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We study the quantum entanglement of the spin and orbital degrees of freedom in the one-
dimensional Kugel-Khomskii model, which includes both gapless and gapped phases, using analytical
techniques and exact diagonalization with up to 16 sites. We compute the entanglement entropy,
and the entanglement spectra using a variety of partitions or “cuts” of the Hilbert space, including
two distinct real-space cuts and a momentum-space cut. Our results show the Kugel-Khomski
model possesses a number of new features not previously encountered in studies of the entanglement
spectra. Notably, we find robust gaps in the entanglement spectra for both gapped and gapless
phases with the orbital partition, and show these are not connected to each other. We observe
the counting of the low-lying entanglement eigenvalues shows that the “virtual edge” picture which
equates the low-energy Hamiltonian of a virtual edge, here one gapless leg of a two-leg ladder, to the
“low-energy” entanglement Hamiltonian breaks down for this model, even though the equivalence
has been shown to hold for similar cut in a large class of closely related models. In addition,
we show that a momentum space cut in the gapless phase leads to qualitative differences in the
entanglement spectrum when compared with the same cut in the gapless spin-1/2 Heisenberg spin
chain. We emphasize the new information content in the entanglement spectra compared to the
entanglement entropy, and using quantum entanglement present a refined phase diagram of the

model.

Using analytical arguments, exploiting various symmetries of the model, and applying

arguments of adiabatic continuity from two exactly solvable points of the model, we are also able
to prove several results regarding the structure of the low-lying entanglement eigenvalues.

PACS numbers: 75.10.Jm,75.10.Kt,03.65.Ud

I. INTRODUCTION

Over the last few years, quantum information theory
has come to play a major role in deepening our un-
derstanding of strongly correlated quantum many-body
systems.? The focus of these studies has largely been on
the entanglement entropy which is a single number ob-
tained from the reduced density matrix of a sub-system
of the larger quantum system of interest.®> 8 However, the
entanglement spectrum (i.e. the full set of eigenvalues of
the reduced density matrix)? has emerged as a powerful
tool to study strongly correlated quantum systems due
to its ability to reveal subtle topological effects, and its
direct connection in some cases to the physical boundary
excitations.'® 13 It is remarkable that information about
the excited states of a non-trivial quantum many-body
system can be obtained from the reduced density ma-
trix, which is constructed solely from the ground-state
wavefunction.®!* As the ground-state can be more eas-
ily obtained than excited states via available numerical
methods, understanding the implications of the ground-
state quantum entanglement for the excited states is a
central issue in quantum many-body theory, particularly
in those systems with some type of topological order.'>~17

The entanglement spectrum has been studied ex-
tensively in the fractional quantum Hall effect,?>!823
spin chains,?427 other one-dimensional systems,?® 30
topological  superconductors,3™32  and  topological
insulators.>> 38 The information contained in the en-
tanglement spectrum depends crucially on how one
partitions (cuts) the Hilbert space of the system into two
portions. For example, a bond partition defined by a lo-

cal cut across a bond of the one-dimensional Heisenberg
spin-1/2 chain reveals an uninteresting structure, while
partitioning the system in momentum space reveals
the underlying U(1) conformal field theory (CFT) and
allows a connection to be drawn to fractional quantum
Hall systems.?® As a rule of thumb, one might expect
local (in real-space) cuts to reveal more information in
gapped systems, while non-local cuts (in real-space) may
contain important information in gapless systems.>*

The one-dimensional Kugel-Khomskii model with L
sites,40

L
H(X,Y) :Z(S_Y; Si1+ X) (7T +Y), (1)

contains both gapped and gapless regions in its phase di-
agram (as a function of X and Y),*1 48 so we will make
use of both local and non-local cuts (in real-space) of
the Hilbert space to obtain a comprehensive picture of
its entanglement properties. In Eq.(1), S; represents
the spin-1/2 degree of freedom on site i, and 7; is a
two-state orbital degree of freedom on the same site.
For general X and Y, Eq.(1) possesses SU(2)xSU(2)
symmetry, with a larger SU(4) symmetry realized for
X =Y = 1/4. We note that Eq.(1) admits an exact
solution by Bethe Ansatz at the SU(4) symmetric point,
where it is gapless,*¥ and at the point X =Y = 3/4,
where it is gapped® and a topological “non-Haldane”
phase is realized.?! Phase diagrams for this model have
been obtained via numerical methods and with field the-
ory approaches. 4148

In this paper, we investigate the entanglement prop-



erties of the one-dimensional Kugel-Khomskii model (1)
via exact diagonalization and analytical techniques. We
begin with a study of the spin-orbital entanglement en-
tropy using larger system sizes (L = 16) than previously
reported (L = 8).°2 For 8 sites, we find that we are able
to reproduce the results of Ref.[52], but we disagree with
their physical interpretation. With 12 and 16 site lattices
we obtain a better understanding of finite size effects
present for L = 8 and find a phase diagram in overall
agreement with other studies.*! 48

In the remainder of the paper, we will describe the re-
sults of our study of the entanglement spectrum of the
one-dimensional Kugel-Khomskii ground state with a fo-
cus on its antiferromagnetic phases. A central goal of this
work is to understand how a ground state wavefunction
manifests its physical properties through the entangle-
ment spectrum derived from a reduced density matrix.
A density matrix is formed by tracing over degrees of
freedom from the pure ground state density matrix. The
degrees of freedom to be traced over are defined by a par-
tition of the system in two parts. These partitions are
loosely defined by cuts which represent artificial bound-
aries between the two partitions. The different cuts that
we have considered are the orbital or “rung” cut, the
bond or “leg” cut and the momentum cut. The orbital
cut is defined by tracing over the orbital degrees of free-
dom from all the sites of the chain. The bond cut is
defined by cutting the along two bonds of the periodic
chain, leaving only half of the sites untraced. The mo-
mentum cut is non-local in real space and utilizes a map-
ping to a magnon representation of the ground state.

One of our main results is that we find two “entan-
glement gaps” with the rung cut. One gap seems to
be characteristic of the gapless antiferromagnetic region
of the phase diagram and the other separate entangle-
ment gap is characteristic of the gapped dimerized non-
Haldane phase. In both cases the low-lying entanglement
spectrum is not related to the Hamiltonian of the “vir-
tual edges”?% if the system is viewed as a two-leg ladder
(which would be a spin-1/2 Heisenberg model). This is
intimately related to the fact that the phases of (1) are
driven by the “four-spin” interaction (5_‘; . §i+1)(ﬁ “Tit1)
that pushes physics away from either the rung singlet or
Haldane phase favored by a “rung coupling” S; - 7.51,53
Both the rung singlet and Haldane phase exhibit low-
lying entanglement eigenvalues that mimic the physical
excitations of a virtual edge.?%2" In addition, we have
generalized the non-local momentum cut of Thomale et.
al.?% to spin chains with orbital degeneracy. However,
we do not find an entanglement gap in the entanglement
spectrum at the gapless SU(4) point with this cut. We
observe a new counting of the low-lying levels that has
yet to be matched with expectations of the correspond-
ing SU(4); Wess-Zumino-Witten conformal field theory
as would be anticipated from the study of U(1) conformal
field theories.?®

Our paper is organized as follows. In Section II, we
present the phase diagram of the Kugel-Khomskii model

Eq.(1), and identify special points of interest that we will
focus on in our entanglement study. In Section III, we
study the entanglement entropy and the entanglement
spectrum of a partition between spin and orbital degrees
of freedom. In Section IV, we look at the bond or leg cut
entanglement spectrum. In Section V, we consider a cut
in momentum space, and in Section VI we present the
main conclusions of our paper. Several technical results
related to the “orbital” cut and the momentum cut are
presented in the two Appendices.

II. PHASE DIAGRAM OF THE
KUGEL-KHOMSKII CHAIN

The one-dimensional Kugel-Khomskii model, Eq.(1),
is rich in both gapless and gapped phases with inter-
esting symmetries.** 8 In one-dimension this model can
be thought of as either a two-leg spin ladder (spin on
one leg, orbitals on the other) or a one-dimensional spin-
orbital chain at quarter filling. Physically, the Kugel-
Khomskii model (in one, two, and three dimensions) nat-
urally arises in the strong coupling limit (large Hubbard
U limit) of transition metal oxides,? a class of materials
which have recently been predicted to contain topologi-
cal and other exotic magnetic phases under a variety of
different conditions.?* 70
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FIG. 1. The phase diagram of the one-dimensional Kugel-
Khomskii model given in Eq.(1). Phase I is a fully polarized
ferromagnetic (FM) state for both spin and orbital sectors.
In phase II, the ground state is antiferromagnetic (AFM) for
spin and FM for orbital degrees of freedom. In phase III, spin
and orbital orders are reversed relative to phase Il by X <> Y.
Phases IV and VI are gapped dimerized phases, and phase V
is a gapless phase with non-trivial spin-orbital entanglement.
The SU(4) point at X =Y = 1/4 is indicated by a * and the
exactly solvable point X =Y = 3/4 indicated by a + is in
the non-Haldane phase with finite string order.

The phase diagram of Eq.(1) has been studied with
various field theoretical and numerical methods,* 8 and



is presented in Fig. 1. Phase I is a fully polarized ferro-
magnetic (FM) state for both spin and orbital sectors. In
phase II, the ground state is antiferromagnetic (AFM) for
spin and FM for orbital degrees of freedom. In phase III,
spin and orbital orders are reversed relative to phase II by
X < Y. Phases IV and VI are dimerized AFM phases,
and phase V is a gapless phase AFM in spin and orbital
sectors with non-trivial spin-orbital entanglement. Thus,
phases I, IT, II1, and V are gapless, while phases IV and
VI are gapped.

The lowest energy excitations of phase IV and VI dif-
fer in the character of their lowest excited states which
are magnons. Despite that, phase IV and VI are really
the same phase, which is the non-Haldane phase.®! At
the boundary line separating IV and VI in Fig.1, the
ground state is in fact fully gapped?®*® and the transi-
tion between IV and VI should be interpreted as a smooth
crossover.*” This unfortunately has caused some confu-
sion in the literature®? where a distinction has been made
between these two phases. In fact, we will show that the
entanglement properties of the ground state are smooth
across the combined region of IV and VI, once subtleties
due to degeneracies and finite size effects in the dimer-
ized phase are taken into account. In this paper when we
refer to phase IV, we will often mean both phase IV and
VI, unless an explicit distinction is made.

At X =Y = 1/4 this model contains a global
SU(4) symmetry, is gapless, and is exactly solvable by
Bethe ansatz.® This SU(4) symmetry point has central
charge ¢=3 and is described by and SU(4); Wess-Zumino-
Witten(WZW) theory at low-energies, which establishes
it as a phase that is not simply the “sum” of two gap-
less legs of a spin-orbital ladder (as the latter would have
central charge c=2), but rather the sum of two SU(2),
theories, each of which has central charge c=3/2.45 In the
two-leg ladder picture, it is the “four-spin” interaction
(5_2 . S‘;H)(ﬁ- -T;+1) favoring dimerization that is responsi-
ble for much of the interesting physics of this model.?!:53

At X =Y = 3/4 this model is gapped, but has ex-
actly doubly degenerate ground states. As was shown by
Kolezhuk and Mikeska,?° either ground state has an ex-
pression in the form of a matrix product state(MPS) and
both spontaneously break the original translational sym-
metry of the chain by exhibiting an exact dimerization.
In the two-leg ladder picture, these ground states are the
two inequivalent exact staggered dimer coverings of the
ladder. The phase at this Kolezhuk and Mikeska(KM)
point where X = Y = 3/4 is an example of a non-
Haldane quantum spin liquid®' with a non-local order
parameter: it has a non-zero string order pauraumeter”’72
like the Haldane state,” but possess a finite dimer cor-
relation that distinguishes it from the Haldane phase.

