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Motivated by recent experiments on Ba3NiSb2O9, we investigate possible quantum spin liquid
ground states for spin S = 1 Heisenberg models on the triangular lattice. We use Variational
Monte Carlo techniques to calculate the energies of microscopic spin liquid wave functions where
spin is represented by three flavors of fermionic spinon operators. These energies are compared
with the energies of various competing three-sublattice ordered states. Our approach shows that
the antiferromagnetic Heisenberg model with biquadratic term and single-ion anisotropy does not
have a low-temperature spin liquid phase. However, for an SU(3)-invariant model with sufficiently
strong ring-exchange terms, we find a paired chiral quantum spin liquid with a Fermi surface of
deconfined spinons that is stable against all types of ordering patterns we considered. We discuss
the physics of this exotic spin liquid state in relation with the recent experiment and suggest new
ways to test this scenario.

PACS numbers: 71.27.+a, 75.10.Jm, 75.10.Kt, 75.30.Kz

I. INTRODUCTION

Quantum spin liquids (QSL) are interesting states
of matter with long-range entanglement that may ex-
hibit exotic properties like unbroken lattices symme-
tries at low temperature, quasiparticle fractionalization,
emergent gauge fields, braid statistics, and chiral edge
modes.1,2 The existence of QSL or resonating-valence-
bond (RVB) states in two dimensions was first conjec-
tured by Anderson as possible low-temperature phases
of the spin-1/2 antiferromagnetic Heisenberg model on
the triangular lattice.3 Shortly after, a fascinating re-
lation of RVB states with high-temperature supercon-
ductivity was uncovered: Upon doping, some quan-
tum spin liquids are expected to give rise to uncon-
ventional superconductivity.4–6 So far, several experi-
ments found indication of spin liquid behavior in a num-
ber of geometrically frustrated two-dimensional spin-1/2
antiferromagnets.7–10 Spin systems with higher values of
spin, however, usually show a strong tendency towards
long-range ordering and lattice-symmetry breaking at
low temperature.

Last year, highly surprising experimental results11

found spin-liquid behavior in new structural phases of
Ba3NiSb2O9. In the so-called 6H-B phase, obtained
through a high-pressure treatment of this antiferromag-
netic insulator, the Ni+2-ions, carrying effective spin
S = 1, arrange in presumably weakly coupled layers of
triangular lattices. No magnetic ordering was observed
down to 0.35 K despite a large Curie-Weiss temperature
of ΘCW ≃ −75 K, and the magnetic susceptibility (after
substraction of orphan spin contribution) was found to
saturate at low temperature T . Furthermore, measure-
ment of the magnetic specific heat found CM ∝ T . These
properties are highly unusual for an insulator but are typ-
ical for metallic states. For example, spin-wave theory for
conventional long-range ordered states predicts a specific
heat CM ∝ T 3 at low temperature.12

So far, a number of theoretical attempts have been
made to explain these experiments. Two possible spin-
liquid candidates were proposed.13,14 In Ref. [14], a rep-
resentation of the spin S = 1 operator in terms of four
flavors of fermionic spinons and their possible mean-field
states were conjectured. Such a fractionalization into
four spinon flavors is most natural in the case of a two-
orbital Hubbard model with not too strong interactions
(Hund coupling) between the electrons. The minimal
number of spinons required to represent spin S = 1 is
three.15,16 On the basis of this three-fermion represen-
tation, an exotic QSL state was proposed by some of
us in Ref. [13] that well reproduces the phenomenology
of the experiment on Ba3NiSb2O9. However, the ener-
getic competitiveness of these spin liquid states in micro-
scopic spin models was not investigated in those papers.
Another scenario not involving spin-liquid states was re-
cently proposed in Ref. [17], where inter-layer couplings
between the Ni2+ spins tune the system to a quantum
critical point. These authors predicted a T -linear spe-
cific heat in some temperature range.

Currently, the details of the effective spin model de-
scribing Ba3NiSb2O9 are not known. In this paper, we
will not propose a realistic microscopic spin model for this
material. Instead, we want to investigate two families of
promising antiferromagnetic triangular-lattice spin-one
models at the variational level. The aim is to deter-
mine whether, variationally, the natural quantum spin-
liquid candidates (involving three spinon flavors) have a
chance to win over long-range ordered ground states in
these microscopic models. First, we consider the bilinear-
biquadratic Heisenberg model with single-ion anisotropy
term. In this model, we do not find evidence for a low-
temperature QSL phase. We further propose an SU(3)
symmetric model with three-site ring-exchange terms.
In this model, for strong ring-exchange terms, we find
that an exotic spin liquid state is stabilized. We discuss
the phenomenology of this state and propose further ex-
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perimental tests of this scenario. While the theory for
S = 1/2 QSL is well developed and has a long history,
much less is known about spin liquids for S = 1. Here
we present new methods and results on this problem.18

This paper is organized as follows. In the next section,
we introduce the representation of spin S = 1 in terms
of three fermionic spinon operators. Section III describes
all spin liquid wave functions as well as the long-range
ordered states that we are considering. In Sec. IV, we
introduce two spin models and present the variational re-
sults we found for these models. In Sec. V, we discuss the
low-energy field theories, and in Sec. VI the edge modes
corresponding to the chiral d+id QSL state that we found
to be stabilized in the ring-exchange model. Section VII
discusses the response function and other physical prop-
erties of this state and, finally, we conclude in Sec. VIII.

II. SPINON REPRESENTATION

To construct spin liquid states for spin S = 1, we fol-
low an approach similar to the one outlined in Ref. [15].
We write the spin operators in terms of three flavors of
fermionic spinons, fa, in the following way:

Sa = −iεabcf †
b fc , (1)

where a ∈ {x, y, z}. In this paper, repeated indices are
always summed over. We choose to work with operators
fa that create spin states |a〉 in the time-reversal invari-
ant basis, i.e.,

|x〉 = 1√
2
(|1〉+ |1̄〉),

|y〉 = i√
2
(|1〉 − |1̄〉),

|z〉 = −i|0〉 ,

(2)

where |1〉, |1̄〉, and |0〉 are Sz-eigenstates with eigenvalues
±1 and 0, respectively.
By representing spin in terms of fermions, we have en-

larged the Hilbert space. The fermion operators act in
the eight-dimensional Fock space while the original spin
space is three dimensional. In order to recover the physi-
cal subspace, a local constraint on the fermionic occupa-
tion number has to be enforced,

n :=
∑

a

f †
afa ≡ Nf . (3)

Both particle (Nf = 1) or hole (Nf = 2) subspaces can be
chosen. Furthermore, the spin operator remains invariant
under the transformations

fa 7→ eiφfa (4)

and

fa 7→ f †
a . (5)

Eq. (5) is a particle-hole transformation and the con-
straint (3) is changed according to Nf 7→ 3−Nf . Hence,
the local symmetry group for this representation of spin
S = 1 operators is the semi-direct product U(1)⋊ Z2.
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In the time-reversal invariant basis (2), the quadrupo-
lar operators, defined as Qab = (SaSb+SbSa)/2−2/3 δab,
acquire a particularly simple form.19 In the particle rep-
resentation (Nf = 1), we have

SaSb = δab − f †
afb , (6)

and Qab = δab/3− (f †
afb + f †

b fa)/2.
In order to analyze a particular spin S = 1 lattice

model within the spinon representation (1), one may
start by decoupling the spinon-interaction terms with the
help of a Hubbard-Stratonovich transformation. To im-
plement the constraint (3) and the symmetry properties
(4) and (5) in this theory, a compact gauge potential for
the local symmetry group has to be introduced in the
path integral.6,20 This procedure enables derivation of a
low-energy effective theory for possible spin liquid phases
but does not address microscopic stability for a particu-
lar Hamiltonian. Better suited for this purpose is a vari-
ational wave function approach. In this approach, un-
physical states are removed by hand from wave functions
that correspond to possible low-temperature phases of
the theory. This allows the construction of a new class of
genuine microscopic variational wave functions for spin-
one models. Determining the best variational state for a
spin model then provides guiding information about the
low-temperature phase of the model. In the present pa-
per, we first follow this approach, and discuss possible
microscopic Hamiltonians. We also use the effective field
theory to discuss some properties of the proposed QSL
states.

III. VARIATIONAL WAVE FUNCTIONS

In this section, we introduce two classes of microscopic
variational wave functions for spin S = 1 on the triangu-
lar lattice. First, we describe quantum spin liquid wave
functions that do not break the space group symmetries
of the lattice. Second, we outline a general approach for
constructing competitive long-range ordered states that
have an enlarged unit cell.

A. Quantum spin liquid wave functions

We start by writing down quadratic “trial” Hamiltoni-
ans in terms of the spinon operators,

Hqsl =
∑

〈i,j〉

{sf †
aifaj +∆ab

ij faifbj + h.c.}

−µa

∑

j

f †
ajfaj .

(7)
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The sum 〈i, j〉 goes over the nearest-neighbor links of the
triangular lattice. In this trial Hamiltonian, the emergent
gauge fields that would be present in the corresponding
low-energy theory are omitted. Particular values for the
mean-field parameters s = ±1, ∆ab

ij , and µa represent
possible low-temperature QSL phases. s = ±1 corre-
sponds to flux of π or zero through all triangles of the
lattice. Next, we assume unbroken spin-rotation sym-
metry around the z-axis, and we focus on Stot

z eigen-
states with Stot

z = 0. Note that under spin rotations,
fj = (fx, fy, fz)j transform as real vectors [i.e., fj trans-
form in the adjoint representation of SU(2)]. Further-
more, we restrict ourselves to states that have a single
site per unit cell and that do not break the space group
symmetries of the lattice (translations, rotations, and in-
version). In this situation, the following cases exhaust
the possible QSL candidates on the triangular lattice:

(i) U(1) state: ∆ab
ij = 0.

(ii) Equal-flavor pairing: ∆zz
ij 6= 0, ∆xx

ij = ∆yy
ij 6= 0,

∆ab
ij = 0 otherwise.

