρδ

δρ
ρδ

δρ
ρδ

δρ
ρδ . (7) 

It is evident that the scale function )(rF  largely determines the quality of the resulting 

KEDF. Two limits of )(rF  are 1 and 0. 1)( ≡rF  makes the formalism recover the original 

WGC KEDF as 0loc =ρ ; while for 0)( ≡rF , the KEDF becomes the simple semilocal model as 
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0del =ρ . In transition metals, a sphere around the nuclei can be easily defined to treat localized d 

electrons separately, as done in previous models,50, 51 where the scale function F depends only on 

the spatial coordinates explicitly. However, the location of localized electrons in covalently-

bonded systems is different. For example, CD Si has localized electrons between each pair of 

atoms. In a general material or molecule, one cannot identify regions of localized density by an 

obvious atom-centered object such as a simple sphere. In order to locate localized electrons and 

further decompose the total density, spatial coordinates alone are insufficient. It is 

straightforward to make use of other information from the electron density, the energy density or 

the energy potential, like in the electron localization function (ELF)60, 61 in KSDFT. Although the 

ELF is an ideal indicator of electron localization and a metric to determine F(r), unfortunately 

OFDFT lacks the orbital information or KSDFT kinetic energy density τ(r), required to evaluate 

the ELF. Therefore, we need to find another metric to determine F(r). 

In fact, the total electron density itself could reasonably reveal electron localization, since 

the electron density should be large where electrons are localized. As Figure 1 demonstrates, 

totalρ  shares a similar shape to the ELF. Therefore, we employ totalρ  as an indicator to calculate 

F(r). In practice, we choose the dimensionless quantity del
0total / ρρ  as the argument, where del

0ρ  is 

the average of the delocalized density, explicitly written as 

)/)(()( del
0total ρρ rr fF = , (8) 

where )/)(( del
0total ρρ rf is bounded between 0 and 1.  

In this work, we choose a numerical form of )/)(( del
0total ρρ rf  (see Figure 2) to physically 

separate localized and delocalized electron densities. It features several desirable properties: (i) if 
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1/)( del
0total ≤ρρ r , 1)/)(( del

0total ≈ρρ rf , while it decreases as del
0total /)( ρρ r  increases and 

0)( →∞f . This guarantees that locρ  appears only in chemical bonding or atomic core regions 

(where del
0total /)( ρρ r  is large), and totaldel ρρ ≈  in interstitial volumes (where del

0total /)( ρρ r  

around or smaller than 1). (ii) It usually generates a flattened, delocalized density delρ  with 

5.1/ del
0

del
max ≤ρρ , typical for metallic phases that the WGC KEDF is able to describe well (Table 

1), where )max( del
del
max ρρ = . For CD Si, we obtain a much flatter delρ  than the original totalρ , 

with significantly smaller density variations (see Figure 3). (iii) )/)(( del
0total ρρ rf possesses 

appealing self-consistency properties in limiting cases. In the limit of nearly-free-electron-like 

systems )( totaldel ρρ ≈ , 1)/)(()( del
0total ≈= ρρ rr fF  thus leading to totaldel ρρ ≈  self-consistently. 

On the other hand, in the limit of a completely localized density ( 0del ≈ρ ), ∞→del
0total /)( ρρ r  

and 0)/)(()( del
0total ≈= ρρ rr fF , thus leading to 0del ≈ρ  self-consistently. 

To increase the flexibility of the scale function, we introduce a shift parameter m,  

)()/)(()( del
0total ζρρ fmfF =−= rr , 1)0( ≡<ζf , (9) 

where we define the argument of the f function as ζ. Large m leads to a small ζ and thus large F(r) 

(up to the upper bound of 1). Physically, this corresponds to less scaling and decomposition, 

which should be expected when simulating metallic phases, as will be shown in the following 

sections. 

Finally, since the presence of del
0ρ  in the scale function makes it difficult to fully evaluate 

the functional derivative of )()( ζfF =r  with respect to totalρ , we assume F(r) depends only on 

spatial coordinates and employ Equation (7) to evaluate the kinetic energy potential. We 
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therefore have to introduce an extra loop to guarantee full self-consistency of F(r) so that the 

assumption becomes true at convergence. Specifically, we use a pure WGC ground state density 

as a starting guess to obtain the initial F(r), as the WGC KEDF yields reasonable densities 

compared to KSDFT (see Figure 1). We then perform a density decomposition calculation using 

this predetermined, fixed F(r). Once we obtain converged, new, total and delocalized densities 

from the decomposition calculation, we re-calculate F(r) to start a new iteration. We loop this 

procedure until F(r) becomes self-consistent (see flow chart, Figure 4). We find that different 

choices for the delocalized KEDF model in the first iteration do not influence the final results. 

Consequently, other KEDFs, such as the WT KEDF, can also be used in the first iteration. The 

WT KEDF also predicts a reasonable density distribution (see Figure 1) and always converges, 

which is not always the case for the pure WGC KEDF used on the total density. After the first 

iteration, we switch to the WGC KEDF to describe the delocalized electron density. Since 

neither the WGC KEDF (for delocalized electron densities) nor the semilocal model (for 

localized electron densities) diverges, this new formalism is always stable. 

III. Numerical details 

We perform OFDFT calculations with our PROFESS 2.0 code14, 62 and KSDFT 

computations with the ABINIT code.63 The Perdew-Zunger (PZ) local density approximation 

(LDA) exchange-correlation (XC) functional is employed in all calculations.64, 65  We aim here to 

simply compare the accuracy of our new KEDF scheme against KSDFT kinetic energy 

benchmarks; hence we do not bother to perform calculations with a more accurate, generalized 

gradient approximation XC functional, although it is available in our code. In both OFDFT and 

KSDFT calculations, bulk-derived local pseudopotentials (BLPSs)66 reported in previous 

literature are used.49, 67 
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We study bulk properties of CD, HD, complex body-centered-cubic (cbcc), β-tin, body-

centered-tetragonal (bct5), simple cubic (sc), hexagonal-close-packed (hcp), body-centered-cubic 

(bcc) and face-centered-cubic (fcc) phases of Si, as well as cubic zinc blende (ZB) and hexagonal 

wurtzite (WZ) structures of III-V semiconductors including AlP, AlAs, AlSb, GaP, GaAs, GaSb, 

InP, InAs, and InSb. The structural details were given in previous work.49, 67 

 In the KSDFT calculations, a kinetic energy cutoff for the plane wave basis of 900 eV is 

used to converge the total energy to within 1 meV/atom. For various Si and III-V semiconductor 

calculations, k-point meshes are generated with the Monkhorst-Pack method.68 Table II lists the 

detailed k-point meshes and the Fermi-Dirac smearing widths. These k-point meshes converge 

the CD Si elastic constants to within 0.2 GPa, based on the difference between using the 

121212 ××  mesh in Table II and a much denser 303030 ×× mesh. The k-point meshes are 

decreased when calculating vacancy and self-interstitial formation and surface energies to keep 

the k-point spacing consistent with what is used in bulk CD Si calculations. The details for 

diatomic molecule calculations are the same as given in our previous work.52 In all OFDFT 

calculations, a 6000 eV plane wave kinetic energy cutoff is used to achieve convergence of 1 

meV/atom. The scale function is considered self-consistent if ξ<− − ))()(max( 1][i[i] rr FF  (the 

subscript in square brackets represents the iteration step). We set ξ equal to 10-4 in all 

calculations, which guarantees convergence to within 10-2 meV/atom. 