III. ORBITAL OR RUNG CUT

Turning now to entanglement physics, we begin by ex-
ploring the properties of the reduced density matrix ob-

tained by tracing out the orbital degrees of freedom. If
one interprets the Hamiltonian (1) in the language of
spin chains, as a two-leg ladder with spin on one leg and
orbital on the other, the reduced density matrix would
be obtained by tracing out one leg. Such a partition
of degrees of freedom corresponds to a cut through the
rungs of the ladder. To make connection with previous
work on two leg ladder spin chains, we will refer to this
“cut” of the Hilbert space as the “rung cut”. We will
also sometimes refer to the orbital degrees of freedom as
pseudospin degrees of freedom. Previously this rung cut
was studied with exact diagonalization by Poilblanc,?%
and Liuchli and Schliemann?®’ for a system with only
two-spin interactions. Their results are therefore rather
different from ours, where the “four-spin” interaction is
crucial to the physics.

A. Entanglement Entropy

In this section, we present and analyze our numeri-
cal results based on exact diagonalization for the spin-
orbital entanglement entropy Sent(X,Y") (obtained from
the reduced density matrix, preq, with the “rung cut”)
as a function of the model parameters X and Y. The
entanglement entropy, also known as the von-Neumann
entropy, is obtained as

Sent(X,Y) = —%Tr{pred(X, Y) In[prea(X, Y]}, (2)

where Tr denotes the trace over the (real) spin degrees of
freedom of the reduced density matrix and we have cho-
sen to normalize by the chain length L. Strictly speaking
Sent 18 an intensive quantity and should really be termed
the entropy density. However, for convenience and com-
parative purposes, we will just refer to Seys as the en-
tropy. In all our numerical calculations we use periodic
boundary conditions. To avoid ground state degeneracies
in region V, we limit ourselves to chain lengths L of mul-
tiples of 4. System sizes of L = 4n + 2 with n an integer
possess additional degeneracies at the SU(4) point, that
do not reflect the behavior in the thermodynamic limit,
so we do not consider those system sizes.*!

The entanglement entropy obtained from the orbital
or rung cut has been studied before in the pioneering
work of Chen et al.>? for L up to 12 (though only data
and figures are presented for I = 8). Based on the sys-
tem sizes they studied, the authors of Ref.[52] concluded
that Sent (X, Y) can reveal phase boundaries between the
various ground states in Fig.1 and provide a finer charac-
terization within the ground state phases earlier found by
Itoi et al.*® A key result of Chen et al. is that Seni(X,Y)
reproduces the phase diagram of Zheng and Oitmaa.*8

In particular, Chen et al.5? argued (based on the en-
tanglement entropy) that the transitions between regions
I, IT and IIT with V in Fig.1 are first order. The first or-
der nature of these transitions is manifested as a large
discontinuity in Sept from zero (in phases I, II, and III)



to a intermediate value (for region V).™ This result is
upheld by our study, and others. The boundary between
regions VI and IV in Fig.1 also appears as a discontinu-
ity in Sent, but to a lesser degree. However, in Ref.[52]
it was not appreciated that both region VI and IV are
in the same phase and are only distinguished by the na-
ture of their lowest lying (gapped) excitations which are
magnons.*”*® In fact, the “phase boundary” separating
them has only gapped excitations and thus their ground
states are adiabatically connected. Hence, it is surprising
to find such a large quantitative change in Se,¢. The more
severe transition between the gapped and gapless phase
which corresponds to the boundary separating regions V
and VI was identified with “ridge lines” in the topogra-
phy of Sent(X,Y),52 where a ridge is taken to mean a line
of points where there exists at least one direction in which
Sent 18 a local maximum. It was then claimed that the
ridges meet at the SU(4) symmetry point, X =Y = 1/4,
which was also claimed to be a distinguished local max-
imum.

In this early study of the von-Neumann entropy of the
spin-orbital entanglement in the Kugel-Khomskii chain,
exact diagonalization data was reported almost entirely
for chains of lengths L = 8 and to a limited degree
L = 12.52 In our study we have reproduced their data
for L = 8 chains and also extended our study to include
L = 12 and L = 16 chains. Our results on larger sys-
tem sizes show some of their conclusions are incorrect
and their misidentified phase boundaries are due to level
crossings between almost degenerate ground states and
finite size effects. Degenerate ground states in phase IV
and VI are a symptom of the spontaneously broken sym-
metry of the non-Haldane phase caused by dimerization.
However this degeneracy is only approximate at small
system sizes and level crossings between these ground
states can have significant effects on the von-Neumann
entropy. We shall argue that with the exception of the
phase boundaries between regions LII, and IIT with V,
Sent by itself cannot sharply reveal many of the phase
boundaries with finite system size studies. Instead, the
entanglement spectrum proves to be a more powerful tool
by revealing more structure.

For completeness, we briefly review our numerical pro-
cedures. To compute the ground state via exact diag-
onalization we consider the ) . .S7 = 3. 77 = 0 sector.
We make use of the fact that linear momentum is a con-
served quantum number and will take the value of either
m or 0 due to time reversal symmetry. In the study of
L = 8 chains, we have performed exact diagonalizations
in a grid of points spaced AX = AY = 0.005 apart. In
our L = 12 study, because of computing constraints we
were limited only to a resolution of AX = AY = 0.01.
In our work we focus only in the region 0 < X, Y <1, or
regions II, III, IV, V and VI of Fig.1.

In Fig.2(a) we reproduce the main result of Chen et
al.? but with much greater resolution. The line of dis-
continuities in Sent, which was thought to separate re-
gions IV and VI, is now made more apparent. However,

there is also a second line of discontinuities which is re-
vealed and which contains the exact staggered dimer KM
point. This second line was not interpreted to correspond
to a phase boundary previously. However, we identify
both these lines of discontinuities as corresponding to
level crossings between the total momentum K = 0 and
K = 7 ground states in the gapped phase. Field theory
studies predict a spontaneous dimerization in the gapped
phase which requires at the very least, doubly degener-
ate ground states.®’ But with finite system sizes, this
degeneracy is lifted and the eigenstates are only distin-
guished by their linear momentum, in this case K = 0
and K = m. Previous numerical studies*> have revealed
these almost degenerate lowest eigenstates in this region
of the phase diagram. But with increasing system size
we expect these artifacts to diminish in severity and this
is indeed what happens with L = 12.

Shown in Fig.2(b) is a surface plot of Sent(X,Y") cor-
responding to chains of length L = 12, where Sent(X,Y)
is now continuous as a function of X and Y with the ex-
ception of the boundaries with the ferromagnetic phases,
IT and IIT (in the orbital sector and spin sector, respec-
tively). In place of the above mentioned two lines of dis-
continuity for L = 8, are kinks with a discontinuous first
derivative. Moreover, the position of these lines of kinks
are shifted from that of the discontinuous jumps seen in
the L = 8 study and there are more kinks in the L = 12
case. This can also be clearly seen along the X =Y line
shown in Fig.3. Thus, we see that there are significant
qualitative and quantitative differences with the smaller
(L = 8) system size.

Shown in Figs.2(c-d) are contour plots of Sent(X,Y)
with arrows drawn which represent the streamlines in
the direction of steepest descent. These lines allow one
to estimate the position of the ridge lines which corre-
spond to the separatrices of the streamlines. One ridge
line extends along the X =Y diagonal and two others
lie almost parallel to the X and Y axes. Also highlighted
are the SU(4) and exact staggered dimer KM point, in-
dicated with a red and blue dot, respectively. In partic-
ular, the SU(4) symmetry point does not seem to be a
distinguished local maximum from the other points on
the X =Y line in either the L = 8 or the L = 12 system.
If one views the contours in the increasing X =Y direc-
tion, local peaks and valleys are recognized as concave
and convex contours respectively. The point where the
contours change their curvature is according to Ref.[52]
where the SU(4) point should lie. However, the SU(4)
point as marked in Fig.2(c,d) does not lie on such a point.
Furthermore, the point at which the ridge lines meet lies
beyond X =Y = 1/4 in the increasing X and Y direc-
tion. These observations are in contradiction with the
conclusions of Chen et al.??

The level crossings in regions IV and VI may be iden-
tified by a closure of the energy excitation gap between
the two lowest eigenstates in the ), .S7 = >, 77 = 0 sec-
tor. In Fig.3 we present plots of these energy gaps along
the X = Y line in the region of level crossings. Also
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FIG. 2. (color online) The spin-orbit entanglement entropy Sent (X,Y"). Surface plots of Sent(X,Y) for (a) L = 8 and (b) L = 12
system sizes. The red and blue dots are indicative of the SU(4) symmetry (X =Y = 1/4) point and the Kolezhuk-Mikeska(KM)
point (X =Y = 3/4), respectively. Note the two lines of discontinuous jumps in (a), in which the KM point (blue dot) lies
on one of these lines. Contour plots for (¢) L = 8 and (d) L = 12. The pink arrows represent streamlines in the direction of

steepest descent.

shown are Sent(X,Y) curves. It is clear the positions
of the level crossings match the discontinuous jumps or
kinks in Sent(X,Y). However, the position of the kinks
for the L = 12 data are harder to distinguish. Nev-
ertheless, we can locate these points from the positions
where the second derivative Sy is peaked and they do
agree with the positions of the gap closures. Thus we can
confirm that indeed the large qualitative changes in the
entanglement entropy can be attributed to levels cross-
ing between almost degenerate ground states. Moreover,
each level crossing is always accompanied by a change in
the time-reversal invariant linear momentum.

In Fig.4(a) traces of Sent(X,Y) along the X =Y line

for all chain lengths we studied are presented and com-
pared. With increasing chain length, the regions cor-
responding the to gapless phase V have ever increasing
spin-orbital entanglement entropy. Note that in this re-
gion the L = 16 ground states are non-degenerate and
have K = 0 as demonstrated in Fig.4(b) where the
relevant ground state energies are plotted. Conversely,
the gapped regions IV and VI exhibit ever decreasing
entanglement entropy with increasing system size. In
this region, the differences between L = 16, K = 0 and
L = 16, K = m are small, both in their ground state en-
ergy, Fy, and their entanglement entropy, Sent. This is
again consistent with the expectation that with increas-
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FIG. 3. (color online) (a) The excitation gap between the two
lowest eigenstates for the L = 8 chaininthe )", S7 =3, 77 =
0 sector along the X =Y line in the region of level crossings.
Shown for qualitative comparison is Sent in scaled units. In
regions where the gap is non-zero, the linear momenta of the
absolute ground state is also labeled. (b) The analogous result
for L = 12 chains.

ing system size the numerical eigenstates tend to exact
degeneracy in the gapped phase.

Since in the thermodynamic limit of the gapped,
dimerized non-Haldane phase, the two lowest eigenstates
must be doubly degenerate, we do not expect the kinks
or jumps in Syt to persist in the infinite size limit unless
it involves a transitions between the AFM and FM phase.
This implies a weakness in determining phase boundaries
by solely relying on large qualitative changes in the en-
tanglement entropy and the subtleties involved with al-
most degenerate ground states. In the next section we
examine the entanglement spectrum, which allows one
to gain more insight into the nature of the ground state
phases and the transitions between them.

B. Orbital or Rung Cut Entanglement Spectrum

The entanglement spectrum(ES) is the spectrum of an
“entanglement Hamiltonian”, Hey, obtained from the re-
duced density matrix via the relation,®

Pred = €XP {_Hent} P (3)

and we denote the nt" eigenvalue of Hepy by &,. One may
think of the ES as just the eigenvalues of the reduced
density matrix arranged on a negative logarithmic scale.

00 02 04 06 08 1.0
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FIG. 4. (color online) (a) Sent(X,Y) along the X =Y line
for chain lengths L = 8,12,16. The data presented for L =
16 includes ground states from both time-reversal invariant
linear momenta K = 0, 7. (b) The ground state energy Eo of
L = 16 chains from the relevant linear momenta sectors.

There is in fact a simple relationship between the ES and
Sent given by

Scnt = % ;En exp(—ﬁn), (4)

where the sum runs over the entire ES.

In the remainder of this section, we will study the ES
derived from the orbital or rung cut and plot the spec-
trum as a function of the momentum of the sub-system,
which is a good quantum number due to the translational
symmetry of the cut. In later sections, we will also study
the entanglement spectrum for a bond cut, and a cut in
momentum space.