(iii) x-y pairing: ∆xy
ij = −∆yx

ij 6= 0, ∆ab
ij = 0 otherwise.

The chemical potentials for x- and y-fermions are cho-
sen to be identical, µx = µy. Other possible pairings
∆ab

ij than the ones considered in (ii) or (iii) violate our

symmetry requirements.21

On the one hand, for ∆xx
ij = ∆yy

ij = ∆zz
ij , equal-flavor

pairing (ii) corresponds to spin-one singlet pairing. The

pairing term in (7) creates a state (f†
i · f†

j )|0̄〉 that is
invariant under spin rotation; hence, it is a singlet. In
general, for ∆xx

ij = ∆yy
ij 6= ∆zz

ij , the state is not an eigen-

state of (Stot
ij )2 = (Si+Sj)

2. However, for ∆xx
ij = ∆yy

ij =

−∆zz
ij /2 one can check that (Stot

ij )2 = 6; therefore, this
bond operator creates a spin-one quintuplet. On the other

hand, the x-y pairing bond operator ∆ab
ij f

†
aif

†
bj , (iii), cre-

ates a spin-one triplet. To see this, let us denote the
state by |1〉ij = (|xy〉ij −|yx〉ij) ∝ (|11̄〉ij −|1̄1〉ij). Since
(Stot

ij )2 = 4+ 2Si ·Sj , and [Si ·Sj +1]|1〉ij = 0, we have

(Stot
ij )2 = 2. Note that the total spin per site for all these

QSL states is small in the thermodynamic limit. We have
√

〈(Stot)2〉/N ∼ 1/
√
N where N is the number of sites

and Stot =
∑

j Sj.
Due to the anti-commuting spinon operators, the pair-

ing parameters ∆ab
ij must have particular symmetry prop-

erties under inversion of the link direction 〈i, j〉: For
equal-flavor pairing (ii), we have ∆aa

ij = −∆aa
ji , i.e., the

pairing is odd under space inversion. For x-y pairing (iii),
we have ∆xy

ij = ∆xy
ji , i.e., the pairing is even under space

inversion. This is in contrast to S = 1/2 spin liquids,
where singlet pairing is even while triplet pairing is odd
under space inversion.
In order to obtain a microscopic variational QSL wave

function, we take the ground state |ψ0〉 of (7) and apply
the Gutzwiller projector PG(nj = 1), enforcing single
occupancy on each site and thereby removing unphys-
ical components. In this way we construct a genuine

spin-one resonating-valence-bond (RVB) spin-liquid wave
function, generalizing similar approaches to S = 1/2 spin
liquids.6 In this paper, we choose to work in the micro-
canonical formalism where the fermion number is held
fixed, i.e., we project the wave function to a fixed total
number of spinon flavors, Na =

∑

j naj ,

|N〉 = PNPG(nj = 1)|ψ0〉 , (8)

with N = (Nx, Ny, Nz). Since Nx = Ny (to maintain
spin-rotation symmetry around the z-axis) and from the
local constraint we have 2Nx +Nz = N , where N is the
number of lattice sites (N = 12×12 in most of our calcu-
lations). Expectation values in RVB wave functions (8)
can be calculated numerically within Variational Monte
Carlo (VMC) techniques.22 More technical details on our
numerical scheme are given in the appendices.
The possible complex phases (pairing symmetries) of

∆ab
ij in (ii) and (iii) are restricted by the rotation sym-

metries of the lattice: Let us denote the nearest-neighbor
links of the triangular lattice by 1̂ = (1, 0), and 2̂, 3̂ =

(±1,
√
3)/2. For equal-flavor pairing (ii), the pairing sym-

metry can be real f -wave with ∆aa
1̂

= −∆aa
2̂

= ∆aa
3̂
, or

complex px+ ipy-wave (p+ip), with ∆aa
1̂

= ∆aa
2̂
e−iπ/3 =

∆aa
3̂
e−i2π/3. For x-y pairing (iii), the possible pairing

symmetries are extended s-wave with ∆xy

1̂
= ∆xy

2̂
= ∆xy

3̂

and dx + idy-wave (d+id) with ∆xy

1̂
= ∆xy

2̂
e−i2π/3 =

∆xy

3̂
e−i4π/3. Higher angular momenta would require

spinon pairing between further-neighbor sites, which we
choose to exclude from the present study.23

Symmetry of the QSL states (8) under lattice rotations
forbids mixing of different types of pairing symmetries in
the Hamiltonian (7). For example, a state where the fz
spinon is paired with f -wave, and fx, fy are paired with
p+ip pairing symmetry breaks lattice rotation. Similarly,
in the x-y paired QSL (iii), fz must remain unpaired un-
less lattice rotation symmetries are broken. The reason
is the following: After performing a lattice rotation on
the mean-field Hamiltonian (7), one would like to find a
gauge transformation (4) that brings it back to the origi-
nal form. If such a gauge transformation exists, then the
corresponding spin wave function (8) is unchanged by the
rotation (after Gutzwiller projection and up to a phase).
However, since all three spinon flavors transform with
the same U(1) phase, such a gauge transformation can
only exist when all spinon flavors have identical pairing
symmetries.24,25

The QSL states have the following properties: Ex-
tended s-wave and f -wave states respect parity P (reflec-
tion on a symmetry axis of the lattice) and time reversal
symmetry Θ. The p+ip and the d+id states, however,
break both P and Θ, but conserve the product ΘP . In
this sense, they can be termed chiral spin liquids,26 al-
beit for spin S = 1. The p+ip state is fully gapped and,
therefore, a conventional topological state of matter. The
d+id state, on the other hand, represents a new class of
paired chiral states in two dimensions that exhibit both
P - and Θ-symmetry breaking and a gapless bulk Fermi
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surface at the same time. These exotic properties will be
discussed in more detail below and in later sections.
In the U(1) spin liquid (∆ab = 0), all three spinon

excitations have a Fermi surface. This corresponds to
the Coulomb phase of the emergent U(1) gauge theory
where the photons are massless. The paired states with
∆ab 6= 0 correspond to “Higgs” phases where the global
U(1) symmetry is spontaneously broken and the photon
acquires a mass.27 Among the equal-flavor pairing states,
the f -wave state has gapless nodal points in the spectrum
while the p+ip QSL is fully gapped. In the x-y paired
QSL, the spin excitations are gapped. However, the ne-
matic (Sz = 0) excitations form a gapless Fermi surface
of weakly interacting (and therefore deconfined) spinons.
We expect the Fermi surface to survive after Gutzwiller
projection because the other fermion flavors are gapped
and the U(1) gauge field are also gapped due to the Higgs
mechanism. Specific heat and spin-susceptibility of an
x-y paired (triplet) QSL are consistent with the recent
experiments on Ba3NiSb2O9.

13

The variational parameters we are using for the micro-
scopic QSL wave functions are the amplitudes |∆ab| for
all pairing symmetries discussed above, and the chemi-
cal potentials µx and µz. Furthermore, we consider the
cases s = ±1 in (7), corresponding to the presence or the
absence of π-flux through the triangles of the lattice. For
the paired states, Nz is used as an additional variational
parameter (independent of µz; see Appendix B for more
details).

B. Long-range ordered states

In order to make reliable statements about the low-
temperature phase of a spin model, the energies of QSL
wave functions have to be compared with competitive
long-range ordered states. Here, we consider natural
ordering patterns that are suggested within a simple
product-state ansatz (e.g., a 120◦ magnetic ordering in
the case of the antiferromagnetic Heisenberg model on
the triangular lattice). The QSL wave functions (8) are
highly correlated states. To be able to compare the varia-
tional energies, we also need to introduce nontrivial quan-
tum correlations to the ordered states.
Here, we use the following two complementary schemes

to introduce quantum corrections on top of long-range or-
dered product states. The first approach builds on the
fermionic representation and gauge theory description of
the spin model. Long-range ordered phases can be cap-
tured within the following quadratic trial Hamiltonian,

Hord = s
∑

〈i,j〉

f †
aifaj − h

∑

j

da∗j d
b
jf

†
ajfbj

−µa

∑

j

f †
ajfaj .

(9)

Similar to the QSL wave functions (8), the Gutzwiller-
projected ground state of (9) serves as a variational state.

The normalized complex vectors dj specify a particular
spin-one ordering pattern. The variational parameter h
interpolates from the U(1) spin liquid (h = 0) to the
product state |ψp〉 =

∏

j

∑

a d
a
j |a〉j when h → ∞. As

before, we set µx = µy; µx − µz is taken as a variational
parameter and we consider π- and 0-flux states by s =
±1.

Another route to constructing correlated long-range
ordered wave functions is to apply spin Jastrow factors
to a product state. The analysis of such wave functions
for the spin-1/2 antiferromagnetic Heisenberg model on
the triangular lattice was pioneered by Huse and Elser
in Ref. [28]. For that model, Huse-Elser wave functions
were found to give low variational energies, comparable
to exact energies on small clusters. A generalization of
the Huse-Elser wave function to the case of spin S = 1
can be written as

|J 〉 = exp(−
∑

〈i,j〉

{β(SziSzj) + γ(SziSzj)
2})|ψp〉 . (10)

Here, |ψp〉 is a product state of spin one. In this paper,
we restrict ourselves to nearest-neighbor Jastrow factors,
and take β, γ to be real variational parameters.

A general spin-one product state can be written as

|ψp〉 =
∏

j

∑

a

daj |a〉j , (11)

where |a〉 ∈ {|x〉, |y〉, |z〉} span the local Hilbert space; see
Eq. (2). Let us write d = u+ iv, where u and v are real
vectors, and consider the one-site state |ψ〉 = ∑

a d
a|a〉.