A number of parameters must be selected for the KEDFs in OFDFT calculations. We use 

the universally-derived density exponents 6/)55( −=α  and αβ −= 3/5  in the WGC 

KEDF.33 γ is set equal to 3.6 for all calculations, as optimized for the CD Si phase in previous 

work.46 In the WGCD calculation of the delocalized density, the WGC kernel is re-evaluated 
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each iteration according to that iteration’s del
0ρ . In all bulk crystal calculations, del

0ρ  is simply 

computed as the average of delρ , which is also used as the Taylor expansion center *ρ . In 

surface and molecule calculations, this definition fails due to the large region of vacuum in the 

supercell. In such calculations, del
0ρ  is calculated as the average of delρ  only in an effective 

region where delρ  is larger than a critical value cρ . In our Si(100) surface calculations, cρ  is set 

equal to 0.00684 a.u., which is the minimum density in bulk CD Si at its equilibrium volume. For 

diatomic molecule calculations, no obvious choice of cρ  exists. The value is adjusted for 

different diatomics. We set del
max* 3

2 ρρ = , a typical relation in bulk calculations, to produce good 

numerical stability. Three other parameters must be chosen in the decomposition formalism: the 

coefficients a for the TF KEDF and b for the vW KEDF, as well as the shift parameter m in the 

scale function. They are first slightly tuned when calculating different properties but we also test 

a universal, average set of parameters in what follows. In the HC KEDF calculations (performed 

for comparison) of CD Si elastic constants and surface energies, we used parameters optimized 

previously for CD Si, λ=0.01 and β=0.65.49 Finally, when we use the original WGC KEDF to 

calculate CD Si elastic constants, we select the default α and β  values given above and employ 

0* ρρ =  and γ=3.6. 

We calculated equilibrium volumes, bulk moduli, and phase energy differences for all Si 

and III-V semiconductor phases. Equilibrium structures are fully relaxed in KSDFT calculations 

using the default force and stress thresholds in the ABINIT code. Since the stress expression for 

the WGCD KEDF has not been implemented yet within PROFESS, we manually optimize the 

OFDFT geometries by scanning the degrees of freedom (one or two) in each structure. After 
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obtaining the relaxed equilibrium structure, we expand and compress the equilibrium volume by 

up to 2% to compute eight energy-volume points and then fit to Murnaghan’s equation of state69 

to compute the bulk modulus. The phase energy differences are just the total energy differences 

between phases at their equilibrium structures. We also calculate the phase transition pressure 

(Ptrans) using the common tangent rule, 

trans
2 phase1 phase

P
dV
dE

dV
dE −== . (10) 

To calculate other elastic constants for CD Si, we apply a strain tensor, ε, to the 

equilibrium structure:70 
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where ai are primitive vectors and 
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where eij are strain components defined in Cartesian coordinates.  For the tri-axial shear modulus 

C44, we apply the tri-axial shear strain e=(exx,eyy,ezz,eyz,exz,exy) =(0,0,0,δ,δ,δ) to the equilibrium 

structure with δ up to 2%. Then C44 is calculated by fitting to the form: 

2
442

3 δC
V
E =Δ . (13) 
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Similarly, for the orthorhombic shear modulus C’, we apply the volume-conserving 

orthorhombic strain e=(δ,δ,(1+δ)-2-1,0,0,0) and calculate by fitting the equation: 

2'6 δC
V
E =Δ . (14) 

C11 and C12 are then computed according to the relations: 

3
'43

11
CBC +=  (15) 

and 

3
'23

12
CBC −= . (16) 

To calculate the CD Si vacancy formation energy, a 222 ××  array of 8-atom cubic unit 

cells are used with 63 Si atoms, where one atom is removed at a corner. To calculate the CD Si 

self-interstitial formation energy, an extra Si atom is added to a tetrahedral interstitial site in the 

64-atom 222 ×× supercell. The structures are not relaxed in KSDFT or OFDFT; again, the point 

of these simulations is not to represent the real defect structure but to test transferability across a 

range of strains and variations in electronic structures. The point defect energies are then 

calculated based on Gillan’s expression:71 

),0,(11,1,1defect Ω±−⎟
⎠
⎞

⎜
⎝
⎛ Ω±±= NE

N
N

N
NNEE , (17) 

where ),,( ΩzNE  is the total energy for a cell with volume Ω , N atoms, and z defects. The 

vacancy calculation corresponds to the “-” sign while the self-interstitial calculation uses the “+” 

sign in Eq. (16). 
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We performed both unreconstructed and reconstructed Si(100) surface calculations. A 9-

layer unit cell containing 9 atoms (one atom per layer) and a )12( ×p  geometry with 12 layers 

(24 atoms) were used for the unreconstructed and reconstructed surface calculations, respectively, 

both with 10 Å of vacuum between periodic slabs as buffer. In the latter case, the geometry was 

fully relaxed in KSDFT with the two middle layers fixed at their equilibrium bulk positions to 

mimic a semi-infinite crystal, while the OFDFT calculations employed the relaxed geometry 

from KSDFT and only optimized the electron density. The final surface energy, σ, is calculated 

by the formula: 

)2/()( 0slab ANEE −=σ , (18) 

where Eslab is the total energy of the slab, E0 is the energy per atom in the CD Si bulk equilibrium 

structure, N is the number of atoms in the slab, and A is the area of the periodic slab surface unit 

cell. 

Finally, we examined nonmagnetic (MS=0) states of diatomic molecules. The equilibrium 

bond length re, bond dissociation energy D0, and vibrational frequency ωe for each diatomic are 

calculated. Two atoms are set up in the center of a 101020 ××  Å cell, aligned along the longest 

direction. The bond length is varied from 1.8 Å to 10 Å to determine the energy versus bond 

length curve. The zero point energy, re, and ωe are then determined by quadratically fitting the 

03.0±  Å region around the bottom of the well. The energy difference between the equilibrium 

bond length and the fully dissociated limit (r=10 Å) is first computed and then the zero point 

energy is subtracted to obtain the D0 values. 