In our study of the rung cut ES, we will consider
first the effects of symmetry on the ES and discuss the
structure of generic spectra in the (X,Y’) phase diagram.
Then we will specialize to the case where there is addi-
tional Zs symmetry on the X = Y line. Next we will
focus on a few special points on this line, such as the
exactly solvable KM point at X = Y = 3/4 and the
SU(4) symmetry point at X =Y = 1/4. We will study a
few key slices of parameter space, such as along the line
0<X=Y<land X+Y =04for0< X <04 as
well. The latter line starts in region II of Fig.1, and con-
tinues through region V before ending in region ITI. Then,
we will study the correlation functions derived from the
Schmidt vectors (i.e., the eigenvectors of Hey) in the
gapless phase V, in particular at the SU(4) point. Lastly,
we will study the changes to the ES when an exchange



or rung coupling between local orbital and spin is intro-
duced.

1. Generic Symmetries of the Entanglement Spectrum

We first establish the notation for our discussion on
the ES. Let H,,2 denote the Hilbert space of a chain of
L spin-1/2 moments. To make connection with previous
studies?6:42:50:51 we will for convenience take the two leg
ladder interpretation of the spin-orbital Kugel-Khomskii
chain, Eq.(1). From this perspective, the spin-1/2 chain
with orbital degeneracy may be thought of as a two leg
ladder system with one chain representing a collection
of L spin degrees of freedom (Hg) and the other chain
representing L orbital or pseudospin degrees of freedom
(H-). The total combined Hilbert space is then Hg, :=
Hs @ Hr. Thus prea[¥] = Try |¥)(T| is the reduced
density matrix of an orbital or rung cut for the ground
state (GS) | ).

Symmetries of the GS |¥) implies certain symmetries
of the ES. It should be noted, however, that a symmetry
of |T) is not necessarily a symmetry of the Hamiltonian
H(X,Y), but in the cases where |¥) is non-degenerate,
a symmetry of H(X,Y) turns out to be a symmetry of
|¥) modulo a phase. We shall discuss the effects of each
symmetry on the ES.

Firstly, translational symmetry allows pyeq[¥] to be
block-diagonalized by crystal momentum quantum num-
bers if |¥) itself is a momentum eigenstate. Hence the
ES may be resolved according to momentum to reveal
interesting structure. In fact, the ES of quantum spin-
ladders?® and Projected Entangled Pair states (PEPs)
on cylindrical geometries'? had previously been studied
in this manner.

The block diagonal structure is most easily revealed
by expanding [¥) in a Fourier basis of Hy /(= Hs, H).
The allowed momenta are p = 273 with n = —L/2 +
1,...,L/2. We denote such a basis by {p«a,} where {a,}
for fixed p is an orthonormal basis for the momentum
subspace p. With this basis we can expand any wave-
function of Hg, with the tensored basis {|pa,) ® |¢84)}-

Now let |¥) be a ground state of (1) with momentum
K. Expanding in the Fourier basis gives

v) = Z Z Wpapiap, [POp) @ [aBy) - (5)
p+%:2K ap,Bq

Forming |¥)(¥| and then taking the trace over H, yields
a block diagonalized reduced density matrix,

Pred [\I/]
- Z Z (\I/Papﬂlﬁq) (\I/;a;;qﬁq) |p0‘p> <po¢;’ ’ (6)
a,f,)a; Pa
with ¢ = K — p.

Strictly speaking, the dimerized ground states spon-
taneously break translational symmetry and thus can-
not have their ES momentum resolved. But symmet-
ric and anti-symmetric superpositions of such degenerate
symmetry broken states are momentum eigenstates with
momentum K = 0 and K = 7 respectively. In a later
section that analyzes the entanglement spectrum of the
Kolezhuk-Mikeska(KM) point (X =Y = 3/4) these sub-
tleties will be discussed in detail. Nevertheless, in our
finite size exact diagonalization studies, the degeneracy
in the AFM gapped phase IV is often inexact except per-
haps at level crossings between K = 0 and K = 7w ground
states as was discussed in Sec.IIT A. This was observed
in Fig.2 as lines of discontinuous jumps or kinks in Sep¢
which also contained the KM point(blue dot). Never-
theless, generically the non-degenerate numerical ground
states obtained by exact diagonalization in the gapped
AFM region are one of the two time-reversal momentum
groundstates with a small but finite gap between their
energies.

The ES can also be read off from a Schmidt decompo-
sition (SD) of |¥) with respect to the partition between
Hs and H,. When the translational symmetry is also
taken into account, the SD can take the following form

) =33 e 2pgy) @ (K~ p)dy), (7)

p ¢p

where K = 0,7 due to time reversal symmetry. {¢,}
and their duals {¢,} are the Schmidt vectors in the mo-
mentum sector p and (K —p) of Hg and H, respectively.
Moreover, they each independently form an orthonormal
basis. Here £, is the entanglement eigenvalue that cor-
responds to ¢, and we denote the full ES by the set of
pairs {(p, &g,)} which runs over all momenta and Schmidt
vectors. For a fixed |¥) and p, a given ¢, uniquely de-
termines gb_p. However, the above decomposition is not
unique because of the phase degree of freedom in defining
¢, and ¢,. For example the transformation ¢, — ¢,
and ¢, — e~ ¢, leaves the SD invariant. Thus, the bar
over ¢_p should not be mistaken for complex conjugation.

The next crucial symmetry of |¥) is spatial inver-
sion (Z) that maps sites ¢ = 1,..., L according to i —
—i mod L. This is a unitary transformation and in mo-
mentum space this maps p — —p mod 2x. This symme-
try will lead to a reflection symmetry in the momentum
resolved ES such that {(p,&y,)} = {(=p,&s,)}. To see
this, note that for a non-degenerate GS |¥), it must be
that Z|¥) = (—1)"Z|¥) where nz = 0,1. This follows
from Z? = 1 and the non-degeneracy assumption. Next
applying Z to the SD of W (7) yields

IIW)=> > e 5 2(=p)dp) @ |(K + p)dp)
P ¢p
= (=1)"|¥).



Which implies
[U)= D> e /A (=1)"2|(=p)dy) ® |(K + p)dy)-

P ¢p
(9)

Next we compare pred[¥] and pred[(—1)"ZZ¥] which are
two alternate expressions for the reduced density matrix

preal W)=Y e %0 poy) (pdy|

P Pp
prea[(=1)"FIU]=> "> " e r|(=p)¢p) ((—p)pl- (10)
P ¢p

Hence the spectrum of entanglement energy levels at p,
{4, } must be identical to the spectrum at —p, {{s_, }.
Thus we have a p — —p symmetry in the entanglement
spectrum for non-degenerate groundstates. We will de-
note equivalences of spectra by the following suggestive
notation,

{(0:€6,)} ={(=p.&s,)} = {(p,€_,)} (11)

where p ranges over all momenta and ¢, over all the
associated Schmidt vectors. Note that non-degeneracy
played a crucial role in ensuring that Z maps a ground
state back to itself modulo an overall sign.

Next, due to the SU(2)x SU(2) spin and pseudospin
(orbital) rotational symmetry, a GS |¥) if non-degenerate
must necessarily be a singlet in both spin and pseudospin.
That is S2, = 72, = 0. Tracing over H, keeps preq in
the singlet SZ, = 0 sector of Hg. Thus, the momen-
tum resolved entanglement eigenvalues of pyeq are ex-
pected to be generically non-degenerate unless additional
symmetries or accidental degeneracies dictate otherwise.
That is, there are no degeneracies to be associated with
spin and pseudospin rotations. This should be contrasted
with the ES derived from the gapped two-leg Heisenberg
ladder.?® There the GS instead satisfies the less restric-
tive (Siot + Tiot)? = 0 condition. This then leads to the
ES having support in more than one S2,, sector of Hg.
Here, the orbital 7-chain is identified with the second leg
of the ladder which is traced over.

Lastly, the S2, = 0 condition dictates the maximum
total number of physically significant entanglement en-
ergy levels from our numerically computed spectra. Let
Niinglet denote the dimension of the S2, = 0 subspace of
Hs which grows with L. Nginglet may be calculated by
counting the number of standard Young tableaux with
shape [L/2,L/2] or 2 rows and L/2 columns. The ES re-
veals its physically relevant structure with only the low-
est Nginglet levels. In practice our computations generate
more eigenvalues than Ngnglet because we work in the
more convenient S7, = 75, = 0 basis. These additional
eigenvalues of pyeq should be zero in value based on phys-
ical grounds. But in our numerics they are seen to be
finite but exponentially small compared the the rest of
the spectrum.

(a) X=0.22,Y=0.17 (b) X=0.76,Y=0.63
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FIG. 5. (color online) Orbital or rung cut entanglement spec-
tra against linear momentum p at generic points in the AFM
phases for L = 12. The o symbols denote singlet levels.
(a) (X,Y) = (0.22,0.17) from the gapless V phase. There
are 32 low energy states across all p that are separated by
the gap A&nign from a continuum of high energy states. (b)
(X,Y) = (0.76,0.63) from the gapped VI phase. There are
only 2 low energy levels at p = 0,7 which are separated by
a gap Aflow from a continuum of high energy states. The
position of Aépign is above that of Aéiow.

2. Generic Entanglement Spectra

Our calculations of the orbital or rung cut ES from
exact diagonalization of generic points in the AFM re-
gion do indeed exhibit the symmetry properties of the
last subsection. Shown in Fig.5 are entanglement spec-
tra taken from a L = 12 chain derived from ground states
deep in the gapless and gapped AFM phases. Both spec-
tra are p — —p symmetric and are entirely composed of
non-degenerate singlets. However the ES is interesting
in other ways. The striking feature is an entanglement
gap across all momenta exhibited by both spectra. In the
gapless case Fig.5(a), this gap labeled by A&pign separates
a set of 32 low lying energy levels from a continuum of
high energy levels. While in Fig.5(b) a different entangle-
ment gap Alow separates a set of high levels from only
two distinguished lowest levels at p = 0,7. The corre-
sponding ES for L = 8 (L = 16) is qualitatively similar
but with less (more) entanglement levels. In phase V,
data from L = 8,12 and 16 reveal an empirical relation
2L/2=1 for the number of lowest lying levels which are
distinguished by the entanglement gap Afnign. In phase
IV, there are still only two lowest levels at p = 0, 7.

Remarkably the rung cut ES of Fig.5 does not in
any way resemble the gapped two-leg Heisenberg spin-
ladder,2® even in the gapped IV phase. The ES does not
seem to exhibit any similarities, quantitative or qualita-
tive with the real spectrum of a single Heisenberg chain.



More specifically, triplets and higher degenerate multi-
ples are absent from the spectrum. This could be in-
terpreted in two different ways. On the one, hand it
could mean the failure of the conjecture that relates the
entanglement spectrum to the real energy spectrum of
the (virtual) edges.?S On the the other hand, it could
be that the conjecture still holds true but the boundary
or edge Hamiltonian is not the single AFM Heisenberg
chain as one would expect by decoupling the spin and
orbital chains in (1).

The lack of triplets and higher degenerate multiplets
can be traced back to the restriction to the S2,, = 0 sec-
tor of the entanglement eigenvectors of p.q as was shown
in the previous section with symmetry based arguments.
Hence we believe the second scenario to be more likely
and the special nature of the Hamiltonian with the four
spin interaction is the cause for the complicated bound-
ary Hamiltonian.

3. Zo Symmetry of the Entanglement Spectrum

In this subsection we consider the effects of the Zo
symmetry operator which exchanges spin () and orbital
(1) degrees of freedom. We denote such a linear operator
by F which acts on Hg, by

F(la)®16)) = 18) ® |a), (12)

for all @« € Hg and S € H,. Moreover, F is unitary
and F? = 1. Effectively, F exchanges X <+ Y when act-
ing upon H(X,Y). That is FH(X,Y)F = H(Y,X).
Thus a ground state |¥) of H(X,Y) is mapped to a
ground state of H(Y,X) under F. Applying F to the
Schmidt decomposition of |¥) in (7) yields the symme-
try Sent(X,Y) = Sent (Y, X ) which was noted by Ref.[52].
However, it is not necessarily true that the ES derived
from the GS of H(X,Y) is identical to the one derived
from H(Y, X). It is only that true that both spectra pro-
duce the same von-Neumann entropy Sent. In fact, using
symmetry arguments similar to that of Section ITIB 1, it
can be shown that when K = m they are shifted by =«
relative to one and another, otherwise they are identical
when K = 0. These arguments are presented in Ap-
pendix A. Shown in Fig.6(a-b) are entanglement spectra
exhibiting this relative shift.