We can always take d = (dx, dy, dz) to be normalized and
u · v = 0 (choice of phase). The spin expectation value
in this state is given by

〈S〉 = 2u ∧ v . (12)

If d is real, the corresponding state is a spin-nematic with
〈S〉 = 0. In this case, d is called the director and we have

〈S2
a〉 = 1− (da)2 . (13)

On the other hand, u2 = v2 = 1/2 corresponds to a spin

coherent state where |〈S〉| = 1 is maximal.19

The fermionic states (9) and the Huse-Elser wave func-
tions (10) are two quite general and complementary ways
to introduce nontrivial quantum fluctuations on top of
spin-one product states (11). Although additional vari-
ational parameters can be built into the product state
itself, we need to choose a suitable (family of) product
states (specified by dj) to start with. As the example by
Huse and Elser28 suggested, good ground-states energies
can be obtained by choosing the product states that min-
imize the energy of the spin model. Below we will use a
similar choice.
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IV. MODELS AND VARIATIONAL RESULTS

A. Bilinear-biquadratic Heisenberg model with

single-ion anisotropy

We start by considering the simplest extension of the
spin-one Heisenberg antiferromagnet on the triangular
lattice,

HKD =
∑

〈i,j〉

{Si · Sj +K(Si · Sj)
2}+D

∑

j

S2
zj , (14)

where we set the Heisenberg exchange energy J = 1.
In this study, we want to restrict ourselves to the pa-
rameter range |K| ≤ 1.5 and |D| ≤ 1.5. For D = 0,
it is known that the ground state of this model ex-
hibits 120◦ antiferromagnetic order when K < 1, and
90◦ antiferro-nematic (also called antiferro-quadrupolar)
order when K > 1.29,30 For large easy-axis anisotropy
D ≫ 1, the ground state is a ferro-nematic product state
with Szj = 0 on every site.
For intermediate values of D, one may expect an x-y

paired QSL to be stabilized in this model. Since S2
zj =

1 − nzj , the single-ion anisotropy D acts as a chemical
potential for the fz spinon. For non-zero D, the Fermi
surfaces of fz and of fx, fy in the U(1) state are expected
to mismatch, and it is conceivable that fx and fy pair
while leaving fz with a spinon Fermi surface. Indeed,
unconstrained mean-field theory in Ref. [13] found that,
for K . 0.5, the p+ip QSL wins, while for K & 0.5, the
d+id state with a spinon Fermi surface is the most stable
QSL candidate (However, in contrast to above intuition,
the phase boundary showed only weak dependence onD).
In the present paper we find that the variational energy
of ordered states is always lower than the one of the QSL
states when the local constraint (3) is taken into account
exactly.
A variational study of the model (14) at the level

of product states performed in Ref. [31] suggested a
three-sublattice ordering pattern, generalizing the order-
ing pattern of Ref. [29] to D 6= 0. Motivated by this
proposal, we choose the following two classes of three-
sublattice product states as an input to our correlated
ordered states discussed above. First, we consider an an-
tiferromagnetic (AFM) state where the spins 〈ψp|Sj|ψp〉
have a constant length and lie in a common plane at an
angle of 120◦ to each other on nearest-neighbor sites. The
average spin length, |〈ψp|Sj |ψp〉|, is taken as a variational
parameter. In the notation of Eqs. (9) and (11), the spin
states on sublattices A, B, and C of the triangular lattice
are written as:

dj∈A = (0,−i sin η, cos η) ,

dj∈B,C = (±
√
3i

2
sin η,

i

2
sin η, cos η) ,

(15)

where η ∈ [0, π/2] is a variational parameter. Using
Eq. (12), one may check that this state corresponds to
120◦ antiferromagnetic ordering in the x-y plane with

FIG. 1. Variational energies (per site) for the bilinear-
biquadratic model, Eq. (14), as a function ofK, for D = −0.4.
The system is N = 12× 12 lattice sites.

|〈ψp|Sj |ψp〉| = sin 2η. We also consider the same order-
ing in the x-z plane.32 For η = π/4, each site is in a spin-
coherent state, i.e., |〈Sj〉| = 1. The values η ∈ {0, π/2}
correspond to spin-nematic states with 〈Sj〉 = 0. For
η = 0, all directors point along the z-axis (ferro-nematic
state); whereas, for η = π/2, the directors on nearest-
neighbor sites lie in a common plane at an angle of 120◦

(120◦ nematic state).
As a second ordering pattern, we consider spin-nematic

(NEM) states with 〈ψp|Sj|ψp〉 = 0. The angle be-
tween the directors on different sublattices is constant
and taken as a variational parameter (“umbrella” config-
uration). More precisely, we take the following family of
spin-nematic states,

dj∈A = (0,− sin η, cos η),

dj∈B,C = (∓
√
3

2
sin η,

1

2
sin η, cos η) ,

(16)

where the variational parameter η controls the angle be-
tween the nematic directors on different sublattices. As
before, the special value η = 0 corresponds to a ferro-
nematic, while η = π/2 is a 120◦ nematic state. At the in-

termediate value sin η =
√

2/3, the directors are perpen-
dicular to each other on neighboring sites (90◦ antiferro-
nematic state29).

Results

Our variational results confirm the known phase dia-
gram at D = 0. Furthermore, we find that the three-
sublattice ordering of the ground state persists for non-
zero values of D, i.e., all QSL states are higher in energy
than the three-sublattice ordered states we considered.33

A typical plot of the variational energies (for D = −0.4)
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is shown in Fig. 1. For K . 0.3, the magnetic Huse-Elser
wave function (J -AFM), Eq. (10), is the best variational
state. For 0.3 . K ≤ 1, the fermionic antiferromag-
netic state (f-AFM), Eq. (9), is the state with the lowest
energy. As discussed above, the corresponding product
states [specified in Eq. (15)] are magnetically ordered
with partially developed spins at 120◦ angles between
sublattices. For D > 0, the ordered spins lie in the x-y
plane while forD < 0, the spins order in a plane that con-
tains the z-axis. For K ≥ 1, the fermionic nematic states
(f-NEM) take over, with directors specified in Eq. (16).
For D = 0, the best state is the 90◦ antiferro-nematic
state,29 and for D 6= 0, the three nematic directors close
(D > 0) or open up (D < 0) relative to the z-axis, de-
pending on the sign of the single-ion anisotropy. In the
fermionic long-range ordered states (9), the optimal vari-
ational parameter is h ≃ 1.5. For this parameter value,
the spinon excitations are fully gapped. Therefore, the
spinons are confined34 and we expect that bosonic spin-
wave excitations for these ordered states capture the low-
energy physics of this model.29

The energetically best quantum spin liquid states are
the p+ip-state for K . −1 and D ≃ 0, and the unpaired
U(1) state for K ≃ 1, both having zero flux through the
triangles (s = −1). All the other QSL states show very
small or no condensation energies with respect to the
U(1) state. It is remarkable that, for K ≃ 1, the U(1)
state with three spinon Fermi surfaces is actually lower
in energy than the optimized Huse-Elser wave function.
We do not find any pairing instability of the U(1) spin
liquid on the line K ≃ 1 for D & −0.8. For D . −0.8,
there is a small energy gain from pairing in the d+id
channel. However, the ordered fermionic states are still
lower in energy. When D = 0, the three spinon Fermi
surfaces match exactly. For D > 0, the fz Fermi sur-
face expands while fx and fy Fermi surfaces shrink. The
opposite happens for negative D. The kink in the U(1)
energy in Fig. 1 marks the polarization to a ferro-nematic
state with 〈S2

zj〉 = 0, for K . −0.6. That is, the spinon
Fermi surfaces disappear at this point.

The variational energies for the spin-one Heisenberg
antiferromagnet (K = D = 0) are displayed in Table I.
Note that the Heisenberg energy for the optimal product
state of fully developed (coherent) spins ordered at 120◦

is−1.5. At the Heisenberg point, the spin liquids are even
higher in energy than this uncorrelated product state.

At the point K = 1 and D = 0, the model (14) enjoys
an SU(3) symmetry19 (see also next subsection). On the
line D = 0 and arbitrary K, the remaining symmetry is
SO(3) spin-rotation. This symmetry is broken to U(1)
(generated by Sz) when D 6= 0. However, on the line
K = 1 and arbitrary D, the model possesses a SU(2)
symmetry generated by the operators Sz, S

2
x − S2

y , and

SxSy+SySx. The generator S
2
x−S2

y allows to rotate the
antiferromagnetic and the nematic ordered states [spec-
ified in Eqs. (15) and (16)] into each other and they are
degenerate. This property of the product states remains
valid after the introduction of quantum fluctuations via

Variational state Heisenberg energy

Huse-Elser J -AFM -1.783(1)

Fermionic f-AFM -1.570(2)

p+ip spin liquid -1.33(0)

U(1) spin liquid -1.00(3)

TABLE I. Variational energies (per site) for the spin-one
triangular-lattice Heisenberg antiferromagnet, (14), for K =
D = 0; N = 144 sites.

(9) or (10), and it explains the degenerate crossings for
the ordered states seen in Fig. 1 at K = 1. See Ap-
pendix D for a more detailed discussion of these symme-
tries.

B. SU(3) ring-exchange model

In the last subsection we concluded that the simplest
extension of the spin-one Heisenberg model, Eq. (14),
does not show quantum spin liquid behavior. To moti-
vate another promising spin-one model, let us consider
an SU(3) symmetric Hubbard model for three flavors of
fermions fa,

HSU(3) = −t
∑

〈i,j〉

f †
aifaj + U

∑

j

n2
j , (17)

where nj =
∑

a naj =
∑

a f
†
ajfaj . Let us consider the

case when each flavor is at 1/3-filling (
∑

j naj/N = 1/3).