IV. Results and Discussion 

A. Bulk properties for ground state semiconductors 
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To test the WGCD model, we first calculate bulk equilibrium volumes (V0), bulk moduli (B), 

and equilibrium energies (Emin) for CD Si and a variety of ZB III-V semiconductors. The shift 

parameter m is set to zero in these calculations. We adjusted the two parameters a and b in the 

semilocal KEDF to match KSDFT total energies and equilibrium volumes. 

Table III lists calculated bulk properties and the optimal a and b for each semiconductor 

ground state. The KSDFT total energies and equilibrium volumes are very well reproduced by 

OFDFT when a and b are tuned, but this is simply a measure of the quality of the fit. Some 

measure of transferability is provided by predicting bulk moduli, which also agree well with 

KSDFT benchmarks. Figure 5 displays total energy versus volume per atom for CD Si and per 

formula unit for ZB GaAs. The OFDFT curves match the KSDFT ones quite well over a 

considerable range. The accurate bulk properties demonstrate the validity of the WGCD model 

for treating semiconductor phases. 

The current WGCD model has comparable accuracy to the HC KEDF for treating ground 

state semiconductors.49 It shows significant improvement over the earlier re-parameterized WGC 

KEDF OFDFT calculations.46 There are two parameters in the WGCD model, a and b, besides 

the three parameters, α, γ, and *ρ in the original WGC KEDF. We find that the bulk properties V0 

and B hardly change when tuning these three WGC KEDF parameters while total energies are 

shifted slightly. Tuning γ in the range 2.2-4.0 and *ρ  in the range 1.0ρ0-1.1ρ0 changes the total 

energy per atom by less than 10 meV. Tuning α in the range 0.3-0.8 also changes total energy per 

atom by less than 0.1 eV. Therefore, these parameters are not sensitive and we fix their values as

6/)55( −=α , αβ −= 3/5 , and γ=3.6 in all calculations,46 and 0* ρρ =  in all bulk 

calculations. All ground state semiconductors have very similar optimal a and b parameters, with 
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a ~ 0.8 and b ~ 0.7 (Table III), and only small changes in V0 and B occur when tuning these two 

parameters in a reasonable range (Figure 6). Increasing a while keeping b constant increases V0 

while reducing B, but both are still in reasonable agreement with KSDFT values. The total 

energy shifts by about 1 eV over this range of a (Figure 6). Tuning b has similar effects on the 

total energy but opposite effects on V0 and B, i.e., increasing b reduces V0 and increases B. 

Apparently, a rather large range of a and b parameter sets produce reasonable bulk properties 

though with different equilibrium total energies. In the next section, we will show that relative 

energies of different phases are correctly preserved compared to KSDFT benchmarks, although 

the energies are shifted somewhat. These facts again demonstrate that the WGCD model contains 

the right physics for treating semiconductor phases while the specific semilocal model describing 

the localized density has a smaller effect on the results. 

B. KEDF Transferability 

To test the transferability of our model, we next use a universal parameter set for all ground 

state semiconductors. Table IV shows the bulk properties computed with the average a=0.835 

and b=0.679 values derived from the optimal values for different phases in Sec. A. The WGCD 

OFDFT bulk properties are still very close to KSDFT values. The predicted equilibrium volumes 

generally exhibit less than 2% error compared to KSDFT results. The maximum deviation is for 

InAs, +5%, corresponding to a less than 2% error in the lattice constants. The bulk moduli are 

also in reasonable agreement with KSDFT values. The deviation in total energies per 2-atom 

primitive unit cell is usually smaller than 1 eV (~0.5%), with the maximum error being 1.3 eV 

for CD Si. Figure 7 shows the general trend in equilibrium total energies among those ground 

state semiconductors. The KSDFT trend is well reproduced by OFDFT within both the new 
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WGCD model and the HC KEDF with universal λ and β values.49 The WGCD absolute energies 

are actually in slightly better agreement with KSDFT than the HC energies.  

After calculating ground state semiconductors, we next apply the WGCD model to calculate 

phase energy differences among other bulk Si phases. Unfortunately, using the same parameters 

(averaged a and b or just those optimal for CD Si, and m=0) for all phases does not yield correct 

phase orderings. The WGCD model successfully predicts semiconductor phases because we take 

special care of the localized density. However, this physics obviously becomes unsound for 

metallic phases, where very little localized electron density exists and therefore the density 

decomposition is not necessary.  Although we designed the scale function such that the WGCD 

model recovers WGC KEDF for nearly-free-electron-like systems, Si metallic phases (cbcc 

through fcc in Table I) still feature considerable density variations, thus leading to the unphysical 

density decomposition and energetics. A better scale function which could more reasonably 

identify regions of localized electrons might solve this problem. However, here we simply make 

use of the shift parameter m. Thus, for all Si phases examined, we fix the a and b values to those 

optimized for CD Si and only tune m to match KSDFT phase energy differences, leaving 

equilibrium volumes and bulk moduli as tests of transferability. 

The WGCD KEDF generally predicts excellent bulk moduli for each phase (Table V), which 

represents an improvement over the HC KEDF that systematically predicts too small B for 

metallic phases.49 The improvement undoubtedly is due to the reliability of the WGC KEDF for 

metallic phases.33 The best results for V0 appear at both ends of the table, CD and HD on the left 

with low coordination numbers (4 each), and hcp, bcc, and fcc on the right with high 

coordination numbers (12, 8, and 12, respectively). The equilibrium volumes for these phases 

deviate less than 2% from the KSDFT benchmarks. CD and HD are covalently-bonded 
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semiconductors, so the WGCD model describes them well; the hcp, bcc, and fcc phases are the 

most metallic ones, so when m is large (making the WGCD KEDF nearly revert to the WGC 

KEDF), the properties are well predicted mainly due to the quality of the WGC KEDF. The 

phases with intermediate coordination numbers (middle of Table V) feature slightly increased, 

but still reasonable errors, up to +10% for the bct5 structure. Despite their metallic nature, these 

phases still exhibit comparatively large density variations, so use of the WGC KEDF is not as 

well founded. On the other hand, the electrons are not well localized in these phases, so the 

density decomposition is questionable. Adjusting the m parameter balances these two limits and 

produces correct phase energy differences. However, bulk properties are not very accurate. 

The trend for optimal m values for each phase is clear. From the left-hand side to the right-

hand side of Table V, the optimal m value gradually increases. The physical meaning behind this 

is also obvious; generally, more metallic phases correspond to smaller density variations and less 

localized electrons, which means we do not need to scale down the localized density as much as 

we do in semiconductor phases. Mathematically, larger m leads to smaller ζ and thus a larger 

value of F(r). The small optimal m=0.03 for the HD structure lies very close to the optimal m=0 

for CD Si. As the phases become mostly metallic, such as fcc Si, the optimal m value becomes as 

large as 0.4. The minimum value of the final self-consistent scale function in fcc Si is around 

0.995, which means we hardly even need the density decomposition. As expected, the results for 

fcc Si are very similar to the original WGC results.46 

We also calculate the Si CD-to-β-tin phase transition pressure. When using the same 

parameters (a=0.864, b=0.67, m=0) for both phases, the β-tin phase has a much lower energy 

than the CD phase. Consequently, the transition pressure is unphysically predicted as -12.0 GPa 

compared to 5.6 GPa in KSDFT. If we employ the optimal m for each phase (m=0 for CD and 
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m=0.114 for β-tin Si), we obtain a fairly reasonable transition pressure of 6.9 GPa, a bit larger 

than the KSDFT result due to a larger β-tin V0 predicted by the WGCD model. This again 

illustrates the need of a more transferable scale function upon change of coordination numbers. 