Next, we specialize to the Zs symmetric X = Y line
where F is a symmetry of H(X,X). In this instance
there may be double degenerate levels (doublets) present
in the momentum resolved ES. These doublets occur at
p = +m/2 but only when K = 7. Shown in Fig.6(c-
d) are entanglement spectra taken from phase IV on the
X =Y line. Fig.6(c) comes from a GS with K = 0 whilst
Fig.6(d) from one with K = m. Details of this argu-
ment for this degeneracy are also presented in Appendix
A where it also requires that |U) satisfy F|U) = —|U).
These results emphasize the importance the ground state
momentum K may have on the entanglement spectrum
at finite systems sizes. It is also one more example of

(a) X=0.05,Y=0.25 (b) X=0.25,Y=0.05
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FIG. 6. (color online) Momentum resolved entanglement

spectra for L = 12 chains at points related by Zs spin-
orbital symmetry. The o symbols denote singlet levels while
the © symbols denote doublets. (a) (X,Y) = (0.05,0.25)
in phase V. (b) (X,Y) = (0.25,0.05) in phase V which is
shifted by p — p + 7 relative to (a). (c) (X,Y) = (0.62,0.62)
in phase IV with ground state momentum K = 0. (d)
(X,Y) = (0.58,0.58) in phase IV with K = 7w. Note the
7 shift and doublets at p = +7/2 are present regardless of
whether or not the ground state is in phase V or IV.

how the entanglement spectrum is much more sensitive
to the details of the ground state than the von-Neumann
entropy.

In the next sections we will present our results and
analyses on the entanglement spectra at the two special
points along the X =Y symmetric line. These are the
SU(4) symmetric point (X =Y = 1/4) and the exactly
solvable Kolezhuk-Mikeska(KM) point (X =Y = 3/4).



4.  Entanglement Spectrum for the Exactly Solvable
Kolezhuk-Mikeska point X =Y = 3/4

Recall that at X = Y = 3/4 an exact ground state
of H(X,Y) in terms of a matrix product state (MPS)
was found by Kolezhuk-Mikeska.?® The ground state at
the KM point is exactly doubly degenerate even for finite
system sizes. These two MPS ground states are the two
possible staggered dimer coverings of the system, with
no dimers between the S and 7 chains. Moreover, they
each individually break the translational symmetry of the
system. Thus, their ES may not be momentum resolved
as was discussed in Section IIIB1. In addition, these
wavefunctions are exact product states of simpler spin
and orbital wavefunctions. Hence they are expected to
yield no entanglement whatsoever under a rung or orbital
trace. These ground states are also examples of a non-
Haldane gapped spin-liquid with string order.?%:5!

Nevertheless, by taking symmetric and antisymmetric
superpositions of these exactly staggered dimers, momen-
tum eigenstates with K = 0 and K = 7w which have the
full symmetries of H(3/4,3/4) are recovered. In fact, the
numerical ground state wavefunctions computed around
the KM point are always momentum eigenstates and are
thus adiabatically connected to one of these momentum
eigenstates. Interestingly, the entanglement is non-trivial
for these K = 0, eigenstates at the KM point. Shown
in Fig.7 is the ES at the KM point for K = 7 which
is extraordinarily simple because it consists of only two
levels with £ = In2 at momenta p = 0,7 regardless of
system size L. When K = 0 there are still only two lev-
els at p = 0,7 but these levels are shifted slightly from
In2 by an L dependent amount which vanishes in the
thermodynamic limit. It thus appears that at the KM
point there is an infinite entanglement gap (Aow = 0)
which becomes finite when moving away from this point
as was observed in generic spectra in phase IV.

The entanglement levels at the KM point for K =
0,7 can be computed exactly using the staggered dimer
wavefunctions. This calculation is outlined in the rest
of this subsection. We denote a dimer between sites 4
and j on a given chain by D,; with the following sign
convention

1
V2

For sites 1,2,...,2N = L there is canonical dimer cover-
ing of the chain which we denote by

|Dij) —= (| tads) — [ 4il5)) - (13)

‘D(1)> = |D12D34 cee D2N71,2N> -

N
H Dai—12; ),
=1

(14)

and its translated counterpart

‘D(2)> = |D23D45 .. .D2N71> =

N—1
H Da;2i1Dany ) -

i=1
(15)
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FIG. 7. (color online) Entanglement spectrum of an L =
12 system from the exactly solvable Kolezhuk-Mikeska(KM)
point X =Y = 3/4 for K = . This point is in the non-
Haldane phase with a finite string order parameter.’! There
are only two levels £ =In2 at p = 0, 7. The K = 0 spectrum
(not shown) is almost identical except the levels are shifted
slightly from In 2. Away from the KM point, the spectrum be-
comes “dressed” with high energy levels as shown in Fig.5(b)
where there is a finite entanglement gap A& that separates
the two sets of energies.

The overlap between the two distinct dimer coverings is
non-zero and can be shown to be

<D<1>|D<2>> = 2(—1/2)V. (16)

Pictorially, this says when the two coverings are over-
laid on top of one another to form an unbroken chain of
length 2N, then the non-zero overlap is 2(—1/2)", with
our convention. This is a special case of a more general
formula for general dimer coverings of a lattice. Note also
that as N — o0, the overlap vanishes but is never exactly
zero for finite V. By taking symmetric and antisymmet-
ric superpositions and normalizing, we can form K = 0,7
momentum eigenstates from the two inequivalent exact
staggered dimer wavefunctions:

oN-1
VR
x (ID™) @ IP) + P@) @ PM)),
oN-1
VRIS
X (|D<1>> ®|D®) - D@ g |D<1>>) '
(17)

|Wo) ==

|\IJ7T> =

Their respective reduced density matrices can then be
computed to arrive at an N dependent result for pyeq[¥o]
but a simple expression for preq[¥,]:"



pred[\I]O] =
1 344Nt
2(AN—1 1) \2(-1)N VAN —1

4N-1_q

2(—1)N\/m>

Pred[Vr] = (1(/)2 1(/)2> : (18)

Computed from prea[¥o]
8 0.473085, 0.975714(0.473085, 0.975714

12 0.63258, 0.757621 [0.63258, 0.757621

16 0.677645, 0.708896 |0.677644, 0.708895

L = 2N |Numerical results

TABLE I. Comparison between analytical result for £ and the
numerics for the K = 0 groundstate at X =Y = 3/4.

Thus, for a K = 7 ground state at X =Y = 3/4,
we expect that 1/2 = e~¢ will produce two degenerate
entanglement energies with value In 2. This is indeed ob-
served in our numerics for L = 2N = 8,12,16. With the
above expression for preq[Pol, the entanglement energies
can be determined and compared with our exact diago-
nalization results. These values are shown in Table I and
are in almost perfect agreement.

Lastly it is clear that as L — oo, the overlap (16) tends
to zero and the differences in the ES between |¥) and
| ¥, ) should become negligible.

5. Entanglement Spectra for the SU(4) point

In this subsection we focus on the rung cut ES at the
SU(4) symmetric point at X =Y = 1/4. Shown in
Fig.8(a-c) are spectra taken from ground states at that
point for sizes L = 8,12 and 16. A noteworthy feature
shared by the spectra is the entanglement gap A&pnigh
around 6 < ¢ < 10 across all momenta p, and the man-
ner in which the gap becomes more well defined with in-
creasing system size. Moreover a simple finite size scaling
analysis of the entanglement gap taken at p = 0 plotted in
Fig.8(d) suggest that the gap remains open in the ther-
modynamic limit. It is possible that the entanglement
gap closes logarithmically which can not be seen from
our system sizes, however the overall structure of the en-
tanglement spectra across phase boundaries (see Fig.9)
is suggestive of it remaining open.

Several features are worth pointing out regarding the
systematic changes in the ES with increasing L. Firstly,
the L = 8 ES of Fig.8(a) is severely limited by the finite
system size effects. Recall that Ninglet, the dimension of
the SZ, = 0 subspace of Hg, sets the maximum num-
ber of physically relevant levels of the ES. For L = 8§,
Ninglet = 14 and this is the total number of levels ob-
served in Fig.8(a). Of these 14, 8 levels make up the
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set of entanglement levels below the gap. This sparsity
of the non-zero eigenvalues of pyeq highlights the limita-
tions in attempting to draw strong conclusions about the
thermodynamic limit using only L = 8 data.

Secondly, upon increasing L to 12 and 16 the spec-
trum starts to fill up with levels above and below the
gap. At L = 12, doublets are observed at p = +x which
can be attributed to the properties of a K = 7 ground
state as discussed in Appendix A. More importantly,
however, this filling of levels is observed to be system-
atic. In all sizes considered, the total number of levels
below the entanglement gap follows the empirical relation
2L/2=1 1n a later section we will discuss the physical sig-
nificance of the A&z, entanglement gap for correlations
functions and present some conjectures as to the origin
of the 25/2=1 relation.

Lastly, as was already revealed in Fig.5(a) and
Fig.6(a,b), the Ahjgn entanglement gap seems to be a
generic property of ground states deep in the gapless
AFM phase V, where the 22/2=1 counting is also ob-
served at these points. Viewed in this light, the SU(4)
point ES appears to be a rather generic ES of the phase
V. This is rather surprising given that this point is
known to be a critical point of a Kosterlitz-Thouless(KT)
transition.*+46 In fact, at points X = Y > 1/4 beyond
the SU(4) point, the ES still yields a robust A&hign en-
tanglement gap. This fact unfortunately has not allowed
us to conclusively identify the SU(4) point as being a
critical point of the KT transition using only our present
amount of ES data. Nevertheless, we believe that the en-
tanglement gap is a distinguishing property of the phase
V and our interpretation of our finite system size data
requires taking into account the complexities of the KT
transition. In the next few sections we will present our
data and analyses on the evolution of the ES along sev-
eral lines in the phase diagram with a focus on the region
V to IV phase transition.

6. Entanglement Spectra Along the X =Y Line

In this subsection we investigate the evolution of the
entanglement spectrum along the Zy symmetric line 0 <
X =Y < 1forsizes L = 8,12 and 16. Shown in Fig.9 are
the non-momentum resolved entanglement spectra along
this line and overlaid with Se,; data. The data for L = 8
and L = 12 is presented in Fig.9(a) and Fig.9(b). For
these plots, only absolute ground states are used to com-
pute the ES. The spectra are also labeled according to
their momentum K = 0, 7. Our L = 16 data set is unfor-
tunately more limited due to computing limitations. In
this case we have decided instead to show separately the
spectra taken from ground states of definite momentum
K sectors. These results are shown in Fig.9(c) (K = 0)
and Fig.9(d) (K = m). As is shown in Fig.4(b), the
K = 0 ground state is often the absolute ground state
for most of the 0 < X =Y <1 line.

We remark first on the L = 8 and L = 12 results of



12

20 (a) L=8 20 (b) L=12 (c) L=16 (d) Gaps atp=0
R o gsg@mggegggS
oo oo oo o : 90@88@09
o o o 5 o éoggggggoggé ?T 6
15t 15 © ° °°o°° ° | %éegééﬁéegg S
560 0,9,0 o 9 é 880 é o 8 o
o o 080 "0 080"~ gé ggggg ég 8:?2
°303°0°308 i
w10k o o lO*o 000 8086 Gog 0
o 1 1 1
16 12 8
a 0 L
5 5t 5t Bé%g%%@@ge%%
0898080868 8 “080806°°88g,
° ° OO oOoOo (o) o o e
o o o J
8
0 T T ‘
- —12‘ 0 g g - —12‘ 0 1; T - —12‘ 12‘ n
p p p

FIG. 8. (color online) Entanglement spectra at the X =Y = 1/4 SU(4) point at various system sizes. The o symbols denote
singlet levels while the © symbols denote doublets. (a) L = 8. (b) L = 12. (¢) L = 16. The doublets at p = £7/2 for L = 12
are due to the ground state momentum K = m. In all cases the total number of low lying energies below the entanglement
gap obey the empirical relation 27/271, (d) A finite size scaling analysis of the entanglement gap Aé&nien taken at p = 0. The
positive intercept suggests that the gap remains open in the thermodynamic limit.