For U ≫ |t|, the low-energy subspace of this model
corresponds to the spin-one Hilbert space. Similar to
Refs. [35,36], we can derive a low-energy effective spin-
one Hamiltonian for (17). To lowest order in t, we find
the exchange term

∑

〈i,j〉

f †
aifbif

†
bjfaj . (18)

To next order, the following three-site term is expected
to arise:

∑

〈i,j,k〉

{f †
aifbif

†
bjfcjf

†
ckfak + h.c.} , (19)

where the sum 〈i, j, k〉 is over elementary triangles of the
lattice. Let us write the flavor exchange operators in (18)

as Pij =
∑

ab f
†
aifbif

†
bjfaj . The three-site terms in (19)

correspond to PijPjk+PjkPij . These operators move the
local states clock- and anticlockwise around the triangles
of the lattice.
In the case of a similar Hubbard model with two

fermion flavors (spin S = 1/2), the exchange operator
Pij appearing in the low-energy model corresponds to the
Heisenberg term in spin language, Pij = 2Si ·Sj+1/2. In
this case, a three-site term PijPjk is trivial in the sense
that it can be reduced to a sum of two-site terms. For
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FIG. 2. Pictorial presentation of the variational phase dia-
gram that we find for the SU(3) ring-exchange model (21).

three flavors, however, the situation is different. In that
case and spin S = 1, one finds37

Pij = Si · Sj + (Si · Sj)
2 − 1 . (20)

Therefore, the lowest-order term (18) corresponds to the
KD-model (14) with K = 1 and D = 0. The next-
order ring-exchange term (19) is a non-trivial pertur-
bation since it cannot be reduced to two-site terms.
Ring-exchange models for spin 1/2 with non-trivial four-
site plaquette terms38 are believed to exhibit spin-liquid
ground states.39–41

Motivated by the three-flavor Hubbard model, we pro-
pose to study the SU(3) symmetric ring-exchange model,

Hα = cosα
∑

〈i,j〉

Pij + sinα
∑

〈i,j,k〉

{PijPjk + h.c.} . (21)

The sum in (21) goes over nearest-neighbor links 〈i, j〉
and elementary triangles 〈i, j, k〉 of the lattice. The pa-
rameter of this model is α ∈ [−π, π].

Results

An analysis of the model (21) in terms of general three-
sublattice product states reveals a ferromagnetic phase
in the parameter range α < − arctan(3/4) ≃ −0.2π
and α > π − arctan(1/2) ≃ 0.85π. Any uniform prod-
uct state

∏

j |a〉j is an exact eigenstate with energy

ǫ(α) = 3 cosα+4 sinα, and it is the lowest-energy three-
sublattice product state in this parameter range. For
− arctan(3/4) < α < arctan(3/2) ≃ 0.31π the 120◦ anti-
ferromagnetic product state is stabilized. Finally, in the
range arctan(3/2) < α < π − arctan(1/2), the three ne-
matic directors order in a common plane at an angle of
120◦ to each other on nearest-neighbor sites. (see Fig. 2)
Above analysis with uncorrelated three-sublattice

product states revealed the same ordering patterns as
we found in the case of the KD-model investigated in
the previous subsection. Therefore, we can use the same
trial wave functions specified in Eqs. (15) and (16) to
construct correlated ordered states for the ring-exchange
model.
We calculate the variational energies of the QSL states

(7) as well as the energies of correlated three-sublattice
ordered states (9) and (10) for the ring-exchange model
specified in Eq. (21). The results are presented in Fig. 3.
We see that the conclusions we draw from the simple

FIG. 3. Variational energies (per site) of the SU(3) ring-
exchange model, Eq. (21), as a function of α/π. N = 12× 12
lattice sites.

product state calculation above agrees with the result
using correlated wave functions in most of the param-
eter range. However, in the region between the AFM
and the 120◦-nematic phase, around α ≃ π/4, we find an
extended region where the d+id QSL has the lowest en-
ergy (see also Fig. 2 for a scheme of the phase diagram).
The optimal d+id variational parameter |∆xy| along with
〈S2

z 〉 − 2/3 = 1/3−Nz/N are shown in Fig. 4. The ring-
exchange term favors a π-flux d+id state with s = 1: As
α increases, the 0-flux state with a large pairing term
(|∆xy| ≃ 4) changes to a π-flux state with |∆xy| ≃ 0.5 at
α ≃ 0.22π.

Note that the d+id QSL phase in Fig. 2, as well as the
adjacent 120◦ nematic phase, exhibit a ferro-quadrupolar
order. For the d+id state this is apparent from Fig. 4
since 〈S2

z 〉 > 2/3. In contrast, lattice rotation symmetry
is unbroken in the d+id QSL while both adjacent ordered
phases spontaneously break lattice rotation.

As discussed above, for α = 0 and up to a constant,
(21) corresponds to the model (14) with K = 1 and
D = 0. The ground state of this model was recently
approached with density matrix renormalization group
(DMRG) calculations in Ref. [42]. In this work, the au-
thors found a three-sublattice ordering pattern that is
consistent with our result. The DMRG energy is dis-
played in Table II along with the variational energies of
the lowest-energy states used in the present paper.

We also consider additional perturbations to the ring-
exchange model (21) in order to assess the effect of such
terms on possible low-temperature QSL phases. First,
we add a single-ion anisotropy term D

∑

j S
2
zj . As dis-

cussed in the previous section, such a term breaks the
SU(3) symmetry of the model to SU(2). For small D,
the ordering plane is explicitly chosen. Large D deforms
the three-sublattice ordering pattern in a similar way as
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FIG. 4. Optimized variational parameters ∆ = |∆xy| (dot
symbols, left scale) and 〈S2

z 〉−2/3 (x symbols, right scale) for
the d+id QSL state in the ring-exchange model (21). Among
the states we consider, the d+id state has the lowest energy
in the range 0.17π . α . 0.33π. For 0.17π . α . 0.22π, the
optimal state is a 0-flux state with s = −1; for 0.22π . α .
0.33π, we find a π-flux state with ∆ ≃ 0.5 and s = 1.

State SU(3) energy

Fermionic f-AFM -0.57(8)

Huse-Elser J -AFM -0.27(7)

U(1) spin liquid -0.34(3)

DMRG42 (N = 8× 10) -0.678

TABLE II. Variational energies for the SU(3) model, Eq. (21),
at α = 0 on N = 12× 12 sites.

in the bilinear-biquadratic Heisenberg model (14). How-
ever, we find that the phase boundaries of the d+id state
with the adjacent ordered states are barely affected by
D. (We investigate the range |D| . 1.5)

Second, we add a next-neighbor exchange term
J2
∑

〈〈i,j〉〉 Pij to (21). Such a term strongly frustrates

three-sublattice ordering. At α = 0, we find that the
three-sublattice ordering is destroyed for J2 as small as
J2 ≃ 0.25, and the U(1) QSL has the lowest energy
among our ansatz wave functions. However, an analy-
sis of this model in terms of product states reveals that
the competing ordering pattern is spiral. So far, we have
not included spiral states into our variational analysis
and we reserve a detailed study for future work.

In conclusion, we find a region in the phase diagram
of the SU(3) ring-exchange model (21) where a chiral
d+id quantum spin liquid state is stabilized. The ques-
tion remains whether this spin model can describe the
relevant magnetic interactions in the 6H-B structure of
Ba3NiSb2O9. A perturbative expansion in t/U of a two-
band Hubbard model with an additional orbital degree
of freedom and strong Hund coupling would produce a

spin S = 1 Heisenberg term Si · Sj to order t2. Only to
next order, t4, one expects biquadratic terms (Si · Sj)

2

as well as three-site terms (Si · Sj)(Sj · Sk).
43–45 Those

three-site terms are present in our ring-exchange model,
but we need them to be of the same order as the Heisen-
berg term. We found that a dominant nearest-neighbor
Heisenberg term is detrimental to the stability of the
d+id quantum spin liquid. Further terms in (21) like
(Si ·Sj)

2(Sj ·Sk) would only come to order t6 or higher
in a perturbative expansion. At present, we cannot con-
clude if these higher order terms are relevant for the sta-
bility of the d+id QSL or not.
While it is unclear, at present, if the ring-exchange

model (21) can realistically describe the spin-liquid phase
of Ba3NiSb2O9, it is a very natural model to study
if one starts from an integer-filled three-band Hubbard
model. Such three- (and higher-) band Hubbard mod-
els are currently of great interest, both theoretically and
experimentally, in the cold atoms community; see, e.g.,
Refs. [42,46].

V. GAUGE THEORY FOR THE d+id QSL

In this section, we propose to discuss the low-energy
gauge theory description of the d+id spin liquid and some
of its properties. In order to impose the local particle-
number constraint (3), the Lagrange multiplier λj is in-
troduced in the Euclidean path integral for the spinon
partition function,6

Z =

∫

Dλ
∏

a

[Df∗
aDfa] e

−S . (22)

The action is given by

S =
∑

j

∫ β

0

dτ {f∗
aj(∂τ − iλj)faj + iλjzj +H} . (23)

The Ising variables zj ∈ {1, 2} specify whether site j is
constraint to the particle (Nf = 1) or hole (Nf = 2)
representation. The Lagrange multiplier λj turns out to
be the temporal component of the emergent U(1) gauge
field. H is the microscopic spin-one Hamiltonian under
consideration, written in terms of the spinon variables
faj. As already stated in Eqs. (4) and (5), a local trans-
formation that leaves the spin operator (1) invariant is
given by an element gj ∈ U(1)⋊Z2. Under the transfor-
mation gj = (eiφj , χj = ±), the fields transform as

faj 7→ eiφj

(

1 + χj

2
faj +

1− χj

2
f∗
aj

)