Besides energetics, we also verify the equilibrium structure for each phase. The CD, sc, bcc, 

and fcc structures feature no internal degrees of freedom while the cbcc, β-tin, and hcp structures 

feature one, which we scan in a wide range to find each equilibrium structure. The optimized 

WGCD OFDFT internal degrees of freedom for these three phases are in excellent agreement 

with KSDFT benchmarks (Table V). The HD and bct5 structures contain two internal degrees of 

freedom. When we carry out a two-dimensional scan for the c/a ratio and the internal coordinate 

x for the HD structure, the WGCD KEDF does not exhibit a global minimum. We therefore 

instead performed two sets of constrained minimizations in which we fixed the c/a ratio from 

KSDFT and scanned x, or vice versa. The resulting optimized c/a or x and the corresponding 

bulk properties are shown in Table V, labeled as HD1 and HD2, respectively. For both of them, 

the optimized values are close to KSDFT benchmarks. The bct5 structure is the most ill-behaved 

with the WGCD KEDF, with no minimum found in either a global two-dimensional search or 

one-dimensional constrained searches. In the table, the results for bct5 are calculated using the 

KSDFT-relaxed geometry. This shows a limitation of the current OFDFT model for geometry 

optimization: bond-bending is not captured properly yet within OFDFT. This issue will be 

discussed further in Sec. D. 

We also calculated properties of various WZ III-V semiconductors, which have a similar 

structure to HD Si. As a transferability test, the average a and b values from CD Si and ZB III-V 

compounds, and the optimal value of m for HD Si were used in all WZ calculations. Similarly to 

HD Si, no global minimum can be found for the two degrees of freedom, the c/a ratio and 
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internal coordinate x. Table VI shows the results of one-dimensional constrained searches 

analogous to those done for HD Si. Generally the c/a ratio and the x values are fairly close to but 

systematically smaller than KSDFT values. Equilibrium volumes and bulk moduli are all 

reasonably reproduced, with the largest deviation being +6% for InAs’s equilibrium volume and 

+15% for GaSb’s bulk modulus. The phase energy differences are generally larger than KSDFT. 

Considering the small energy difference between these two phases, ~10 meV, the results are 

fairly reasonable. 

C. Ground state electron density 

To further test our formalism, we compare the ground state densities for CD Si and ZB GaAs 

calculated within OFDFT-WGCD, OFDFT-HC and KSDFT (Figure 8). Although the original 

WGC KEDF density is larger than the KSDFT density in the bonding region (Figure 1, leftmost 

density peak), the WGCD model reduces the density significantly, to the point of 

underestimating it (Figure 8), similar to the HC KEDF.49 For CD Si, the maximum density is a 

bit smaller than the HC KEDF prediction and a dip in the density peak is exaggerated compared 

to KSDFT. In the non-bonding region (lower density regions between the two smaller density 

peaks), the WGCD density is larger than the KSDFT density, suggesting a tendency to over-

delocalize the density, presumably originating in the parent WGC KEDF. For ZB GaAs, the 

WGCD density is again smaller than the KSDFT density though a bit larger than the HC KEDF 

density.49 In this case, the asymmetric shape of the bonding peak (due to the polar covalent 

nature of the Ga-As bond) is exaggerated.  

The parameters a and b also influence the ground state density distribution. Increasing a and 

b generally lowers the density in the bonding region (Figure 6, bottom panel). This makes sense 
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because increasing them will increase the kinetic energy contribution (aTF+bvW) of the 

localized electrons, making it less favorable for electrons to be there, leading to a smaller density 

in the bonding region. Unfortunately, we cannot simultaneously reproduce well the KSDFT V0, B, 

total energy, and ground state density. To guarantee good V0, B, and density, we have to decrease 

a and b substantially, leading to a total energy much lower than the KSDFT benchmark. Here, 

we made the total energy a priority and tolerate deviations in the ground state density (even 

though in principle these two quantities are of course related to each other, but use of 

approximate KEDFs ensures that we cannot reproduce both of them simultaneously). In cases for 

which an accurate ground state density is critical, parameters can be re-adjusted slightly to obtain 

a better density instead of a better total energy. Encouragingly, even when we use nonoptimal 

parameter values, such as average values that produce residual errors in total energies, the 

relative energy ordering is still reasonable (Table IV). Of course the vWTF bTaT +  KEDF is not 

the only option to treat the localized density. Better choices of a localized density KEDF model 

and scale function might improve the results and resolve this dilemma. 

D. Elastic constants 

In this section, we calculate elastic constants for ground state CD Si using the WGCD model. 

The results are listed in Table VII, along with KSDFT, HC KEDF, and WGC KEDF results for 

comparison. For the bulk modulus, both the HC and WGCD KEDF results are close to the 

KSDFT value and much better than the original WGC result. The shear moduli C44 and C’ are 

more problematic because they involve bond bending. The original WGC KEDF gives wrong 

signs for both of them while the HC and WGCD models both give positive values for C44, 

though still considerably smaller than KSDFT. For C’, the HC result is positive while the 

WGCD result is still negative. However, all the OFDFT predictions of C’ differ substantially 
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from the KSDFT benchmark. Because C11 and C12 are calculated from C44 and C’, good results 

such as for the WGC C12 must be considered fortuitous. 

OFDFT with available KEDFs clearly fails to treat bond-bending reasonably, either using the 

HC KEDF or the current WGCD model. Although both are able to capture some part of the right 

physics regarding the semiconductor linear response behavior (HC) or localized electrons (HC 

and WGCD), the lack of orbitals still makes describing directional deformation difficult for 

OFDFT. This problem is also related to the geometry optimization problem mentioned for HD 

and bct5 Si in Sec. B, which also involves bond bending. Some efforts have been made on the 

bond-bending problem in OFDFT,78 but a more satisfactory and general solution is still needed. 

E. Defect formation energies 

To further test our model, we calculate the CD Si vacancy and self-interstitial formation 

energies and Si(100) surface energies, and compare the results to corresponding HC KEDF 

OFDFT and KSDFT values (Table VIII). Unfortunately, the WGCD model predicts 

unsatisfactorily small vacancy and very negative self-interstitial formation energies, similar to 

but worse than HC KEDF results.49 The insufficient transferability of the parameter m is the 

likely cause; the optimal m for CD Si generates incorrect energies for local defect geometries. 