Fig.9(a,b). In Fig.9(a) where L = 8 the total number
of levels is limited to Nsinglet = 14 whereas in Fig.9(b)
where L = 12 the spectrum is more densely populated.
Both plots very clearly reveal the level crossings between
K =0 and K = 7 ground states. These are easily identi-
fied with discontinuous changes in the spectrum and are
in exact correspondence with the positions of the non-
smooth changes in the entanglement entropy Sens. Oth-
erwise, away from the level crossings, the evolution of
the entanglement spectrum is continuous. This is again
another demonstration of the advantage of studying the
ES over the entropy when trying to detect changes in the
ground state. In Figs.9(a,b) the high entanglement gap
Aépign is well defined and continuously evolves far beyond
the SU(4) point X =Y = 1/4 until a level crossing is en-
countered. The low entanglement gap A&, by contrast
starts to develop around X =Y ~ 0.2. Eventually it
diverges at the exactly solvable KM point X =Y = 3/4
where the ES is composed of just two levels. In addition,
there are also parameter regions where both Aéyien and
A& are simultaneously non-zero. Lastly, we note that
generally a large Aépien corresponds to a large Sent.
Next, data on the ES for L = 16 shown in Figs.9(c,d) is
significantly more sparse. Nevertheless in Fig.9(c) for the
case where K = 0, we have have computed many more
data points in the intermediate region between phase V
and IV with a focus on the phase transition. The ES
from this set of ground states is continuous over the en-
tire range of X = Y. It is observed that the two low-
est levels at p = 0,7 from the KM point continuously
evolve into the two lowest levels of the 25/2-1 = 128 set
of energies below Afpign in the phase V. In Fig.9(c) the
gap A&pign is observed to close around X =Y ~ 0.5

which is before the KM point but beyond the SU(4)
point. At this point, the entropy Sent is also seen to
decrease rapidly with increasing X = Y. Based on this
gap closure which occurs for L = 16 but not smaller sizes,
we conjecture that with increasing L, the closure point
of Apign will tend towards smaller X = Y values. It
is known that the real energy excitation gap closes only
exponentially slowly when approaching the KT critical
point from phase IV.44 47 This makes it difficult to pin-
point the critical point of the transition without having
to resort to a renormalization group analysis. Our nu-
merics reflect this reality too, as determining the critical
point by the opening or closure of either A&y and/or
Aé&nign does not lead to a satisfactory determination of
the phase boundary. Perhaps future work utilizing Den-
sity Matrix Renormalization Group (DMRG) to access
larger L sizes with appropriate finite size scaling analy-
ses respecting the peculiarities of the KT transition will
improve on this.

Finally, we should mention that A&ysen is also well de-
fined for the K = 7 ground state (Fig.9(d)) in the range
0 < X =Y < 1/4. However these eigenstates are excited
states for those parameters and interestingly, the set of
low energy levels it defines actually exceeds the 25/2-1
limit.

Recent work has numerically substantiated the claim
that one can adiabatically connect two phases as long as
an entanglement gap remains open.?! If that conjecture
is true, one would conclude that the A&, gap being
lower in position in the spectrum and thus more signif-
icant than Aé&pien, should open there and remain open
throughout regions IV and VI. Again due to difficulties
of the infinite order KT transition and the local spin-
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FIG. 9. (color online) The (non-momentum resolved) entanglement spectrum along the X =Y symmetric line for sizes L = 8,12
and 16. The blue (dark) points correspond to spectra from ground states with momentum K = 0 and the green (light) to
K = m. In (a) and (b) the absolute numerical ground state is used to derive an ES. Due to computing limitations, our data
points for L = 16 are more sparse and we have plotted separately the ES for K = 0 and K = 7 sector ground states in (c)
and (d). In phase V the absolute ground state is mostly the K = 0 one (See Fig.4(b)). Overlaid as the red (solid) line is
Sent (X, X) in arbitrary units. Marked out in (a) is the high entanglement gap A&nigh that separates the set of 2L/2=1 1ow
energy levels from the rest of the entanglement spectrum. Also marked in (a) is the low entanglement gap Ao that separates
the 2 distinguished lowest levels of the gapped AFM phase from the rest of the spectrum. The region where the entanglement
entropy rapidly drops lies in the region where the transition from the gapless region V into the gapped regions IV and VI in
Fig.1 occurs.

orbital degrees of freedom per site, this conjecture is 7. Entanglement Spectra Along the Line X +Y = 0.4
hard to verify via exact diagonalization for the system
sizes we could handle. Nevertheless, the continuous and
open A&y gap (for fixed K) throughout region IV and
VI provides further evidence that the phase diagram in
Ref.[52] contained an unphysical phase boundary. Based
on this we can again conclude with our ES results that
the ground states of IV and VI are adiabatically con-
nected once degeneracy due to dimerization is removed

by fixing K.

We next consider the behavior of the (non-momentum
resolved) entanglement spectra along the line X +Y =
4/10 for 0 < X < 0.4 which is perpendicular to the
symmetric X =Y line. This line begins in region II of
Fig.1 and slices through through region V before finishing
in region III. Shown in Fig.10 are the non-momentum
resolved entanglement spectra along the line X +Y =
0.4. The spectra plotted are taken from the ground state
for the system size L = 16. Results for other sizes are
qualitatively similar.

For X < 0.06 and X 2= 0.36 the structure of the en-
tanglement spectra collapses to a singular level at £ = 0
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FIG. 10. (color online) The (non-momentum resolved) entan-
glement spectrum along the X +Y = 0.4 line for L = 16. The
red (solid) line is the entanglement entropy. For X < 0.06 and
X 2 0.36 the structure of the entanglement spectra collapses
as these states have trivial entanglement. (They are the FM
phases IT and III of Fig.1.) For 0.06 < X < 0.36 the entangle-
ment gaps Aénigh and Afjow are seen. This path corresponds
to a slice through region V.

with Seny = 0 because these states have trivial entan-
glement. (They are in region IT and III, respectively, of
Fig.1.) While for 0.06 < X < 0.36, entanglement gaps
Aé&pign and to a lesser extent Aoy are seen. This path
corresponds to a slice through region V. Ayien is largest
in the “middle” of region V and appears to close at the
phase boundaries. Thus, as claimed in Sec.III B2 it ap-
pears that the Anign gap in the entanglement spectra
with the rung cut persists throughout the gapless region
V. (Recall that the SU(4) point sits on the boundary of
region V in the thermodynamic limit.)

8. Correlation Functions and the A&pign Entanglement Gap

In this subsection, we explore the physical significance
of the entanglement gap Anign for ground state(GS) cor-
relation functions. The greatest consequence of a large
well defined Afyign is the ability for certain GS correla-
tion functions to be well approximated by using only the
N(L) := 2L/2=1 Schmidt vectors below A&pigh. Recall
that tracing over H, to form p,eq does not remove infor-
mation from observables that only depend on the spin(S)
degrees of freedom. In fact, it is these correlations that
can be well approximated.

To be more specific, let O(:z:l, ..., Zy) be an operator
depending only on S’;l, ceey gzm. Then its GS expecta-
tion value can be computed from

(021, ..., 2m)| ) = Try{O(z1, . ..

14

Let the set of entanglement levels {&,} with their cor-
responding set of Schmidt vectors {¢,} be organized in
ascending order § < & < ... < &n..- Using this
eigenbasis of pyeq, the GS expectation can be computed
with

Nsinglet

7$m)|q}>: Z e_£”<¢n|0(1‘17,,,,xm)|¢n>.

n=1

<§D|(§($1,...

(20)
Now, a well defined gap Aépign separates the ES into low
and high subsets. Moreover, the levels above A&pien will
have Schmidt weights that are exponentially smaller than
those below it. This can be exploited to approximate (O)
by,

oL/2-1

(UO(1, .., zm)| W) & Y e (dn]O(x1, .., Tm)|bn)
n=1

(21)

with  exponentially small corrections of order

O(e*(fN(L)JFAfhigh)). That is, with a large Aé&nign,

one only requires N(L) = 25/2=1 Schmidt vectors to
reproduce all the GS correlation functions involving only
spin(S). Although N(L) still grows exponentially with
L, it is still slower than Ngnglet. Moreover, these GS
correlation functions should obey the predictions of the
SU(2)2 WZW field theory that describes the low energy
dynamics of the spin sector.*#46:47 Phrased another
way, the Gibbs ensemble™ p,oq[¥] of size N (L) with the
degrees of freedom of a spin-1/2 chain of length L can
simulate well all the GS correlators of a SU(2)s WZW
CFT, provided Aépigh is large enough.

Next, we discuss our numerical results on the GS cor-
relation functions calculated from the Schmidt vectors
or equivalently the eigenvectors of preq[¥]. Shown in

Fig.11(b,c) are spin-spin (S; - Si11) and dimer-dimer
(S1 - S2)(Sjia - Sjis) ground state expectation values
for a L = 16 chain at the SU(4) symmetric point. Al-
though we only present data for the SU(4) point, our
results remain qualitatively similar at other points deep
in phase V. We focus first on the open circles o which
are correlation functions computed using Eq.(21). We
have checked that these correlation functions are indis-
tinguishable from those obtained using Eq.(20) where all
the Schmidt vectors are utilized. Thus, we have con-
firmed the validity of the approximation of Eq.(21).

In Fig.11(b) a decay is observed in the spin-spin cor-
relation function which is unfortunately limited by (pe-
riodic) boundary condition effects. We also observed pe-
riod 4 oscillations which corresponds to a 7/2 peak in the
structure factor. These oscillations are consistent with
previous DMRG calculations*! and field theory studies.**
However, due to the limited size L = 16, our data does
not allow for a fit to the 3/2 power law decay predicted by
the SU(2)2 WZW field theory.**46 Nevertheless, the pro-
file is in qualitative agreement with Ref.[41] and gives us
confidence that we can expect to see the algebraic decay
with longer chains using only the approximation (21). In
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FIG. 11. (color online) Correlations functions taken from the
SU(4) symmetric point ground state for L = 16. (a) The
entanglement spectrum where the blue o symbols denote the
N(16) = 128 levels below the entanglement gap A&nign. The
two lowest levels with the greatest Schmidt weight are marked
by the solid red e symbols. These levels are adiabatically
connected to the two levels of the KM spectrum. (b) The
spin-spin ground state correlation function. (c) The dimer-
dimer ground state correlation function. In (b) and (c¢) the
open circles o are computed using only levels below A&pign
while the solid e use only the two lowest levels of (a).

Fig.11(c) the dimer-dimer correlation function does not
seem to display a strong decay like in the spin-spin case.
Rather, it almost appears to be long-range ordered. But
we believe this to be a finite-size effect because dimer-
ization is not expected to occur at the SU(4) symmetry
point.

We also considered the contributions to the GS cor-
relators from just the two lowest entanglement energy
levels. That is, we calculate (20) with just the first
two Schmidt vectors ¢; and ¢ which have the great-
est Schmidt weight. The results of these computations as
shown as the solid e circles in Fig.11(b,c). These two lev-
els are special in that they are smoothly connected to the
entanglement levels of the KM point as shown in Fig.9(c).
Most interestingly, the resulting correlator in Fig.11(c)
demonstrates that their contribution dimer-dimer corre-
lation function is surprisingly uniform and strongly long-
range ordered. We have also computed the same correla-
tion function at the KM point and a qualitatively similar
profile is obtained except there the negative values at
even separations is heavily suppressed. Also, the spin-
spin correlator of the KM point is ultra short-ranged,
decaying to zero beyond nearest neighbors. Based on
these observations, we interpret the role of the remaining
N(16) — 2 = 126 Schmidt vectors with higher entangle-
ment energies, as providing the necessary critical alge-
braic spin-spin fluctuations that destroy this long-range
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dimerization order. This interpretation is also based on
the expectation that the SU(2); WZW low energy effec-
tive description describes algebraic spin-liquid behavior
without dimerization. This also means that A&,y is a
better indicator of the gapped non-Haldane AFM phase
1V, since it separates the two lowest KM levels and the
next N(L) — 2 levels. It is also worth repeating here
that in certain excited states in phase V, the A&pien can
sometimes be observed, but in those circumstances the
number of levels below it exceeds N(L). This suggests
that with excited states which have more complicated
correlations, there is an increased amount of complex-
ity which manifests as an increased number of Schmidt
vectors below Aénigh-

We still lack any explanation, even if only intuitive of
the Aépigh entanglement gap and the N (L) = 2L/2=1 Jey-
els below it. This is in contrast to the A&w gap which
can been understood in terms of perturbative corrections
to the KM ground state which makes the otherwise in-
finite gap, finite. It would be very interesting to find a
ground state which is adiabatically connected to region V
where A&pigh = 00 such that Eq.(21) becomes exact. We
can expect such a ground state to describe the SU(2)2
WZW model ground state more faithfully. Curiously,
the number N (L) may have a combinatorical aspect to
it. We noticed the following combinatorical re-expression
of N(L),

N(L) = (%2) + <L2/2> T (iﬁ) (22)

From this point of view, N (L) is then the number of ways
to select an even number of L/2 objects. L/2 is also the
number of nearest neighbor links or possible dimers. We
conjecture that this relation may be of some significance
towards explaining the Aynign gap, although this is highly
speculative at the moment.