,

zj 7→ 3
1− χj

2
+ χjzj ,

(24)

and

λj 7→ χjλj + ∂τφj . (25)
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Note that the action (23) is not invariant under time-
dependent particle-hole transformations χj . Therefore,
the particle-hole part of the local symmetry group is not
a genuine gauge symmetry of the action. In the following,
we can simply choose a particular static Z2 configuration,
e.g. zj = 1, in (23). Furthermore, generic mean-field de-
couplings (see below) break this local particle-hole sym-
metry.
In a next step, the spinon interaction terms inH can be

decoupled by appropriate Hubbard-Stratonovich fields as
it is done in the usual slave particle formalism.6 To main-
tain the gauge invariance of the action, we need to intro-
duce link variables aij that are the space components
of the U(1) lattice gauge field. The gauge field (λj , aij)
mediates the interaction between the fermionic spinons.
So far, all manipulations are formal transformations that
do not change the physical content of the action. The
question remains whether the resulting U(1) lattice gauge
theory exhibits a phase with deconfined spinons. Possible
low-temperature phases of the gauge theory are specified
at the mean-field level by quadratic Hamiltonians (7) and
(9).
Let us now specialize to the d+id phase that we found

previously in the SU(3) ring-exchange model (21). This
is a Higgs phase where particle-number conservation is
spontaneously broken and the U(1) gauge field acquires
a mass m0 ∝ |∆xy|. At the same time, the fermions
fx and fy are gapped and can safely be integrated out
in the path integral. This generally leads to a Maxwell
term for the U(1) gauge field in the low-energy effective
action. Another low-energy term is a Chern-Simons term
∝ ǫµνλaµ∂νaλ. The Chern-Simons term violates time-
reversal Θ and parity P . Therefore, its coefficient σh
cannot vanish in the chiral d+id spin liquid.26 Hence, in
the continuum limit, we arrive at the following effective
action

S =

∫

dτd2x {f∗
z [∂τ − ia0 − µz +

(∇− ia)2

2m
]fz

+
m0

2
a2µ +

σh
2
ǫµνλaµ∂νaλ + . . .} ,

(26)

where the ellipsis denotes higher-order terms in deriva-
tives and gauge fields. In this theory, the fz spinon main-
tains its Fermi surface, and it is only weakly interacting
via the massive photon. The excitations corresponding
to fz are therefore deconfined in this phase.

VI. CHIRAL EDGE MODES FOR THE d+id QSL

In Ref. [47], it was shown that the d+id superconduc-
tor is a topological state with Chern number equal to
two. From the bulk-edge correspondence, this indicates
the presence of two chiral edge modes. A semiclassical
argument48 supports this conclusion. In the next sub-
section, we recapitulate this semiclassical argument and
generalize it to chiral topological superconductors. In
subsection VIB, we specialize to the d+id QSL state.

We calculate its energy spectrum on a triangular-lattice
strip, and we discuss the corresponding low-energy edge
theory.

A. Edge modes in chiral superconductors

In the bulk of a superconductor involving two fermion

flavors, writing ψ = (c1, c
†
2), the Bogolubov equations are

(

ξk − Ek ∆(k)

∆(k)∗ −ξk − Ek

)

ψk = 0 . (27)

Here, we consider fully gapped superconductors with
|∆(k)| > 0. The spectrum is given by Ek =

±
√

ξ2
k
+ |∆(k)|2.

Next, consider a superconductor with a boundary
along the x-direction. Asymptotically (i.e., for |k|y ≫ 1),
an incident bulk wave packet ψke

ik·r with k = (kx, ky)
is reflected at the boundary to an outgoing wave packet
ψk′eik

′·r with wave vector k′ = (kx,−ky). The two wave
packets “see” the gap functions ∆(k) and ∆(k′), respec-
tively. For a given incident wave vector k, it seems there-
fore possible to map this problem on the half plane to a
one-dimensional scattering problem where the order pa-
rameter ∆(y) interpolates from ∆(k) as y → −∞ to
∆(k′) as y → +∞:

(

−i∂y − E ∆(y)

∆(y)∗ i∂y − E

)

ψkx
(y) = 0 . (28)

This one-dimensional problem can now be solved in the
usual way.49,50 For simplicity, let us choose a bulk po-
tential of the form ∆(k) = ∆eilθ(k) where l ∈ Z is
the winding of the phase of the order parameter around
the Fermi surface, and cos θ(k) = kx/|k|. A scattering
state with incident angle θ results in an outgoing angle
θ′ = π − θ. The asymptotic potentials can therefore be
chosen as ∆(k) = ∆eil(θ−π/2) and ∆(k′) = ∆e−il(θ−π/2).
Accordingly, the order parameter ∆(y) in (28) has a
constant real part ∆ cos l(θ − π/2), and an imaginary
part ∆ sin l(θ−π/2) that changes sign across the bound-
ary. This problem can be solved exactly for certain spe-
cial cases of the interpolating gap profiles.50,52 For ex-
ample, a kink profile with ∆(y) = ∆[cos l(θ − π/2) −
i tanh(y) sin l(θ − π/2)] yields the bound-state spectrum

Eθ = ∆cos[l(θ − π

2
)] sgn[sin l(θ − π

2
)] , (29)

with corresponding eigenvectors

ψθ(y) =
1

2 cosh(y)
(1, sgn[sin l(θ − π

2
)]) . (30)

We observe that Eθ as a function of θ vanishes exactly |l|
times. Therefore, there are |l| gapless edge modes. Using
cos θ ≃ kx/kf and expanding Eq. (29) around a node at
momentum knx , we get Eθ ≃ −l(kx − knx )∆/kf + . . ..
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FIG. 5. The four lowest energy levels of the d+id mean-field
state (7) on an infinite triangular-lattice strip as a function
of wave vector kx along the strip. The width of the strip is
200 sites. The boundaries are chosen to be parallel to one
lattice direction and we use open boundary conditions. The
spectrum of the fz spinon with a bulk Fermi surface is omit-
ted. The gapless states (blue online) are localized on the
lower boundary for left movers (dashed line), and on the up-
per boundary for right movers. The higher states (red online)
are delocalized and the energy levels above them are “dense”.

The edge modes are chiral and propagate with the ve-
locity vn = −l∆/kf . In the simplest nontrivial and well-
known case of a p+ip-superconductor49–51 (l = 1), a sin-
gle chiral edge mode is located at knx = 0. Higher angular
momenta have chiral modes at knx 6= 0. Since the phase
winding of the order parameter around the Fermi surface
is a topological property, we expect that the number of
chiral edge modes is a robust feature of the state, too.
The precise location of the nodes {knx} and the corre-
sponding propagation speeds |vn|, however, depend on
further microscopic details.

B. Low energy edge theory for the d+id QSL state

According to the above semiclassical argument, the
d+id QSL state (l = 2) is expected to exhibit two chi-

ral edge modes located at wave vectors knx ≃ ±kf/
√
2.

To substantiate this claim, we calculate the spectrum of
the d+id state (7) on an triangular-lattice strip of in-
finite length [Here, we neglect the local constraint (3)
and work in the fermionic Fock space]. The four lowest
energy levels are shown in Fig. 5 as a function of wave
vector kx along the strip. The triangular-lattice d+id
state indeed exhibits two gapless left movers localized on
the lower boundary and two right movers localized on
the upper boundary. The spectrum of fz spinons with a
bulk Fermi surface is omitted in Fig. 5.

As discussed above, the low-energy degrees of freedom
localized on the edge for the d+id QSL state are two
chiral Dirac fermions. To discuss the physics of these
edge states, it is convenient to go to the spinon basis
creating Sz eigenstates. We have

fσ =
1√
2
(fx − iσfy) , (31)

with σ = ±1. We also denote f1̄ = f−1. The x-y (triplet)
pairing term of the d+id state is fxifyj − fyifxj =
i(f1if1̄j − f1̄if1j). We consider an edge along the x-
direction and denote the momentum along the edge by
k = kx ∈ [−π, π]. The two gapless points in the bound-
ary spectrum are denoted by knx = ±k0 with k0 > 0.
Using the semiclassical expression (30), the edge states

are created by operators

χσ(k) ∼ fσk + σsgn(k)f †
σ̄−k , (32)

for |k| ≃ k0. The excitations χ1(k) and χ1̄(k) carry spin
Sz = ±1, respectively. Note that the edge states at pos-
itive and negative momenta k are not independent: We
have χ†

σ(k) = σsgn(k)χσ̄(−k). The low-energy effective
edge Hamiltonian is therefore given by

H = v0
∑

k≃k0,σ

(k − k0)χ†
σ(k)χσ(k) , (33)

where the sum over k is restricted to the vicinity of
the node at momentum +k0 to avoid double counting
of states.
Similar to the ordinary quantum Hall effect, the chi-

ral edge modes are expected to be robust with respect
to disorder and impurities because no backscattering
is possible.53 Furthermore, due to Sz conservation, hy-
bridization terms like f †

zχσ cannot appear in the low-
energy Hamiltonian. In a mean-field decoupling, interac-
tion terms like f †

z fzχ
†
σχσ only shift the chemical poten-

tials of bulk and edge gapless modes, and do not signifi-
cantly alter the edge physics. The presence of protected
chiral edge modes carrying spin Sz = ±1 implies a quan-
tized spin Hall conductivity. We also expect a thermal
Hall conductivity in the d+id QSL state.
In the d+id QSL phase with unbroken lattice symme-

tries, fz must necessarily form a spinon Fermi surface
(see Sec. III A). However, this argument becomes invalid
when the lattice symmetries are explicitly broken. For
example, close to the boundary of the sample, symme-
try allows a pairing term for fz. Similarly, we expect
the spinon to acquire a local gap in the vicinity of bulk
impurities. This property makes the spinon Fermi sur-
face hard to detect in any experiment that involves local
probes.

VII. RESPONSE FUNCTIONS AND PHYSICAL

PROPERTIES OF THE d+id QSL

In this section, we release the local constraint (3) in
order to analyze the spectral properties of the d+id mean
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field state. This can be justified from the point of view of
the U(1) gauge theory since we are in a Higgs phase where
gauge fluctuations can be neglected. In this case, the
fz spinon can be treated as a weakly interacting Fermi
liquid.