Again, the scale function is crucial. An ideal one will allow us to locate and separate the 

localized electrons reasonably and effectively not only in different structures, but also in 

different spatial regions in the system. The problem could very well disappear if we find a 

superior scale function in the future. 

We then calculate the energy of the unreconstructed, unrelaxed, bulk-terminated Si(100) 

surface. The HC and WGCD KEDF OFDFT surface energies are both quite accurate compared 
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to the KSDFT benchmark (Table VIII). As is well known, the Si(100) surface reconstructs to 

form Si-Si bonds.74-75 To model the actual reconstructed surface, we relaxed the Si surface with 

KSDFT and employ the KSDFT-relaxed geometry in OFDFT calculations for comparison. Here, 

the surface reconstructs to form rows of non-alternately buckled dimers (p(2x1) symmetry); we 

realize that alternately buckled dimers may be slightly lower in energy72-77 but such a state 

requires a p(2x2) periodic unit cell, which is more expensive to simulate. Since our goal is 

simply to compare KSDFT to OFDFT, this p(2x1) structure is sufficient. The KSDFT 

reconstructed surface energy is significantly lower than the unreconstructed one. Likewise, both 

OFDFT models reproduce this trend, with WGCD prediction being somewhat surprisingly more 

accurate than the HC one.  

F. Diatomic molecules 

As a final test, we employ our model to calculate properties of diatomic molecules. The 

original WGC fails to converge for molecules whereas WGCD calculations always converge for 

all systems we have tried. Here we use the optimal parameters for bulk CD Si. Unlike the case of 

a periodic slab surface model, the choice of ρc is less obvious in a molecule (see Sec. III for 

details). We therefore employ two different ρc values to explore their effects. Table IX shows the 

results for the nonmagnetic states of various homonuclear diatomics. When ρc=0.005 a.u., a 

value similar to that used in CD Si(100) surface calculations, the spectroscopic quantities D0 (the 

zero-point-corrected bond dissociation energy), re (the equilibrium bond length), and ωe (the 

harmonic vibrational frequency) are quite well reproduced by the WGCD model for the Al 

family dimers compared to KSDFT benchmarks. By contrast, D0 and ωe are mostly badly 

underestimated while re is somewhat overestimated for Si2 and P family dimers. Physically, the 

Al family dimers feature a single covalent σ bond, just as in CD Si, and therefore similar 
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parameters generate reasonable properties for these dimers. However, Si2 and P family dimers 

are doubly or triply covalently bonded, with more localized electrons in the bonding region. The 

current parameters based on single σ bonds in crystals underestimate the electron localization in 

these multiply-bonded diatomics containing π bonds. We find that reducing ρc can considerably 

improve the results for Si2 and P family dimers. Mathematically, smaller ρc leads to smaller del
0ρ , 

larger ζ, and thus smaller F(r), which means more localized electron density will be scaled out. 

For a smaller ρc, we now obtain very good agreement for the shape of the potential energy curve 

(Figure 9) and its spectroscopic parameters D0, re, and ωe (Table IX) for Si2.  However, although 

using a lower ρc improves the properties of P family dimers, the WGCD model still 

underestimates D0 and ωe while overestimating re values, showing that OFDFT-WGCD still 

cannot accurately treat triply-bonded molecules. Al family dimers are overbound with this 

smaller cutoff density, because electron localization is overestimated. These results again 

illustrate that a more transferable scale function is needed for different bonding environments. 

G. Numerical efficiency 

Finally, we compare the numerical efficiency of different KEDF models. The WGC, the HC 

and the current WGCD models all exhibit quasi-linear scaling (O(NlnN)). WGC has a small 

prefactor while the HC KEDF has a much larger prefactor approximately equal to the number of 

bins used in the interpolation,50 which increases if density variations become significant. In the 

WGCD formalism, the self-consistency loop for F(r) translates into a computational cost several 

(<10) times larger than a WGC KEDF calculation. However, because WGC calculations are very 

fast, the current model is faster than the HC KEDF, especially in large systems with considerable 

density variations (see Table X). As expected, for metallic phases with small density variations, 

the HC KEDF is only slightly slower. However, as the system becomes covalent or involves 
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vacuum, the HC KEDF becomes significantly more expensive than the WGCD formalism; for 

example, the Si(100) surface calculations are 19 times slower using the HC KEDF than the 

WGCD model. To simulate interesting large scale systems such as nanostructures, the new 

WGCD model will provide a more efficient approach while still preserving accuracy comparable 

to the HC KEDF for covalent materials and to the WGC KEDF for metals. 

V. Conclusions 

In this work, we proposed a density decomposition formalism to evaluate the kinetic 

energy within OFDFT, in order to treat covalent molecules and materials not only accurately but 

also efficiently within OFDFT. We introduced a scale function dependent on the local density to 

identify localized electrons and further decompose the total density into localized and 

delocalized densities, treating the former with a semilocal KEDF and the latter with the nonlocal 

WGC KEDF. There exists great flexibility in the choice of scale function. The numerically 

constructed one used in this work reproduces correct limits when generating delocalized electron 

densities. The formalism is fully self-consistent by performing another loop that guarantees a 

self-consistent scale function over the whole space. 

We tested our model on a diverse set of covalently bonded systems, including Si, III-V 

semiconductors and homonuclear diatomic molecules. The bulk properties of ground state 

semiconductors agree well with KSDFT benchmarks when two parameters a and b (describing 

the TF and vW KEDF contributions) are adjusted. Even with one (average) parameter set, bulk 

properties as well as relative energies are generally correct, showing the good transferability of 

the model; moreover, the total energies are still close to KSDFT values and more accurate than 

the previously proposed HC KEDF in most cases. The shift parameter m in the scale function 

needs to be tuned to achieve correct phase energy orderings in Si. For the HD Si structure, 
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similar tetrahedral bonding to CD structure leads to very small adjustments, while metallic 

phases require larger optimal m, reducing the scaling of less localized electrons. With adjusted 

parameter values, our model also accurately describes metallic phases due to the accuracy of the 

WGC KEDF contained in the model. Numerically, the formalism stabilizes the WGC KEDF 

calculation and also handles systems with vacuum present in the periodic cell, such as surfaces 

and molecules. The Si(100) surface energies and diatomic molecule spectroscopic properties are 

also reasonably close to KSDFT benchmarks. The current formalism exhibits significantly higher 

computational efficiency than the HC KEDF, especially in cases where large density variations 

exist, such as surfaces and molecules. However, several defects still exist in this model. The 

density in the bonding region is underestimated. It can be improved via tuning parameters but 

this sacrifices the accuracy of other properties like total energies. Furthermore, the WGCD 

model fails to predict a reasonable CD to β-tin phase transition unless different optimal 

parameters are used for each phase, the vacancy formation energy is underestimated, and the 

self-interstitial formation energy even has the wrong sign. All of these failures are related to the 

less-than-satisfactory transferability of the model between different bonding environments. 