In most systems studied to date, an entanglement gap
(with a different cut from the one considered here) has
been shown to separate low-lying states with universal
topological properties from higher states that contain in-
formation about excitations.!®12714 In these cases, the
systems have a gapped bulk excitation spectrum. It is
thus somewhat unusual to find an entanglement gap in
a gapless system. However, the one-dimensional spin-
1/2 Heisenberg model with a cut in momentum space is
an important example of a gapless system with an en-
tanglement gap.2® In that case,?® it was shown that the
gap could be related to a fractional quantum Hall state
of the Laughlin type, as they both share an underlying
U(1) conformal field theory.

In Sec.V, we study the entanglement spectra of the
model (1) at the SU(4) point with a momentum space
cut. Quite interestingly we do not find a gap with this
cut, but we are limited by computational resources to
only L = 8,12 and there are many subtleties associated
with finite-size effects, as we noted in Sec.IIT A. Never-
theless, it would be interesting to see if the entanglement



spectrum from the rung cut and momentum cut could
still be related to a quantum Hall system derived from
an underlying SU(4); conformal field theory, in an anal-
ogous way to the U(1) conformal theory of the spin-1/2
Heisenberg spin chain connecting it to the Laughlin quan-
tum Hall states.?®

9.  Perturbing the Kugel-Khomskii Hamiltonian (1) with a
Rung Coupling

In a number of states with gapped bulk excitations and
some type of topologically protected boundary excita-
tions, such as fractional quantum Hall states,”'® 23 topo-
logical insulators,?? 38 topological superconductors,3!:32
and two-leg ladders realizing the Haldane gap phase,?* 27
a real space cut of the system into “halves” will show a
momentum dependence of the entanglement eigenvalues
that mimics the physical boundary excitations. In the
case of a two-leg ladder of spin-1/2 Heisenberg chains
with a rung coupling,2627 the “edge” would be one leg of
the two. Indeed, tracing out one leg (similar to our trace
over orbital degrees of freedom in the rung cut) results
in an entanglement spectrum that closely resembles that
of the spin-1/2 Heisenberg model, which is gapless.?6:27

It is interesting to point out that at X =Y = 3/4 (see
Fig.9(c)), a gapped phase-the non-Haldane phase with
finite string order,”®®! one does not see a characteristic
spectra of the “edge”, which is a spin-1/2 Heisenberg
chain. This difference compared to the rung coupling
is intimately related to the very different nature of the
“four-spin” interaction term (5?Z . §i+1)(ﬁ - T;+1) which
drives rather different physics between chains.51:53

In order to study the competition between the rung
coupling and the “four-spin” term (5_2 . §i+1)(ﬁ “Ti+1) on
the entanglement spectra in the gapped phase at the ex-
actly solvable point X =Y = 3/4 of Eq.(1), we consider
a perturbation of the form,?®?

L
Hrung = Jrung Z Sz ' 7_—; (23)

i=1

In the spin-ladder interpretation of Hg,, this term is
akin to an AFM exchange coupling between rungs of
the ladder and hence the reason we have chosen to
refer to it as rung coupling. This term breaks the
global SU(2)x SU(2) rotation symmetry down to just
SU(2). The angular momentum symmetry properties of
the ground state(GS) are thus modified too. It is no
longer necessarily true that S2,, = 72, = 0 but only that
(gtot + Tiot)? = 0. This then leads to the entanglement
spectrum having support in more than one S2, sector
of Hg and allows the possibility of higher spin angular
momentum multiplets in the entanglement spectrum.
First, we consider the effect of H,u,s on the entangle-
ment spectrum of the KM point where our results are
shown in Fig.12. In Fig.12(a), we observed that even
with a very small Jyung > 0 relative to X and Y, the

(a) X=Y=0.75Jyng=0.001

(b) X=Y=0.75Jng=0.01
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FIG. 12. (color online) Momentum resolved entanglement

spectra for L = 12 chains at the KM point with Jrung cou-
pling (a) Jrung = 0.001. (b)Jrung = 0.01. (¢) Jrung = 0.1. (d)
Jrung = 0.5. In (d) the spectrum resembles the energy spec-
trum of a Heisenberg spin-1/2 chain and the ES of a two-leg
ladder without the four spin or dimer-dimer interaction term.
The degeneracies of the levels are denoted by the symbols
displayed in the legend.

ES exhibits triplets and higher odd multiplets that de-
scend from infinite entanglement energy, thus rendering
A&ow finite. This ES is significantly different from the
ES obtained by just perturbing X or Y from the KM
point, where only singlet or doublets are observed due
to symmetries. However, both share a A&y gap which
indicates that they are in the same phase. It should also
be noted that when Jyung = 0.001 as in Fig.12(a), the
ground state is still expected to be in the same gapped
topological non-Haldane phase. This is not as surpris-
ing as it seems since even with a pure spin-1/2 two
leg Heisenberg ladder without the four spin-interaction
term, changes in the multiplet structure of the excited
entanglement energies can occur without going through



a phase transition.?5?7 In Fig.3 and Fig.4 of Ref.[26], en-
tanglement spectra were computed for the rung singlet
(I) and rung singlet (II) phases which exhibit different
lowest level multiplets (triplets and sextets respectively).
Yet, the ground state between these “phases” is a gapped
product states of rung dimers and is not strictly at a
phase transition. Hence based on this and our results,
we conclude that comparing the multiplet structure of
lowest level ES excitations of a rung cut is not a well
suited method to distinguish between gapped topologi-
cal quantum phases.

Returning to Fig.12, with increasing Jyung the gap
A&ow diminishes and more complicated degenerate en-
tanglement levels appear in the spectrum. The largest
rung coupling value that we considered Jyung = 0.5 shown
in Fig.12(d) somewhat resembles the degeneracy struc-
ture of the ES of two leg Heisenberg ladder in the Hal-
dane and rung singlet(I) phase?® which mimics the phys-
ical spectrum of the spin-1/2 Heisenberg model.?%:27 But
differences appear in the details of the position of the lev-
els and the overall dispersion. Nevertheless, in the large
Jrung > 0 limit, we expect to recover a ground state sim-
ilar to the rung singlet(I) phase and we should recover
the results of Ref.[26].

Finally, we consider perturbing around the SU(4) sym-
metric point and our results are presented in Fig.13.
Remarkably the ES is surprisingly robust and remains
roughly unchanged from the SU(4) point ES even when
Jrung = 0.15 as shown in Fig.13(a). Nevertheless with
increasing Jyung dramatic changes start to appear, in-
dicative of some sort of phase transition or crossover.
In Fig.13(b) with Jiune = 0.2, there is a proliferation
of doublets which occur, even at momentum away from
p = £n/2. There, Aépign is still somewhat open. In-
creasing Jyung further causes the Aépign to collapse and
eventually the even multiplets give way to only odd mul-
tiplets in the ES. We observed that the final spectrum
in Fig.13(d) does not vary much with further increases
in Jrung and the low entanglement energy dispersion ap-
pears to be rather flat.

These results on perturbations about the exactly solv-
able KM point and the SU(4) symmetric point are still
poorly understood. But they do highlight the rich struc-
ture that is revealed by the entanglement spectrum when
changes to the ground state occur, especially in the case
of perturbing the KM ground state.

IV. BOND OR LEG CUT ENTANGLEMENT
SPECTRUM

In order to obtain complementary information on the
entanglement properties of the one-dimensional Kugel-
Khomskii Hamiltonian (1), we now consider a cut in
the Hilbert space where the system is cut in “half”
lengthwise!? through two bonds in real space of the pe-
riodic chain. This partition then defines two contiguous
blocks of sites each with length L/2, where one of the
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FIG. 13. (color online) Momentum resolved entanglement
spectra for L = 12 chains at the SU(4) point with Jiung cou-
pling (a) Jrung = 0.15. (b)Jrung = 0.2. (¢) Jrung = 0.25. (d)
Jrung = 0.35. The degeneracies of the levels are denoted by
the symbols displayed in the legend.

blocks is traced over. In the spin-ladder interpretation,
this partition cuts the legs of the ladder symmetrically.

This is the most common partition used for gapped
systems, and is natural for revealing the real boundary
excitations of an open chain in the Haldane phase, for
example.?* We study system sizes of L = 8 and 12. In a
symmetry protected topological phase, like the Haldane
phase, the lowest levels of the entanglement spectrum will
be two-fold degenerate per virtual edge due to free spin-
1/2 edge states.?* This even degeneracy is protected by
various symmetries, including inversion symmetry.?*77
Note that with the periodic boundary conditions we use
there are always two virtual edges. The quantity of in-
terest is then the parity of the degeneracies per edge as
it characterizes the localized edge excitations of the en-
tanglement Hamiltonian H,,..2878

We first investigate the entanglement spectrum at the



KM point. Picking a single MPS groundstate out of
the two degenerate ones that spontaneously breaks the
translational symmetry,’® we used the analytical formal-
ism developed in Ref.[24]. We verified that the entan-
glement spectrum is four-fold degenerate (two per vir-
tual boundary) in the thermodynamic limit.” One can
also intuitively see this from considering the wavefunc-
tion which is a staggered dimer covering of a two leg
ladder. Then a bond or leg cut will always cut a sin-
glet dimer (which could be a spin or orbital dimer) at
each edge which leads to the two fold degenerate free
spin-1/2 levels on each edge. Thus the KM point entan-
glement spectrum only has one set of two-fold degener-
ate eigenvalues per virtual edge, exactly as the Affleck-
Kennedy-Lieb-Tasaki®® state. However, the arguments
developed in Ref.[24] break down for degenerate ground
states, which is the case for the KM point. Nevertheless,
this even degeneracy when properly interpreted is still
symmetry protected and should remain throughout the
non-Haldane phase. As was emphasized earlier, gener-
ically in a finite size system the dimerization is never
exact and one obtains almost degenerate ground states
with definite linear momentum K = 0,7. In this case
we find that in the neighborhood of the KM point, there
are two sets of nearly four-fold degenerate entanglement
levels as opposed to one. These numerical results are
presented in Fig.14. But this may be accounted for by
taking linear combinations of the MPS states like was
done in Section IIIB4 to arrive at definite K ground
states. Then one can see through linearly superposing
the individual Schmidt decompositions of the exact MPS
states that the final reduced density matrix now should
have two sets of four-fold degenerate entanglement levels
which is still even per virtual edge. By adiabatic continu-
ity, if one limits to fixed K ground states these degenera-
cies should remain invariant as long as the real excitation
gap remains finite. We emphasize that this added com-
plication in the entanglement spectrum at finite system
size is really another artifact of the dimerization order
exhibited by the non-Haldane phase and a proper inter-
pretation requires taking into account this degeneracy by
choosing a definite linear momentum K.