A. Static spin susceptibility and NMR relaxation

rate

The response function, Raa(iω) =
∑

ij

∫ β

0 dτ eiωτ 〈Sai(τ)Saj〉, in the d+id state has the
following properties: Since fx and fy fermions are paired,
we have Rzz(iω) = 0. However, Rxx(iω) = Ryy(iω) do
not vanish at low temperature. In the low-frequency,
low-temperature limit, |ω| ≪ T → 0, we find

χ0
x = Re[Rxx(0)] =

∫

BZ

d2k

2π

Ek − sgn(ξz
k
)ξx

k

Ek(Ek + |ξz
k
|) (34)

where ξa
k
= 2s[cos(1̂ · k) + cos(2̂ · k) + cos(3̂ · k)] − µa

is the dispersion of the x- and z-fermions. Ek =
√

(ξx
k
)2 + |∆xy

k
|2, and the d+id gap function is ∆xy

k
=

∆[cos(1̂·k)+e2πi/3 cos(2̂·k)+e−2πi/3 cos(3̂·k)]. As before,
1̂, 2̂, and 3̂ are vectors of nearest-neighbor links on the tri-
angular lattice. We find that the static spin susceptibility
χ0
x takes a non-zero value given by the integral over the

Brillouin zone (BZ), Eq. (34). Its numerical value de-
pends on the parameters ∆, µx, µz, and on s = ±1.
In the limit ∆ . |µx − µz| ≪ 1, χ0

x approaches the
Pauli susceptibility of two unpaired Fermions, χ0

x ≃ 2νz,
where νz =

∫

BZ d
2k/(2π) δ(ξz

k
) is the density of states

at the Fermi surface. In conclusion, we predict a strong
anisotropy of the spin susceptibility χ0

a = Re[Raa(0)] for
the d+id state at low temperature.
The nuclear spin relaxation rate is given by T−1

1 ∼
T Im[R(iω → 0)]. In the d+id QSL state, we find that
this quantity is exponentially small for temperatures be-
low the gap.

B. Specific heat and Wilson ratio

In the d+id spin liquid, the magnetic specific heat at
low temperature is linear in temperature due to the fz
spinon Fermi surface. The coefficient is given by54

γ =
CM

T
=
π2νz
3

. (35)

The Wilson ratio is defined as

RW =
4π2

3

χ̄0

γ
. (36)

Since the measurements in Ba3NiSb2O9 were made on
powder samples, a directional average should be used in
this expression for comparison with experiment, χ̄0 =
2χ0

x/3.

FIG. 6. Wilson ratio, (36), for the d+id state as a function
of the spinon chemical potential, µz − µ0

z. The shift µ0

z cor-
responds to the optimal value of the chemical potential in
the ring exchange model (21) at α = π/4 (without single-ion
anisotropy).

The Wilson ratio, RW = 8χ0
x/(3νz), for the d+id state

is plotted as a function of µz−µ0
z in Fig. 6. The choices of

parameters (∆ = 0.5 and 2.6 for the 0-flux state, and ∆ =
0.5 for the π-flux state) are examples of lowest energy
d+id states in the ring-exchange model, (21), at α ≃ π/4.
Note that, in this plot, we adjust the chemical potential
µx = µy such that the constraint is satisfied on average,
∑

a〈na〉 = 1. The shift µ0
z is the optimized chemical

potential for the ring-exchange model, i.e., for D = 0. In
Fig. 6, we see that the Wilson ratio is enhanced in the
d+id state with respect to a metal (where RW = 4/3)
by a factor of approximately two at µz = µ0

z . This can
be attributed to the fact that only a single fermion flavor
contributes to the coefficient of specific heat in the QSL
state. Since S2

z = 1 − f †
zfz, a single-ion anisotropy term

in the Hamiltonian acts as a chemical potential for the fz
spinon. We have D ∝ (µz − µ0

z), and RW can be further
enhanced by a non-zero D. An easy-plane anisotropy
(D < 0) shrinks the spinon Fermi surface, resulting in
enhancement of RW . For an easy-axis anisotropy (D >
0), the Wilson ratio is enhanced due to an increase in
magnetic susceptibility in the case of the π-flux state.
Experimentally, a large Wilson ratio of RW ≃ 5.6

was reported for the spin liquid phase of Ba3NiSb2O9.
11

Within the framework of the d+id QSL state, we can con-
clude that quite a strong single-ion anisotropy, |D| & 1,
is required to explain the large Wilson ratio seen in
Ba3NiSb2O9.
Note that the U(1) state has Fermi surfaces for all

three spinon flavors. However, since this state is in a
Coulomb phase, the U(1) gauge fluctuations are expected
to be very strong. Assuming Landau damping of the
photon, it has been proposed that the specific heat in
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such a strongly coupled phase should have the non-Fermi-
liquid behavior CM ∝ T 2/3.20,40

C. Thermal Hall effect

Due to the spinon Fermi surface of fz, the d+id QSL
state exhibits a longitudinal heat conductivity.55 Accord-
ing to the Wiedemann-Franz law, it is of the form

κxx =
τ εf
~

g0 , (37)

where g0 = π2T/(3h) is the thermal conductance quan-
tum, ǫf is the Fermi energy of the fz spinon, and τ is
its lifetime. However, no longitudinal spin current will
flow since the spin excitations are fully gapped in the
bulk. Nevertheless, we expect a thermal (and spin) Hall
conductivity due to the chiral edge modes:56,57

κxy ≃ 2g0 . (38)

Since the state is compressible, κxy is not expected to be
exactly quantized. The fz spinon with a bulk Fermi sur-
face also contributes to κxy due to a classical Hall effect
in the chiral spin liquid. On the other hand, the spin
Hall conductivity is expected to be exactly quantized.
Let us briefly contrast the physical properties of the

d+id QSL state discussed here with the spin liquid sce-
nario proposed by Xu et al.14 for the 6H-B phase of the
Ba3NiSb2O9 compound. The proposed (“Z4”) state has
gapless fermionic spinon excitations with quadratic band
touching. This leads to a T -linear specific heat and a con-
stant spin susceptibility at low temperature. However, in
contrast to the d+id QSL, the bulk spin excitations are
gapless in the Z4 state, and no chiral edge modes are ex-
pected. This leads to a finite spin relaxation rate at low
temperature as well as absence of thermal and spin Hall
effects in this state.

VIII. CONCLUSION AND OUTLOOK

In this paper, we construct all natural quantum spin
liquid states with three flavors of fermionic spinons for
spin S = 1 Heisenberg models on the triangular lattice.
We compare their variational energies with the ones of
various long-range ordered states. We find that, for large
biquadratic and ring-exchange terms (of the order of the
Heisenberg exchange J > 0), an exotic chiral quantum
spin liquid with a spinon Fermi surface is stabilized. The
physical properties of the d+id QSL state seem to be
consistent with the recent experiment on Ba3NiSb2O9.

10

While the d+id QSL scenario we investigate in this pa-
per has many attractive and novel features, it remains un-
clear if the microscopic parameters required to stabilize
such a phase are realized in Ba3NiSb2O9. From the crys-
tal structure proposed in [11], it seems more likely that
the nearest-neighbor antiferromagnetic exchange energy

J is the dominant microscopic parameter. Therefore, the
theoretical research must continue and more experiments
are needed to elucidate the spin state realized in this ma-
terial.
Recently, new experimental results were published on

the related spin-liquid candidate Ba3CuSb2O9 in [58].
In contrast to earlier experiments on powder samples,10

the new experiments on single crystals indicated that
the Cu2+-ions on the triangular lattice may form dipo-
lar molecules with the Sb5+-ions and can move out of
plane. Strong disorder due to Jahn-Teller distortions or
fluctuations of these Ising dipoles may play a key role
in the absence of ordering in the Cu-compound. Similar
effects may also be present in Ba3NiSb2O9, which opens
promising avenues for future studies on this material.
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Appendix A: Variational Monte Carlo

The Variational Monte Carlo (VMC) method allows
to efficiently evaluate expectation values of observables
in a given many body wave function within small error
bars.22,59 This works as follows: Let |ψ〉 be the wave
function and let O be the observable we want to evaluate.
Let {|α〉} be an “Ising” basis of the Hilbert space, i.e.,
|α〉 is product of local basis states. We can write

〈ψ|O|ψ〉 =
∑

α

|ψ(α)|2 〈α|O|ψ〉〈α|ψ〉 , (A1)

with |ψ(α)|2 = |〈α|ψ〉|2/〈ψ|ψ〉. Since
∑

α |ψ(α)|2 = 1,
|ψ(α)|2 is a probability distribution on the Ising config-
urations {α}. Such a distribution can be generated by a
Metropolis algorithm with acceptance probability

p(α → α′) = min{
∣

∣

∣

∣

ψ(α′)

ψ(α)

∣

∣

∣

∣

2

, 1} . (A2)

Note that, in (A2), ψ(α) does not need to be normal-
ized. The sequence {α} generated by a random walk
with probability (A2) can be used to efficiently calculate
the expectation value,

〈ψ|O|ψ〉 ≃
∑

{α}

〈α|O|ψ〉
〈α|ψ〉 . (A3)

In this paper, we use ∼ 200 Monte Carlo runs to es-
timate the error of Eq. (A3) by its variance over the
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runs. The length of a run is ∼ 200 steps, and the observ-
ables are measured after each step. The measurements
are precessed by an equilibration skip of ∼ 400 steps.
Each Monte Carlo step consists of 4 × N ∼ 600 local
moves, accepted with probability (A2). We use a lattice
of N = L × L sites, with a linear size L = 12 in our
calculations. The error bars on the variational energies
shown in Figs. 1 and 3 are smaller than the symbol sizes.
Local and global constraints (projections) on the wave

function |ψ〉 can be easily implemented in the VMC
scheme. The Gutzwiller projection, |ψ〉 = PG|ψ0〉, for
example, can be taken into account by restricting the
Ising configurations α to the singly-occupied subspace
(nj ≡ 1). Similarly, projection of a spin wave function
to Stot

z = 0 leads to a global restriction on the configura-
tions α. Here, it is important to have an algorithm that
generates all states α in the constrained subspace with
uniform probability.
To apply VMC to a particular wave function, we first

need an expression for ψ(α) ∝ 〈α|ψ〉. Next, an effi-
cient algorithm is needed to calculate the Metropolis ac-
ceptance probabilities (A2) for local moves in the con-
strained subspace. Similarly, for each observable of in-
terest, one has to find an efficient way to calculate the
ratio of overlaps in (A3).