Finally, the current OFDFT model still has difficulty describing bond bending and directional 

deformation correctly, as demonstrated by poorly predicted C44 and C’, especially for C’ (with 

the wrong sign). The failure to find a global minimum when optimizing HD and bct5 structures 

is also related to this problem. 

 A better scale function could crucially improve the quality of the current model. As 

stated earlier, ideally we would hope the scale function could help us determine where and how 

many localized electrons should be scaled and where the system has only delocalized electrons 

so that the WGC KEDF can be used there. At present, although the density decomposition 



28 
 

captures part of the correct physics of covalent systems, the scale function is clearly not perfect, 

with plenty of room for future improvement. For a superior scale function, we can consider 

making use of information beyond just the density, such as density gradients or the Laplacian. 

Recent studies probing the relation between density distributions and bonding properties could 

prove useful.79, 80 Moreover, the models to describe the localized, interaction, and delocalized 

kinetic energies are also flexible and improvable. 
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Here we provide numerical details for the scale function )/( del
0total ρρf  used in all the OFDFT 

calculations in this paper. )/( del
0total ρρf  values are tabulated (Table SI) and then interpolated in 

our code to calculate the scale function for any given del
0total / ρρ   value. 

Tables 

Table I. Ratio of maximum density to average density for different structures at their equilibrium volumes, as 
calculated by KSDFT. The first nine structures are for Si, where the first two are semiconducting phases and the rest 
are metallic. 

phase CD HD cbcc β-tin bct5 sc hcp bcc fcc Al fcc Mg hcp 
ρmax/ρ0 2.835 2.836 2.497 1.748 2.362 1.733 1.423 1.489 1.441 1.180 1.210 

 

Table II. k-point meshes and Fermi-Dirac smearing widths used in various KSDFT calculations in this work. The 
number of atoms in each calculation is listed in parentheses. 

Systems k-point mesh Esmear (eV) 
CD (2), HD (4) Si 

ZB (2), WZ (4) III-V semiconductors 
Elastic constants in CD Si (2) 

12 12 12 0.0 

Point defects in CD Si  
(63 for vacancy; 65 for self-interstitial) 4 4 4 0.0 

cbcc (8) Si 12 12 12 0.1 
β-tin (2), bct5 (2), sc (1), hcp (2), bcc (1), and fcc (1) Si 20 20 20 0.1 

Unreconstructed Si(100) surface energy (9) 12 12 1 0.0 
Reconstructed Si(100) surface energy (24) 6 12 1 0.0 
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Table III. The equilibrium volumes (V0), bulk moduli (B), equilibrium total energies (Emin) per 2-atom primitive unit 
cell for CD Si and various ZB III-V semiconductors, and the optimal values for WGCD KEDF parameters a and b 
for each phase. The corresponding KSDFT results are listed in parentheses. 

V0 (Å3) B (GPa) Emin (eV) a b 

Si 39.627 
(39.549) 

98 
(99) 

-219.253 
(-219.258) 0.864 0.670

AlP 40.407 
(40.638) 

94 
(91) 

-240.165 
(-240.182) 0.822 0.699

AlAs 45.098 
(43.620) 

84 
(80) 

-232.909 
(-232.908) 0.840 0.656

AlSb 55.665 
(56.600) 

60 
(59) 

-206.607 
(-206.606) 0.840 0.677

GaP 37.741 
(37.649) 

80 
(88) 

-243.069 
(-243.080) 0.847 0.655

GaAs 40.789 
(40.633) 

80 
(75) 

-235.790 
(-235.799) 0.823 0.732

GaSb 52.341 
(52.483) 

64 
(57) 

-209.705 
(-209.697) 0.865 0.629

InP 46.992 
(46.035) 

70 
(73) 

-235.697 
(-235.722) 0.810 0.700

InAs 51.259 
(49.121) 

67 
(65) 

-228.544 
(-228.537) 0.813 0.703

InSb 63.699 
(62.904) 

49 
(50) 

-202.382 
(-202.387) 0.830 0.668
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Table IV. Equilibrium volumes (V0), bulk moduli (B), and equilibrium total energies (Emin) per 2-atom primitive unit 
cell for CD Si and various ZB III-V semiconductors computed with WGCD KEDF parameters set to a=0.835 and 
b=0.679 (averaged values from Table III). KSDFT results are given in parentheses. 

V0 (Å3) B (GPa) Emin (eV) 

Si 39.450 
(39.549) 

105 
(99) 

-220.561 
(-219.258) 

AlP 40.654 
(40.638) 

95 
(91) 

-239.836 
(-240.182) 

AlAs 44.820 
(43.620) 

90 
(80) 

-232.749 
(-232.908) 

AlSb 55.657 
(56.600) 

56 
(59) 

-206.788 
(-206.606) 

GaP 37.426 
(37.649) 

90 
(88) 

-243.282 
(-243.080) 

GaAs 41.581 
(40.633) 

72 
(75) 

-236.111 
(-235.799) 

GaSb 51.591 
(52.483) 

66 
(57) 

-210.287 
(-209.697) 

InP 47.404 
(46.035) 

69 
(73) 

-234.723 
(-235.722) 

InAs 51.732 
(49.121) 

64 
(65) 

-227.837 
(-228.537) 

InSb 63.520 
(62.904) 

51 
(50) 

-202.026 
(-202.387) 
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Table V. Equilibrium volumes (V0), bulk moduli (B), and equilibrium total energies (Emin) per atom for various Si 
phases. The WGCD KEDF parameters a=0.864 and b=0.670 optimal for CD Si are used for all phases. The optimal 
scale function parameter m and the coordination number (c.n.) are also listed for each phase. The optimized internal 
coordinate x for cbcc and the optimized c/a ratios for β-tin and hcp structures are given. For the HD1 structure, the 
optimal c/a ratio is given for the internal coordinate x fixed at the KSDFT optimized value; for the HD2 structure, 
the optimal x value is given for the c/a ratio fixed at the KSDFT optimum. The KSDFT-relaxed bct5 structure is 
used in OFDFT calculations. The corresponding KSDFT benchmarks are listed in parentheses. 

phase CD HD1 HD2 cbcc β-tin bct5 sc hcp bcc fcc 

m 0.000 0.030 0.030 0.070 0.114 0.210 0.190 0.335 0.230 0.400 

V0 (Å3) 19.821 
(19.775) 

19.875 
(19.641) 

19.897 
(19.641) 

18.574 
(17.512) 

15.992 
(14.655) 

18.627 
(16.911) 

16.908 
(15.471) 

14.279 
(14.131) 

14.309 
(14.619) 

14.011 
(14.365) 

B (GPa) 98 
(99) 

96 
(100) 