This special degeneracy can be used to identify the
topological order in this state, but since it is the same
as in the Haldane phase the bond cut alone does not al-
low one to distinguish the Haldane phase from the non-
Haldane phase. The failure of the degeneracy of the
entanglement spectrum to identify different topological
phases has been pointed out before.” (It is possible that
a “particle partition”'* entanglement spectrum might re-
veal the difference between the Haldane and non-Haldane
phase as their excitations are different.”!) However, our
experience with the rung cut leads us to believe that a
combination of a leg and a rung cut could provide a way
to distinguish many different topological gapped phases
of two leg ladder systems or spin chains with orbital
degeneracy. In order to distinguish between the non-
Haldane phase and the Haldane phase one could first
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FIG. 14. (color online) The entanglement spectrum at the
KM point plotted versus system size. The black dots mark
the degeneracy of each level. For 8 sites, there is a residual ef-
fective coupling between virtual edge excitations in Hent that
splits the four fold degenerate states into singlets and triplets.
For 12 sites where the edges are more spatially separated the
4-fold degenerate or 2-fold degenerate per edge is restored to
a good approximation. The eigenvalues are equal up to the
third decimal place.

search for a degeneracy to establish the presence of a
topological phase, and then study the rung cut entangle-
ment spectrum to see if there are two low-lying levels and
an entanglement gap (non-Haldane) or the energy spec-
trum of a single Heisenberg spin chain (Haldane). Com-
bining and comparing different partitions is not limited
to spin ladder systems. It can be applied to other sys-
tems to gain complimenatry information. However, it is
beyond the scope of this paper (and may not even be pos-
sible) to obtain a systematic approach to determine the
minimum number and specific type of partitions needed
to fully classify a given system.

We also study the bond cut entanglement spectrum at
the SU(4) point. At this point the continuum limit of
the entanglement spectrum is completely determined®!
by the central charge, ¢ = 3. For a finite gapless system,
the mean number of eigenvalues of the reduced density
matrix larger than a given eigenvalue, A , is given by

n(A) = Ip(2v/bIn(Apaz/N)), (24)
where Iy is

the modified Bessel function, b =
l

SIn(£sin(rL)), ¢ is the central charge, and [ is the sub-

chain length. For simplicity we let z = 24/bIn(Apaz/A))-

In Fig.15 we investigate how the low energy excitations
of (1) effects the degeneracy of the entanglement spec-
trum in the gapless region V in Fig.1. We first compute
the entanglement spectrum at the SU(4) point. This is
done a chain of length 12 by tracing over 8 sites. A
subchain of length 4 is chosen to better reflect the ther-
modynamic limit. After the lowest entanglement level
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FIG. 15. (color online) The mean number of eigenvalues, n(\),
of the reduced density matrix larger than a given eigenvalue,

A, plotted as a function of z = 24/bln(Amaz/A)) in Eq.(24)

for | = 4 and L = 12. The blue circles represent data for
X = 0.25. The lowest level at z = 0 is non-degenerate and the
next level is 15-fold degenerate. The green squares represent
data for X = 0.2. The lowest level at z = 0 is non-degenerate
and the next level is 9-fold degenerate. The red line is the
analytical prediction.®!

we observe an entanglement level with a 15-fold degen-
eracy. If we break the SU(4) symmetry by moving along
the X =Y line to X = 0.2, the symmetry is reduced to
SU(2) x SU(2). We observe the 15-fold degeneracy splits
into 9-fold and 6-fold degenerate sets of levels. The en-
tanglement levels that are 9-fold degenerate have a lower
entanglement energy and are thus more entangled. We
can relate these degeneracies of the entanglement spec-
trum to the degeneracies of the lowest energy excitations.
At the SU(4) point, excitations with quantum numbers
(82,72) = (0,1),(1,0), (1,1) are degenerate*> (where “1”
means triplet) and transform under the fundamental ir-
reducible representation of SU(4) and hence are 15-fold
degenerate. At X =Y = 0.2, however the lowest energy
excitation is the (S?,7%) = (1,1) mode which transform
as two independent triplets under SU(2)x SU(2). This
then gives the 9-fold degeneracy. At that point the ex-
citations with quantum numbers (S?,7%) = (1,0), (0,1)
are the next lowest excitations and they together are de-
generate and give the 6-fold degenerate excitations. This
is somewhat surprising since the ground state is in the
gapless phase. Unfortunately, our system sizes are too
small for our data to fall nicely on the curve (24) derived
for the continuum limit. However, both the n()) and the
dependence of the entanglement entropy (not shown) on
sub-system length are consistent with ¢ = 3 given the
size limitations.

V. MOMENTUM CUT

In our final section of the paper, we consider a cut
defined with momentum space “orbitals” of the Hilbert
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space (which is very non-local in position space) at the
SU(4) point. This momentum-space cut has earlier been
used to reveal interesting structure in the entanglement
spectrum, including a clear entanglement gap and CEFT
counting of levels in the spin-1/2 Heisenberg chain system
that reflect the gapless bulk excitations,?® and has also
been used in characterizing disordered fermion systems.5?
In this section, we extend this momentum space partition
of Ref.[25] to a spin chain with orbital degeneracy or
equivalently a two leg spin ladder.

To define this cut, we first write the ground state wave-
function in a Holstein-Primakoff representation,

V) =
Z \I/(Zj] yerey B [ Wiy sy oeey wZN)SJ:S;T;Tz:'F%

J1<..<Jx
11<...<1lp

(25)

where |F) = | 1 ... 1) is the fully polarized state and
k = L/2 is number of spin (S) and pseudospin (7)
flip operators. k is set by the polarization condition
Siw = Ty = 0 that is satisfied by the ground state.
We have also expressed the real space wavefunction co-
efficients in U(1) coordinates of the periodic chain with
zj = eI’ and wj = e F being positions of a low-
ered spin and a pseudospin respectively. Note that the
complex valued function ¥(z;,,...Jw;,,...) is totally sym-
metric in all its arguments and is zero whenever any two
arguments are equal. This property derives from the mu-
tual commutativity of these spin flip operators and that
their square is always zero, (S;)* = (7, )* = 0. Next,
we define the Fourier and inverse Fourier transforms of
these spin flip operators by

3

t

< |

(26)

The ground state wavefunction may then be expressed in
terms of these Fourier transformed operators as

W) =

> Wma, e mliig, ) S S T T |F),
My, My
MY yeens My

(27)

where the sum over the different “momenta” m; and m;
takes values in {0,1,...,L — 1} but is otherwise unre-
stricted. In the rest of this section we will measure the
crystal momentum in units of 27/L. The coefficients of



(25) and (27) are related to each other according to

W (M, ooy Mg |11, ooy Ty ) =
1 ) )
. . . . mi My my My
— g W2y ey 2 Wiy s ooy Wi, ) 230 20w ]
J1<<Jr
11 <o <1y

(28)

Note that ¥ remains symmetric under the action of the
permutation group of k objects, S, on (mq,...,m,) and
(1, ..., ). However, the spin flip operators 5’;1 and 7,
in Eq.(26) may be freely permuted because they are all
mutually commuting and no longer square to zero unlike
their real space counterparts. Thus in the sum over m’s
and m’s, we should only consider terms that are unique.
This leads to a description of states which resembles an
occupation number basis for bosonic particles. Thus in-
spired by the usual bosonic Fock space, we define a set
of basis states by

)= [[ P2, e

where n := (ng,...,nz—1) and A = (Rg,...,RL_1).
The spin flip operators of (27) may be thought of as
“magnon”-like creation operators acting on the “vac-
uum” |F) and (n, 1) corresponds to an occupation config-
uration of such magnon orbitals.2> However [S;, 5] o
S’fn and similarly for ?ﬁf. Hence, these are not strictly
speaking bosonic creation operators. Moreover, the basis
defined by such states is non-orthogonal and overcom-
plete, although they are spin, pseudospin and momentum
eigenstates. Nevertheless, we shall refer to the orbital
states created by S, and 7,;, as magnons and regard the
occupation basis as orthonormal. With this in mind, the
ground state wavefunction may be uniquely written in
the occupation basis of magnons as follows

W) = Z@(n,ﬁﬂn,m, (30)

m=0

with
~ L-1 1 ~
\I/(n,fl): H ﬁ\ﬂ(ml,...,mn ’l’hl,...,mn),
m—=0 N My
(31)

where my; < msy ... < m, is a magnon configuration rep-
resentative of the occupation {ng, ..., nz,—1} and similarly
for m; < ... <y and {fy, ..., —1}. However, these oc-
cupation numbers are not entirely unrestricted as symme-
tries of the wavefunction will impose constraints on their
space of possibilities. For example, the S, = 75, = 0
condition constrains their sum such that

L—-1 L—-1
anzzmnzm. (32)
m=0 m=0
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Due to time-reversal symmetry, the ground state may
only have momentum K = 0 or K = L/2 = & in units
of 2rr/L. This then imposes a constraint on the total
momentum

L—1
Mot =My + Mp = Z m X (N + T ),
m=0
such that
Moy mod L = K, (33)

where K is measured in units of 2w/L. Here, My :=
S m(n + fn) and Mg = S50 o ming + i)
are the total right and left moving momenta from both
spin(S) and orbital(7) magnons. Finally, we introduce
the bipartite partition in momentum orbital space by
splitting the orbitals into right movers with m,m =
0,...,L/2—1 (partition A) and left movers with m,m =
L/2,...,L —1 (partition B). The reduced density is then
formed by tracing out the orbitals in B in the pure ground
state density matrix, that is preq = Trp|¥)(¥|.

Next, we discuss the various ways in which we or-
ganized the the spectrum of Hepy = — In preq which is

L/t
the entanglement spectrum. Let Ny := Zm:@
be the total number of spin magnons in A and N4 :=
ZL/ > 1 i, the total number of pseudospin magnons in

A gng similarly for the B partition. Then the sum rule
of Eq.32) implies N4+ N = N+ Np = &, which is sat-
isfied by each ket in the occupation basis expansion. Be-
cause of this sum rule on the total magnon numbers, pyeq
will be block diagonal in (N4, N4) blocks. In our study
we focus on blocks where the A partition contains half the
total number of magnons, that is Nqg = Ny = /2. Thus
partition A will posses a spin and pseudospin polariza-
tion of (ASZ,, A1%,) = (—Na, —N,) relative to |F). In
addition, we block or resolve the spectrum of pred|( Na,Na)
into M4 quantum numbers. It must be mentioned, how-
ever, that M4 is not a strictly a good quantum number as
was in the case of the spin-1/2 Heisenberg chain.?® Only
when the wavefunction weights [¥(ny, ...)|? have support
in one M,y sector, can My be a good quantum number
because Mot too is a good quantum number of ¥. Our
numerical results show a distribution of weights in more
than one M, sector. Nevertheless, in regards to the
lowest set of levels in the entanglement spectrum, My
remains an approximately good quantum number to la-
bel these levels. In Appendix B, we present additional
numerical results to substantiate this claim. Hence, each
M 4 sector contains a net spin and pseudospin current of
(J2,J2) = (~NaMa,—N4, My) in units of 27 /L.

We present our numerical computations of the entan-
glement spectrum at the SU(4) point. Numerical limi-
tations allow us to only consider systems of sizes L = 8
and L = 12. Shown in Fig.16 is the momentum cut en-
tanglement spectrum for a system of size L = 12 at the
SU(4) point in the sector (Na, Na) = (3,3). In contrast
to the a single spin-1/2 Heisenberg chain, an entangle-
ment gap is not exhibited in our spectrum. This goes

Nm
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FIG. 16. The momentum cut entanglement spectrum at the SU(4) symmetric point for L = 12 in the sector (N, Na) = (3, 3).
The ground state possesses momentum K = k = L/2 in units of 2w /L. The count of the lowest levels from high M4 (right) is
1,2,5,10 and from low Ma (left) is 1,2,5,8. The floating numbers in the plot denote the total number of levels directly below.
There are two pairs of levels which are almost degenerate at M4 = 27 which are not resolved at this scale. The spectrum does
not exhibit an entanglement gap despite being in the gapless phase V described by a sum of two SU(2)2 WZW theories or a

single SU(4); WZW theory.

against the expectation that the presence of gapless bulk
excitations is manifested by an entanglement gap which
separates a set of universal low lying entanglement ener-
gies with CFT counting of levels, as was demonstrated
in the spin-1/2 Heisenberg chain.?® Hence, this particular
partition, as we have performed it, is ill suited to infer
the existence of gapless bulk excitations from the entan-
glement spectrum in this model. The complications with
the several M. sectors may have been a precursor of
this fact. Nevertheless, we next consider the counting
of low energy entanglement levels when they are well-
defined. Due to the periodic nature of momentum space
(first Brillouin zone), there are really two cut regions be-
tween m = L — 1,0 and between m = L/2 — 1,L/2.
Thus we should be expect to see CFT counting of levels
from either low or high momentum. However, we observe
instead a counting of lowest energy levels which is asym-
metric from high and low M 4, which again is in contrast
with the single Heisenberg chain. From large M4 we see
a count of lowest energy levels of 1,2,5,10. From small
M 4 where there appears to be a small gap opening we
observe a count of 1,2,5,8 instead, but this may be due to
finite size effects as it was not observed previously with
L = 8 data (See Fig.19). Moreover, the lowest energy
levels of the spectrum also appears to exhibit a strong
dispersion which is be bowl-like in contrast to the rela-
tively flat set of lowest levels seen in the spin-1/2 Heisen-
berg chain. We note that the 1,2,5,10 sequence may be
obtained from the dimensions of highest weight and de-
scendant states of a tensor product of two independent
Verma modules of the Virasoro algebra, each with the
usual counting 1,1,2,3 with increasing level. Presently,

we lack satisfactory interpretations of the absence of the
entanglement gap and the observed counting of states
in terms of the CFT that describes the low energy bulk
excitations.