Appendix B: Fermionic wave functions

The first class of wave functions that we are con-
sidering in this paper are Gutzwiller-projected ground
states of quadratic Hamiltonians, HMF, for three flavors
of fermions fa. A similar study of wave functions with
two flavors of fermions has been pioneered by Gros22 for
spin S = 1/2 models.
In our calculation of fermionic QSL and fermionic or-

dered wave functions, we use the local basis of time-
reversal invariant states, |a〉 ∈ {|x〉, |y〉, |z〉}, Eq. (2). The
Ising configurations α are restricted to singly occupied
states on a lattice of N = L × L sites. Furthermore, we
restrict the configurations to states with Nx = Ny and
Nz kept fixed (That is, the wave functions are projected
to fixed total flavor numbers; see below).
Let ra

j ∈ Z
L × Z

L be the lattice positions of flavor
a ∈ {x, y, z} in the Ising configuration α. The U(1) state
and the triplet (x-y paired) QSL states in (7) can be
written as a product of two determinants,

〈α|ψ〉 = det[eik
z
j ·r

z
l ] det[A(rx

j − r
y
l )] , (B1)

where j and l are the indices for the determinants. kz
j

are the occupied momentum states of fz spinons inside
the Fermi sea, ǫkz

j
< µz . For the U(1) state, A(r) is a

Slater matrix,22

A(r) =
∑

k∈BZ,
ǫk<µx

eik·r , (B2)

with momenta k going over filled states in the first Bril-
louin zone (BZ). For the triplet QSL states (s-wave,
d+id), we have

A(r) =
∑

k∈BZ

ak e
ik·r , (B3)

where ak = vk/uk = ∆k/(Ek + ξk) is the ratio of BCS
coherence factors for the pairing of fx and fy fermions.4

For the QSL states with equal-flavor pairing (f -
wave, p+ip), the wave function is a product of three
Pfaffians,60,61

〈α|ψ〉 =
∏

a

Pf[Aa(ra
j − ra

l )] , (B4)

with

Aa(r) =
∑

k∈BZ

aa
k
sin(k · r) , (B5)

where aa
k
= va

k
/ua

k
are the ratio of coherence factors for

each paired fermion flavor.
In the case of the ordered states (9), the fermions are

unpaired, but the flavors hybridize through terms f †
iafjb,

etc. For a lattice of N sites, the corresponding wave
function is a single Slater determinant of size N ×N ,

〈α|ψ〉 = det[Al(r
a
j )] . (B6)

Here, l = 1 . . .N , and Al(r
a
j ) are the lowest eigen-

vectors of the mean-field matrix Hab
ij with Hord =

∑

ij,ab f
†
aiH

ab
ij fbj [For the three-sublattice ordered states

we consider in this paper, the eigenvectors can be labeled
by l = (n,k), where n is a band index and k lies in the
reduced Brillouin zone].
Our calculations are done on a finite lattice with N =

L×L sites. In order to avoid singularities or degeneracies
in (B1)–(B6), we use quadratic trial Hamiltonians (7) and
(9) with periodic in one, and antiperiodic boundary con-
ditions in the other lattice direction for the spinons faj .
The f -wave state, however, has lines of nodes in the gap
function ∆k (at momenta {k0}) that cannot be avoided
by choosing periodic-antiperiodic boundary conditions.
A singularity |aa

k0
| → ∞ occurs on these lines, and (B5)

is ill-defined. To cure the divergencies, we replace aa
k0

by
a large but finite quantity, namely, ±20×maxk/∈{k0}|aak|.
The sign is chosen to be consistent with the sign of aa

k
as

k → k0. We have verified that the relevant correlators do
not depend on the precise factor in the regularization and
that the wave function (correlators) correctly reproduces
the U(1) state when |∆aa| ≪ 1.
We use the usual tricks for an efficient evaluation of the

Metropolis acceptance probability (A2) and the expecta-
tion values (A3) in fermionic wave functions: The inverse
of the matrices in (B1), (B4), and (B6) is stored and up-
dated during the Monte Carlo random walk.59 This al-
lows for efficient evaluation of determinants and Pfaffians
with rows and/or columns replaced or removed.22,61,62 To
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update the inverse of an anti-symmetric matrix with a
row and column replaced, we use the Sherman-Morrison
algorithm63 twice, followed by anti-symmetrization of the
matrix. This procedure greatly improves the numeri-
cal stability of the update. The “pfapack” package by
Wimmer64 is used for efficient evaluation of Pfaffians.

Flavor-number nonconservation

An important technical difficulty with fermionic RVB
wave functions for spin S = 1 is that typical microscopic
models like (14), when written in terms of fermion op-
erators, do not conserve the number of each fermion fla-
vor separately. This issue is also present if we wish to
represent the spin operator by more than three fermion
flavors. We have Na = N −∑j S

2
aj and [HKD, Na] 6= 0,

in general. Unlike in the case of spin-1/2, conservation
of Stot

z =
∑

j Szj does not imply conservations of fla-
vor number. Note, however, that Na is conserved in
the SU(3) model, (21), or in the KD-model (14) at
K = 1, where this issue does not arise. Writing (14)
with fermions, the terms not commuting with Na are

(K − 1)
∑

ab

f †
aifbif

†
ajfbj , (B7)

which vanish for K = 1. In general, there is therefore
no justification for using variational wave functions that
are particle-number eigenstates. For such wave functions,
the Ising configurations α in (A2) must visit all possible
total flavor numbers, with

∑

aNa = N kept fixed. In a
brute force implementation, the determinants and Pfaf-
fians in (B1) and (B4) may need to change sizes during
a Monte Carlo run, which implies a high computational
overhead. Such a simulation has recently been done in
the case of spin-one chains.65

The problem is actually absent for the QSL states with
a spinon Fermi surface. In this case, the wave function
is an Nz eigenstate. Nx and Ny do fluctuate in a paired
state; nevertheless, Nx = Ny and all expectation values
of (B7) vanish in this class of wave functions. The dif-
ficulty is only present for equal-flavor paired QSL states
(f -wave and p+ip) and for the ordered states (9). In
these cases, the expectation value of (B7) does not vanish
(before or after Gutzwiller projection). The flavor num-
bers Na fluctuate independently of each other in these
wave functions.
To resolve this issue, we can use the standard

argument22 that relates grand-canonical and micro-
canonical RVB wave functions: The paired mean-field
states are strongly peaked at some average flavor num-
ber Ñ0 = (Ñ0

x , Ñ
0
y , Ñ

0
z ). This peak in flavor number

may shift position to N0 after Gutzwiller projection,
but it should still be present. Furthermore, the vari-
ance is expected to vanish in the thermodynamic limit,
〈(Na − N0

a )
2〉/N2 ∼ 1/N . Therefore, it is justified to

work with micro-canonical wave functions that are ob-
tained by projecting the grand-canonical wave function,

|ψ〉, to fixed total flavor numbers,

|N0〉 = P (N0)|ψ〉 . (B8)

VMC calculation of expectation values of particle-
number conserving operators within a micro-canonical
wave function is straightforward. However, off-diagonal
operators like (B7) require some care.66 As an example,
let us consider the operator

Rxy = f †
xifyif

†
xjfyj . (B9)

Its expectation value in the grand-canonical wave func-
tion can be approximated as

〈ψ|Rxy|ψ〉 ≃
〈N+

0 |Rxy|N0〉
√

〈N+
0 |N+

0 〉〈N0|N0〉
, (B10)

with N±
0 = (N0

x ± 2, N0
y ∓ 2, N0

z ), and N0 is the average
particle number in |ψ〉. In VMC, the right-hand side of
Eq. (B10) cannot be calculated directly with the correct
normalization. However, it is possible to calculate

〈N+
0 |Rxy|N0〉
〈N0|N0〉

and
〈N0|Rxy|N−

0 〉
〈N0|N0〉

(B11)

within a single Monte Carlo run. Since the
last average satisfies

∣

∣〈N0|Rxy|N−
0 〉/〈N0|N0〉

∣

∣ ≃
∣

∣〈N+
0 |Rxy|N0〉/〈N+

0 |N+
0 〉
∣

∣, the normalization factor can
be calculated from the ratio of the two correlators
in (B11),

gxy =
〈N0|N0〉
〈N+

0 |N+
0 〉 ≃

∣

∣

∣

∣

〈N0|Rxy|N−
0 〉

〈N+
0 |Rxy|N0〉

∣

∣

∣

∣

. (B12)

Finally, the correctly normalized expectation value (B10)
is evaluated as

〈ψ|Rxy|ψ〉 ≃
√
gxy

〈N+
0 |Rxy|N0〉
〈N0|N0〉

. (B13)

It is clear that, for a given wave function, gxy, (B12),
does not depend on the off-diagonal operator Rxy (For
example, Rxy on different sites must give the same gxy).
This provides a nontrivial check of our code and we found
that the renormalization factors gab are indeed identical
on different sites within error bars.
Of course, a particle-number projection |N〉 is only

a faithful representation of |ψ〉 if the flavor number
N is sufficiently close to the average value N0 in the
Gutzwiller projected wave function. Using N as a vari-
ational parameter (here with the restriction Nx = Ny)
guarantees that the state |N0〉 ∝ |ψ〉 is among the varia-
tional wave functions. For the equal-flavor paired singlet
wave functions, we found that the agreement between our
optimal correlators and the ones calculated in the corre-
sponding grand-canonical wave functions is very good.67

For spin S = 1/2 systems, the investigation of (doped)
RVB wave functions in the grand-canonical ensemble was
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pioneered by Yokohama and Shiba in Ref. [68]. These au-

thors introduced a particle-hole transformation c†↓ 7→ c↓
that allows to do fixed-particle VMC simulations. How-
ever, this trick does not easily generalize to spin-one.
For spin-half RVB wave functions, the agreement be-
tween micro-canonical and grand-canonical approaches
was found to be very good. Note, however, that parti-
cle number renormalization by the Gutzwiller projector
in grand-canonical wave functions leads to subtle effects
that need to be taken into account if one wishes to apply
the Gutzwiller approximation.69–71