102 
(100) 

94 
(102) 

113 
(121) 

92 
(97) 

115 
(112) 

94 
(92) 

102 
(98) 

86 
(82) 

Emin (eV) -109.627 
(-109.629) 

0.013 
(0.014) 

0.015 
(0.023) 

0.153 
(0.153) 

0.163 
(0.167) 

0.225 
(0.213) 

0.234 
(0.235) 

0.347 
(0.336) 

0.359 
(0.352) 

0.360 
(0.381) 

c/a or x - 1.56 
(1.64) 

0.061 
(0.062) 

0.204 
(0.205) 

0.26 
(0.28) 

KSDFT’s 
geometry - 1.66 

(1.66) - - 

c.n. 4 4 4 4 6 5 6 12 8 12 
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Table VI. Equilibrium volumes (V0) and bulk moduli (B) for HD Si and various WZ III-V semiconductors. The 
energy differences between ground state ZB (CD for Si) and WZ (HD for Si) structures (ΔE) per formula unit (per 
2-atom for Si) are also given. The WGCD KEDF parameters a=0.835 and b=0.679 (averaged values from Table III) 
are used. The optimal m=0.03 for HD Si in Table V is used for all phases. On the left, optimal internal coordinates x 
from KSDFT are used and optimal c/a ratios are listed; on the right, optimal c/a ratios from KSDFT are used and 
optimal x values are given. See text for details. The corresponding KSDFT benchmarks are listed in parentheses. 

 c/a V0  
(Å3) 

B 
 (GPa) 

ΔE  
(meV) x V0 

 (Å3)
B 

 (GPa) 
ΔE 

(meV) 

Si 
1.55 39.653 98 21 0.061 39.653 106 33 

(1.64) (39.282) (100) (27) (0.062) (39.282) (100) (27) 

AlP 
1.57 41.052 95 49 0.062 40.956 89 12 

(1.64) (40.619) (91) (8) (0.063) (40.619) (91) (8) 

AlAs 
1.57 45.184 79 43 0.062 45.148 82 55 

(1.65) (43.603) (80) (11) (0.063) (43.603) (80) (11) 

AlSb 
1.58 56.210 61 40 0.062 56.159 62 50 

(1.65) (56.551) (59) (13) (0.063) (56.551) (59) (13) 

GaP 
1.56 37.847 92 54 0.062 37.803 98 68 

(1.65) (37.623) (88) (17) (0.063) (37.623) (88) (17) 

GaAs 
1.56 41.998 75 47 0.062 41.956 77 61 

(1.65) (40.610) (75) (19) (0.063) (40.610) (75) (19) 

GaSb 
1.57 52.059 64 45 0.062 51.996 66 56 

(1.65) (52.422) (57) (17) (0.063) (52.422) (57) (17) 

InP 
1.55 47.667 69 26 0.061 47.578 70 40 

(1.64) (46.023) (73) (4) (0.063) (46.023) (73) (4) 

InAs 
1.56 52.122 64 26 0.061 52.056 63 39 

(1.64) (49.115) (65) (6) (0.063) (49.115) (65) (6) 

InSb 
1.58 64.005 47 29 0.062 63.922 52 38 

(1.65) (62.887) (50) (11) (0.063) (62.887) (50) (11) 
 

Table VII. Bulk modulus (B), C11, C12, C44, and shear modulus (C’) for CD Si calculated by KSDFT and OFDFT 
with the HC KEDF, the WGC KEDF, and the current WGCD KEDF model. In the WGC KEDF calculations, 
default parameter values are used; see text for details. In the HC KEDF calculations, λ=0.01 and β=0.65 optimal for 
CD Si are employed. In the WGCD KEDF, a=0.864, b=0.670 and m=0 optimal for CD Si are used. 

CD Si B (GPa) C11 (GPa) C12 (GPa) C44 (GPa) C' (GPa) 

KSDFT 99 163 66 102 49 
OFDFT/HC 95 101 92 81 5 

OFDFT/WGC 53 3 78 -150 -38 
OFDFT/WGCD 98 89 103 52 -7 
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Table VIII. CD Si vacancy (Evf) and self-interstitial (Eisv) formation energies, and surface energies (σ) for 
unreconstructed and reconstructed Si(100) surfaces computed by KSDFT and OFDFT with the HC KEDF and 
WGCD models. In HC KEDF calculations, λ=0.01 and β=0.65 optimal for CD Si are employed. In WGCD 
calculations, parameters optimal for bulk CD Si are used. See text for details. In surface calculations, the density 
cutoff ρc in calculating average densities is set to 6.84×10-3 a.u., which is the minimum density of bulk CD Si at its 
equilibrium volume. 

 
Evf (eV) Eisv (eV) 

Un-reconstructed σ 
(J/m2) 

reconstructed σ 
(J/m2) 

KSDFT 3.31 3.37 2.273 1.196 
OFDFT/HC 2.69 -1.91 2.441 1.898 

OFDFT/WGCD 1.33 -6.27 2.398 1.052 
 

Table IX. Comparison of WGCD OFDFT and KSDFT bond dissociation energies (D0), equilibrium bond lengths 
(re), and vibrational frequencies (ωe) for nonmagnetic Al2, Ga2, In2, Si2, P2, As2, and Sb2. In all OFDFT calculations, 
a=0.864, b=0.670, and m=0 optimal for bulk CD Si are used. Two ρc values, 5×10-3

 a.u. and 5×10-5
 a.u. are used for 

comparison; see text for details. KSDFT values are given in parentheses. 

dimer D0 (eV) re (Å) ωe (cm-1) D0 (eV) re (Å) ωe (cm-1) 
ρc = 5×10-3

 a.u. ρc = 5×10-5
 a.u. 

Al2 
1.68 

(1.74) 
2.576 

(2.473) 
332 

(346) 
2.85 

(1.74) 
2.528 

(2.473) 
346 

(346) 

Ga2 
1.81 

(1.69) 
2.417 

(2.323) 
214 

(212) 
2.94 

(1.69) 
2.371 

(2.323) 
216 

(212) 

In2 
1.38 

(1.64) 
2.817 

(2.633) 
133 

(157) 
2.53 

(1.64) 
2.742 

(2.633) 
143 

(157) 

Si2 
2.87 

(4.59) 
2.305 

(2.284) 
435 

(501) 
4.22 

(4.59) 
2.281 

(2.284) 
482 

(501) 

P2 
4.14 

(9.54) 
2.152 

(1.942) 
511 

(790) 
5.59 

(9.54) 
2.137 

(1.942) 
586 

(790) 

As2 
3.40 

(8.35) 
2.274 

(2.032) 
301 

(459) 
4.84 

(8.35) 
2.247 

(2.032) 
327 

(459) 

Sb2 
2.47 

(6.65) 
2.731 

(2.431) 
210 

(283) 
3.97 

(6.65) 
2.685 

(2.431) 
233 

(283) 
 