VI. CONCLUSIONS

In conclusion, we have investigated the entanglement
properties of the one-dimensional Kugel-Khomskii model
(1) using exact diagonalization for system sizes of L =
8,12 and 16 sites. By considering various partitions or
“cuts” of the Hilbert space, including a rung (orbital),
bond, and momentum cut we have produced a compre-
hensive picture of the phase diagram from the point-of-
view of the quantum entanglement.

Of the three partitions that we have studied, the par-
tition into spin and orbital degrees of freedom was the
most intensely studied. With that partition, we have
shown that there are crucial finite-size effects at L = 8
in the entanglement entropy and the entanglement spec-
trum that impacted earlier exact diagonalization stud-
ies of this model which led to a misinterpretation of the
phase diagram.?? In particular, using the entanglement
spectrum, we are able to reaffirm that regions IV and VI
are adiabatically connected to one another once ground
state degeneracies due to dimerization are taken into ac-
count. We have observed and explained various symme-
tries of the entanglement spectrum obtained by this cut
which can depend crucially on the ground state linear
momentum K. More importantly we observed that the
entanglement spectrum of the rung cut does not in any



way resemble the energy spectrum of a single spin-1/2
Heisenberg chain which is the system one obtains when
the orbital and spin degrees of freedom are decoupled.
Thus the Kugel-Khomskii chain offers a counter exam-
ple to the commonly held boundary-bulk correspondence
conjecture of the entanglement spectrum.'® 13 This is in-
timately related to the natural ¢ = 3 CFT of the gap-
less phases, while two spin-1/2 Heisenberg edges only
produce a net central charge of ¢ = 2. With this cut,
we have also observed two important entanglement gaps.
The lower gap which we have denoted as A&y, charac-
terizes the dimerization of phase IV, which is the non-
Haldane phase. A& separates the two lowest entangle-
ment levels from a continuum and diverges at the exactly
solvable Kolezhuk-Mikeska (KM) point. We have com-
puted the entanglement spectrum exactly at this special
point. The second and higher gap which we have de-
noted by Aénien characterizes the gapless AFM phase or
phase V. It separates a set of N(L) = 25/271 levels from
the continuum and we show through studies of the cor-
relation functions that these levels are the source of the
critical fluctuations of the ground state spin-spin corre-
lators. Our study of the evolution of the entanglement
spectra through the Kosterlitz-Thouless phase transition
between phase V and IV(VI) sharply identifies the level
crossings between the approximately degenerate ground
states. More importantly, once K is fixed as was done in
Fig.9(c), the evolution of the spectrum reveals the open-
ing and closures of the entanglement gaps which is indica-
tive of a phase transition. However, our finite size data
is still unable to definitively identify the SU(4) point as
the exact location of the critical point of the KT tran-
sition. By perturbing Eq.(1) with a direct spin-orbital
exchange perturbation, we showed that the SU(4) point
rung cut entanglement spectrum and the Ayign gap is
surprisingly robust. By contrast, perturbations at the
KM point show a finite A&y gap developing but reveal
odd multiplets in the entanglement levels above A&y
even when remaining in the non-Haldane phase. Thus
we showed that the multiplet structure of the excited en-
tanglement levels are a poor identifier of a topological
phase with this cut.

With the bond or leg cut entanglement spectrum
study, we observed in the non-Haldane phase two 2-fold
degenerate entanglement levels per virtual edge which
we attribute to nearly degenerate ground states due to
spontaneous dimerization. In the gapless phase, we see a
distribution of eigenvalues which because of small system
sizes does not fit accurately to CFT predictions® but is
still consistent. Furthermore, the lowest entanglement
level degeneracies reveal the degeneracies of lowest real
energy excitations.

Finally, we extended the non-local momentum cut of
Thomale et. al.?® to two leg ladders or spin chains with
orbital degeneracy. We obtained the entanglement spec-
trum at the SU(4) symmetry point for a chain of size
L = 12. In contrast to the single spin-1/2 Heisenberg
chain we do not see a clear entanglement gap which would
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be an indicator of gapless CFT bulk excitations. How-
ever we observed a new counting of levels that has yet to
be identified with the SU(4); or two SU(2)y WZW theo-
ries that are the two alternate low energy descriptions of
the system.
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Appendix A: Features of the Entanglement
Spectrum when K =7«

Our data on the entanglement spectrum reveals non-
trivial relations between spectra and possible degenera-
cies when the ground state |¥) has momentum K = 7. In
this appendix we present arguments to explain the origin
of these features.

First consider a non-degenerate ground state with
generic X # Y with K = 0,7 and Schmidt decompo-
sition,

W) =" e 2pg,) @ |(K — p)dy),

p ¢p

(A1)

and energy H(X,Y)|¥) = Then because
HY,X)F|V) = FH(X,Y)|¥) = ExF|¥), thus F|T) is
a ground state of H (Y, X) which is also non-degenerate.
But

FIw)=3"3"e 6/ ?(K — p)dy) @ [poy)

Eo| ).

P ¢p
- Z Z e_£¢(K7p)/2|p¢(K—p)> ® |(K - p)¢p>a
P dK-p)

(A2)

where in the last line we have relabeled the dummy
momentum p — K — p. Thus F|¥) yields an entan-
glement spectrum of {(p,&_, )} This implies that
the (non-degenerate) ground states related by F have
their entanglement spectra shifted according to K — p
relative to each other. Since K = 0 or =, this means
that |W) with spectrum {(p,&s,)} is related to the spec-
trum of F|W¥) with spectrum {(p,&y_,)} for K = 0 or



{(p,€s,_,)} for K = 7. Since we have already estab-

lished the {(p,&s,)} = {(p,§y_,)} symmetry due to in-
version Z, the K = 0 case requires that the spectra of

F|¥) and |¥) be identical. But for K = 7 the shift is
non-trivial and is confirmed by our numerics as shown in
Fig.6(a-b).

Next focusing on K = 7 and the special momenta
where m — p = p mod 27. This occurs when p = +7/2
and at these special momenta, the |¥) and F|¥) levels
are identical.

v) Flw)
{(%7§¢ﬂ/2)} = {(%7§¢n/2)}
Il Il
{(_%7&#7”/2)} = {(_%7&#7”/2)}

(A3)

Finally, we consider the special limit when X = Y.
In this case H(X,X) does commute with F and non-
degenerate ground states transform into themselves mod-
ulo a sign under F. Considering still only the case when
K = 7 and so we have an additional symmetry in the
entanglement spectrum,

{(:&s,)} ={(m —p,&s,)} ={(m+p,&_,)}

={(m+p,&,)} (A4)
Hence, p and p + 7 have identical spectra too and in
particular p = 0 and p = 7 are identical. When p = +7/2
we have the empty statement that

{(:l:ﬂ-/27§¢iﬂ'/2)} = {(iﬂ—/27§¢iw/2)} . (A5)

For definiteness, take p = w/2 (an identical consider ap-
plies for p = —m/2) and looking at the contribution to
|¥) in the Schmidt decomposition,

Zeffdh,r/z ’7-‘—/2 ¢ﬂ,/2>®‘ﬂ'/2 (]571-—/2> (AG)
Dr /2
Applying F yields
S e a2 Ty a2 bra) (AT

D)2

which is nothing but the statement that spectrum at
p = w/2 maps back into itself. However if we suppose
F|¥) = —|¥) then we cannot have ¢/ X ¢r /2 else we
will arrive at a contradiction (this however is consistent
with F|¥) = |¥)). Hence we must have that ¢ /2 Lor /2
and that the eigenvalue £, ,, must be degenerate with
§m. Thus, the entanglement energies must be at least

two-fold degenerate at p = 7/2 in this case. This then
explains the doublets seen in Fig.6(d).
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Appendix B: M4 as an approximately good quantum
number in the momentum cut

In this appendix we show that blocking prcd|( Na,Na)
into total right moving momentum M 4 sectors has little
quantitative influence on lowest levels of the full entan-
glement spectrum of pred|( Na,Na)- In the case of a single
spin-1/2 Heisenberg chain, the expression of ground state
wavefunction in terms of the magnon occupation basis
yielded coefficients with weights |¥(ng,...)|? that were
sharply concentrated around sector Mo, = k2 = L?/4.2°
This led to a sum rule M4+ Mp = k which in turn led to
pred being block diagonal in M 4. Unfortunately, in the
case of the spin-orbital chain, things are more compli-
cated and the weights are distributed over three to four
sectors depending on K. When K = 0 the weights are
distributed over Mio; = 2k2,2k% £+ L and when K = L/2
they are distributed over Mo = 2k% + k,2k%2 + k £ L.
Shown in Fig.17 is the weight distribution of the coeffi-
cients for an L = 8 Kugel-Khomskii spin chain ground
state at the SU(4) symmetric point X =Y = 1/4 where
most of the weight is concentrated at 2x2.

Total Weight

52.5%

0.5

0.4}

0.3 23.7% 23.7%

0.2

0.1/
: - M
0 8 16 24 32 40 48 48 tot

FIG. 17. The total weight of the occupation basis coefficients
taken from the ground state at the SU(4) point. The system
size is L = 8 and the ground state momentum is K = 0.
The distribution of weights in distributed across three sectors,
Mot = 262, 25% £ L, where k = L/2=4.

Nevertheless, it appears that M, is an almost a good
quantum number for |¥), at least with regards to charac-
terizing the entanglement spectrum of pyeq = Trp|P) (.
If we compare the spectrum obtained by just diagonal-
izing prea and the spectrum obtained by first explicitly
blocking into M4 sectors (ignoring off diagonal terms be-
tween sectors) and then computing the resulting spec-
trum, we find spectra which agree very well with one
another. Shown in Fig.18 are the two spectra computed
with these two different methods. The data shows an
agreement between the entanglement energies up till the
very highest levels around & 2 40, where we believe the
spectrum is less likely be of strong physical significance.
We also present in Fig.18 the entanglement spectrum re-
solved in M 4 sectors for an L = 8 chain.

With a system of size L = 12, the agreement between
blocked and unblocked spectra is not as strong but the
lowest entanglement energy levels nevertheless are inde-
pendent of the M4 blocking with significant deviations
only starting to appear around £ ~ 12. Moreover, we
expect that only these robust lowest entanglement levels
will reflect the low real energy properties of the system.
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FIG. 18. Entanglement spectra arranged in ascending order
taken from the SU(4) symmetric point of an L = 8 chain
in the sector (Na, Na) = (2,2). Shown by the boxes (0) is
the spectrum from first blocking preq and the crosses (+) the
spectrum without blocking preq. The two spectra agree at the
lowest energies and differ at the highest levels £ 2> 40.
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FIG. 19. The momentum cut entanglement spectrum of the
Kugel-Khomskii chain at the SU(4) symmetric point for L =
8. The spectrum is taken from into M4 blocks of preq in the
sector (Na, Na) = (2,2). The count of the lowest levels from
high M4 (right) is 1,2,5 and from low M4 (left) it is 1,1,3.
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