Appendix C: Huse-Elser wave functions

This appendix contains details regarding the imple-
mentation of trial wave functions of Huse-Elser type, gen-
eralized to the spin S = 1 case. Similar to the case of
spin S = 1/2,28 our construction starts from an uncor-
related product-state wave function. Quantum correla-
tions are introduced by applying Jastrow factors to the
simple product state. The resulting wave function has
two sets of variational parameters: parameters control-
ling the product-state, and Jastrow parameters respon-
sible for the quantum correlations.
For the Huse-Elser wave functions, we use the local ba-

sis of Sz eigenstates, i.e., the states |0〉, |1〉, and |1̄〉 with
Sz = 0, 1, and −1, respectively. The corresponding basis
of Ising configurations is denoted by |α〉 = |1101̄01̄1 . . .〉.
As before, the singly occupied subspace corresponds to
physical spin states. Furthermore, we project the wave
functions to Stot

z = 0 by restricting to Ising states with
N1 = N1̄. However, here we allow the total flavor num-
bers to fluctuate within this subspace.
In Ref. [31] the optimal three-sublattice product states

for the bilinear-biquadratic model (14) were calculated.
It was found that the ordering patterns in this model
are well captured by the antiferromagnetic and nematic
states given in Eqs. (15) and (16). In the basis of Sz

eigenstates, the wave function on A, B, and C sublattices
is given by

|A〉 = cos η |0〉+ κ
sin η√

2
(|1〉+ |1̄〉) ,

|B〉, |C〉 = cos η |0〉+ κ
sin η√

2
(e∓

2πi
3 |1〉+ e±

2πi
3 |1̄〉) ,

(C1)

where η is a variational parameter. κ = 1 corresponds
to the antiferromagnetic, and κ = i to the nematic prod-
uct state. Using the Ising basis, the corresponding wave
function may be written as

|ψp〉 =
∑

α

eH̃1 |α〉, (C2)

where the sum goes over Ising states in the Sz basis.
The one-body operator H̃1 accounts for different weights
of |0〉, |1〉, and |1̄〉, as well as for site-dependent phase

factors in the product-state wave function. For the par-
ticular case specified in Eq. (C1), it can be written in
terms of Sz operators as

H̃1 =
∑

j

{2πi
3

(δj∈C−δj∈B)Szj+log(κ
tan η√

2
)S2

zj} . (C3)

The Kronecker symbols δj∈B and δj∈C are non-zero only
for sites j belonging to theB or C sublattice, respectively.
The advantage of the rather complicated form (C2) for

writing a simple product state is that quantum correla-
tions can be built in easily by adding extra terms to H̃1.
We define

|ψ〉 =
∑

α

eH̃ |α〉, (C4)

where

H̃ = H̃1 + H̃2 + H̃3 + . . . , (C5)

and H̃2, H̃3, . . . denote many-body Jastrow factors. The
correlated wave function (C4) is easy to use in VMC, as

long as H̃ is diagonal in the Ising basis |α〉. In this paper,
we only consider two-body correlation terms,

H̃2 = −
∑

〈i,j〉

{β(SziSzj) + γ(SziSzj)
2} . (C6)

In principle, in Eq. (C6), the sum can go over further-
neighbor lattice sites, and the variational parameters β
and γ may depend on the distance between sites. How-
ever, inclusion of further-neighbor correlations are ex-
pected to have a small effect on the ground state energy.28

Because of this, and also, in order to have a number of
variational parameters that is similar to the number of
parameters used for the spin liquid wave functions, we
consider only nearest-neighbor Jastrow factors here.
The VMC algorithm can now be applied to Huse-Elser

wave functions as outlined in Appendix A. The wave
function is given by

〈α|ψ〉 = eH̃(α) , (C7)

where H̃(α) = 〈α|H̃ |α〉. The Metropolis acceptance
probability (A2) and the expectation values (A3) are
straightforward to calculate. In contrast to the case of
fermionic wave functions, no determinants or Pfaffians
need to be evaluated or updated for this.
In contrast to similar wave functions for spin S = 1/2,

an important subtlety arises here in the generation of the
random walk. For S = 1/2 and Stot

z = 0, the configu-
rations α are restricted to states with an equal number
of up and down spins. Therefore, the only admissible
local Monte Carlo move is an exchange of two opposite
spins. For S = 1, due to presence of the nematic state |0〉
with Sz = 0, more local moves are possible. The Hilbert
space for S = 1 and Stot

z = 0 can be written as a direct
sum of orthogonal subspaces (N1-sectors) with a fixed
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number N1 = 0 . . .N/2 of sites in configuration |1〉. The
dimension of each N1-sector is D(N1) =

(

N
N1

)(

N−N1

N1

)

.
There exist two types of local moves in a random walk
through the Ising configurations: those leaving N1 intact
and those changing N1 and moving to a different N1-
sector. The algorithm generating the random walk has
to be unbiased with respect to moves between different
sectors such that each N1-sector is visited with proba-

bility p(N1) = D(N1)/
∑N/2

n=0D(n). We have checked
that such a distribution is accurately generated by the
following procedure. We pick two sites at random and,
depending on the states found on the sites, perform the
following move:

(i) |0〉|1〉 or |0〉|1̄〉: exchange the states.

(ii) |1〉|1̄〉: exchange states or change to |0〉|0〉, each with
probabilities 1/2.

(iii) |0〉|0〉: change state to |1〉|1̄〉.
(iv) |1〉|1〉 or |1̄〉|1̄〉: pick two different sites that are oc-

cupied by unequal flavors and exchange them.

In (iv), when the configurations |1〉|1〉 or |1̄〉|1̄〉 are en-
countered, it is important to find two flavors to exchange,
thus not changing N1-sector. For example, if our algo-
rithm rejected this case, and retried with another pair of
sites, the random walk would be biased with respect to
the distribution p(N1), resulting in a higher probability
for visiting sectors with smaller N1.

Appendix D: Symmetries of KD- and SU(3)-models

In this appendix, we elaborate on the symmetry prop-
erties of the bilinear-biquadratic model (14) and of the
SU(3) ring-exchange model (21) investigated in this pa-
per.
Let us first discuss the SU(3) symmetry of these mod-

els. Writing the Heisenberg exchange operator for spin
S = 1, Eq. (20), in terms of the operators f = (fx, fy, fz),
we have

Pij = Si · Sj + (Si · Sj)
2 − 1

=
∑

ab

f †
aifbif

†
bjfaj = f

†
i · (fi · f†

j )fj .
(D1)

In this notation it is clear that Pij is invariant under a
transformation f 7→ Af whereA is a general 3×3 unitary
matrix. However, as discussed previously, the transfor-
mation fa 7→ eiφfa with the same phase for all flavors
does not change the corresponding spin state. Therefore,
the relevant spin symmetry is SU(3) = U(3)/U(1), and
we can take A ∈ SU(3). Similar to the operators fa that
create these states, the spin states |a〉 transform in the
fundamental representation of the SU(3) symmetry, by
matrix multiplication with A. To find the action of the
symmetry on spin operators, let us define

Q̂µ =
∑

ab

f †
aλ

ab
µ fb , (D2)

where λµ = (λabµ ), µ = 1 . . . 8, are the Gell-Mann matri-
ces, generators of SU(3). Using

[Q̂µ, fa] =
∑

b

λabµ fb , (D3)

it is clear that

Af = ei ad(Q̂)f = eiQ̂fe−iQ̂ , (D4)

for A = exp{i
∑

µ αµλµ} and Q̂ =
∑

µ αµQ̂µ. Therefore,
the spin operators

S = −if† ∧ f (D5)

transform as

S 7→ eiQ̂Se−iQ̂ (D6)

under an SU(3) symmetry transformation.
Rather than explicitly writing down all eight genera-

tors of the SU(3) symmetry, Eq. (D2), in spin language
using the Gell-Mann basis, let us mention an equivalent
set of generators. This set consist of the three spin rota-
tion generators Sa and the five independent quadrupolar
operators Qab = (SaSb + SbSa)/2− 2/3 δab.
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The ring-exchange model, Eq. (21), can be written in
terms of Heisenberg exchange operators Pij . Therefore,
it has the large SU(3) symmetry discussed above for all
values of parameter α. The KD-model, Eq. (14), enjoys
the SU(3) symmetry only at the special point K = 1
and D = 0 in parameter space (where it is equivalent to
the ring-exchange model at α = 0). Moving away from
this special point, for general K but keeping D = 0, the
symmetry is reduced to SO(3) spin rotation symmetry,
generated by S. Finally, for D 6= 0, this symmetry is
further reduced to U(1) spin rotation about the z-axis.
When we move away from the SU(3) symmetric point

along the line K = 1 and D 6= 0, the symmetry is re-
duced to SU(2) on that line. Clearly, the spin rotation
symmetry is reduced to Sz as D 6= 0. To find the remain-
ing unbroken generators, we need to determine the SU(3)
generators that commute with the biquadratic term S2

z .
These generators are SxSy + SySx and S2

x − S2
y . Hence,

{Sz, SxSy + SySx, S
2
x − S2

y } are the three generators of
an SU(2) symmetry of the model (14) on the line K = 1.
Let us briefly discuss the symmetry reasons behind

the degeneracy of the correlated AFM and the nematic
states, (15) and (16), on the line K = 1. In terms
of spinon operators, the relevant symmetry generator is
written as

S2
y − S2

x = f †
xfx − f †

yfy . (D7)

From (D4), we see that x and y states simply acquire an
opposite phase under this transformation: fx 7→ eiϕfx,
fy 7→ e−iϕfy. It is easy to check that the magnetic state
(15) is mapped to the spin-nematic state (16) for ϕ =
π/2, i.e., when fx 7→ ifx and fy 7→ −ify. Furthermore,
it is clear that the hopping term in (9) and the Jastrow
factors in (10) are invariant under this transformation.
Hence, the correlated ordered states are exactly mapped
into each other by this transformation.
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