Table X. Ratios of entire computational wall time of the HC KEDF to the new WGCD model for bulk fcc, cbcc, and 
CD Si, as well as CD Si vacancy, reconstructed Si(100) surface, and Si2 calculations. In both HC KEDF and WGCD 
calculations, total energies are converged to 1 meV/atom with respective to plane wave basis kinetic energy cutoff 
and the binning ratio (which determines the accuracy of the interpolation method) in the HC KEDF. 

fcc cbcc CD Vacancy Surface Si2 
tHC/tWGCD 3 4 5 10 19 59 
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Table SI.  Table of )/( del
0total ρρf  values used for interpolation in the code. 

del
0total / ρρ  )/( del

0total ρρf  del
0total / ρρ  )/( del

0total ρρf del
0total / ρρ  )/( del

0total ρρf  del
0total / ρρ  )/( del

0total ρρf  
0 0.99941176 2.5 0.45777778 5 0.24794744 7.5 0.16657338 

0.1 0.99941176 2.6 0.44230769 5.1 0.24328774 7.6 0.16439136 
0.2 0.99941176 2.7 0.42798354 5.2 0.23878745 7.7 0.16226505 
0.3 0.99941176 2.8 0.41468254 5.3 0.23443948 7.8 0.16019241 
0.4 0.99941171 2.9 0.40229885 5.4 0.23023710 7.9 0.15817148 
0.5 0.99941143 3 0.39074074 5.5 0.22617387 8 0.15620041 
0.6 0.99940953 3.1 0.37992832 5.6 0.22224369 8.1 0.15427740 
0.7 0.99939688 3.2 0.36979167 5.7 0.21844074 8.2 0.15240076 
0.8 0.99931250 3.3 0.36026936 5.8 0.21475948 8.3 0.15056887 
0.9 0.99875000 3.4 0.35130719 5.9 0.21119466 8.4 0.14878017 
1 0.99500000 3.5 0.34285714 6 0.20774127 8.5 0.14703319 

1.1 0.97000000 3.6 0.33472333 6.1 0.20439457 8.6 0.14532650 
1.2 0.89375000 3.7 0.32689395 6.2 0.20115003 8.7 0.14365875 
1.3 0.82923077 3.8 0.31935812 6.3 0.19800336 8.8 0.14202864 
1.4 0.77392857 3.9 0.31210481 6.4 0.19495048 8.9 0.14043492 
1.5 0.72600000 4 0.30512297 6.5 0.19198750 9 0.13887641 
1.6 0.68406250 4.1 0.29840163 6.6 0.18911074 9.1 0.13735197 
1.7 0.64705882 4.2 0.29193001 6.7 0.18631668 9.2 0.13586051 
1.8 0.61419753 4.3 0.28569754 6.8 0.18360200 9.3 0.13440097 
1.9 0.58479532 4.4 0.27969397 6.9 0.18096351 9.4 0.13297235 
2 0.55833333 4.5 0.27390936 7 0.17839820 9.5 0.13157369 

2.1 0.53439153 4.6 0.26833411 7.1 0.17590319 9.6 0.13020407 
2.2 0.51262626 4.7 0.26295898 7.2 0.17347575 9.7 0.12886259 
2.3 0.49275362 4.8 0.25777510 7.3 0.17111327 9.8 0.12754841 
2.4 0.47453704 4.9 0.25277397 7.4 0.16881327 9.9 0.12626071 
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Figures 

 

Figure 1. Self-consistent ground state electron density along the [111] direction of CD Si at its KSDFT equilibrium 

volume, as obtained by KSDFT, or OFDFT with either the WGC KEDF or the WT KEDF. In the WGC KEDF 

OFDFT calculations, the parameters α=(5-51/2)/6, β=(5+51/2)/6, γ=3.6, and 0* ρρ = are used. In the WT KEDF, the 

parameters α=β=5/6 are employed. The KSDFT electron localization function (ELF) is also plotted. The horizontal 

axis is normalized by 2/12
0 )3( a , where a0 is the KSDFT equilibrium lattice constant. 
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Figure 2. Numerically constructed scale function )/( del
0total ρρf , where del

0ρ  is the average delocalized density. 
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Figure 3. The self-consistent WGC density WGCρ , the scale function )/( del
0WGC ρρf , and the decomposed 

delocalized density )/( del
0WGCWGCdel ρρρρ f⋅=  along the [111] direction as well as the average delocalized 

density del
0ρ  in CD Si at the KSDFT equilibrium volume after the first iteration. The horizontal axis is normalized 

by 2/12
0 )3( a , where a0 is the KSDFT equilibrium lattice constant. 
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Figure 4. Flowchart of the fully-self-consistent density decomposition formalism. The subscript in square brackets 

represents the iteration step. 
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Figure 5. KSDFT and OFDFT-WGCD total energy versus volume curves (a) per atom for CD Si; (b) per formula 

unit for ZB GaAs. Insets show region near minimum. In OFDFT calculations, a=0.864, b=0.67 and m=0 are used for 

CD Si; a=0.823, b=0.732 and m=0 are used for ZB GaAs. 
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Figure 6. Variation of equilibrium volume (V0), equilibrium total energy per atom (Emin), bulk modulus (B), and the 

maximum density at V0 for CD Si with different values of parameter a. Parameter b is fixed as 0.670. 
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Figure 7. Total energies per 2-atom primitive unit cell for CD Si and various ZB III-V semiconductors calculated by 

KSDFT and by OFDFT with the HC KEDF and the WGCD model. The HC KEDF results are taken from previous 

literature.49 In the WGCD calculations, the averaged values a=0.835 and b=0.679 are used, with m=0. 
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Figure 8. KSDFT, OFDFT-WGCD and OFDFT-HC self-consistent electron densities along the [111] direction in (a) 

CD Si and (b) ZB GaAs at their own equilibrium volumes. The horizontal axis is normalized by 2/12
0 )3( a , where a0 

is the equilibrium lattice constant in the KSDFT and OFDFT calculations, respectively. For CD Si, the two Si atoms 

are at 0.0 and 0.25; for ZB GaAs, the Ga atom is at 0.0 and the As atom is at 0.25. In the OFDFT calculations 

employing the HC KEDF, λ=0.01 and β=0.65 are used for CD Si and λ=0.013 and β=0.783 for ZB GaAs.49 In the 

OFDFT calculations employing the WGCD KEDF, a=0.864, b=0.67 and m=0 are used for CD Si and a=0.823, 

b=0.732 and m=0 for ZB GaAs. 
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Figure 9. Total energy versus bond length curves for MS = 0 Si2 calculated by KSDFT and the OFDFT-WGCD 

model. a=0.864, b=0.670 and m=0 are used in the WGCD KEDF and ρc=5×10-5 a.u. is employed in calculating an 

average density here where vacuum is present. 

 

 


