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Spin injection from a half-metallic electrode in the presence of thermal spin disorder is analyzed
using a combination of random matrix theory, spin-diffusion theory, and explicit simulations for the
tight-binding s-d model. It is shown that efficient spin injection from a half-metal is possible as long
as the effective resistance of the normal metal does not exceed a characteristic value, which does not
depend on the resistance of the half-metallic electrode, but is rather controlled by spin-flip scattering
at the interface. This condition can be formulated as α <

∼
l/lNsfT

−1

c , where α is the relative deviation

of the magnetization from saturation, l and lNsf the mean-free path and the spin-diffusion length in
the non-magnetic channel, and Tc the transparency of the tunnel barrier at the interface (if present).
The general conclusions are confirmed by tight-binding s-d model calculations. A rough estimate
suggests that efficient spin injection from true half-metallic ferromagnets into silicon or copper may
be possible at room temperature across a transparent interface.

I. INTRODUCTION

Many spintronic devices depend on the injection, ma-
nipulation, and detection of spin-polarized currents in
semiconductors or normal metals.1–3 Spin injection can
also be utilized as a tool to probe the spectroscopic
properties of strongly correlated and spin-orbit-coupled
systems.1,4 Thus, understanding the mechanisms of spin
injection is of interest for a variety of fundamental and
practical applications. Basic theory of spin injection
across an F/N (ferromagnet/normal metal) interface in
the linear response regime was worked out by Johnson
and Silsbee.5 The spin polarization of the injected cur-
rent may be conveniently expressed as1,6

Pj =
PσrF + PΣrc
rF + rN + rc

, (1)

where Pσ = (σ↑ − σ↓)/(σ↑ + σ↓), σ↑ and σ↓ are the spin-
resolved conductivities of the ferromagnetic electrode,
PΣ is defined similar to Pσ for the spin-dependent in-
terface conductance, while rF and rN are effective re-
sistances of the ferromagnet and normal metal, respec-
tively. The effective interface resistance is denoted rc.
For the ferromagnet rF = (σ↑ + σ↓)l

F
sf/(4σ↑σ↓) and for

the normal metal rN = lNsf/σN , where lFsf and lNsf are
the spin-diffusion lengths in the ferromagnet and in the
normal metal. The quantities rF and rN are called ef-
fective resistances. The expression (1) is valid under the
assumptions of the two-current model,7 i. e. when the
spin-diffusion lengths are much longer than the mean-
free paths.8 Note that nonlinear effects in bipolar semi-
conducting junctions9,10 can not be described within the
linear-response theory and are beyond the scope of the
present consideration.
Spin injection from a ferromagnet into a semiconduc-

tor is subject to the so-called conductivity mismatch
problem.11 For a typical choice of materials we have
lNsf ≫ lFsf and σN ≪ σ↑σ↓/(σ↑ + σ↓). This implies
that rF ≪ rN , and if the interface resistance rc is also

small compared to rN , the injected current is unpolar-
ized, Pj ≪ 1. In order to circumvent this problem, one
can introduce a highly resistive, spin-selective barrier at
the interface, such as a naturally occurring Schottky bar-
rier or an artificially inserted tunnel junction.6 Accord-
ing to Eq. (1), large rc (comparable to or greater than
rN ) combined with appreciable PΣ results in a finite Pj .
Efficient spin injection into GaAs and Si from transition-
metal electrodes was successfully achieved based on this
principle.12–15

The situation can be visualized with the help of an ef-
fective resistor circuit, such that in each spin channel s
the ferromagnet and the normal metal have resistances
lFsf/σs and 2lNsf/σN , respectively, and the two spin chan-

nels are connected in parallel.16 This effective circuit cor-
rectly reproduces both the spin polarization of the cur-
rent near the interface and the resistance of the junction
in excess of what would be measured if the interface were
replaced by a node in the circuit.16

Half-metallic ferromagnets17 are conducting in one
spin channel and insulating in the other, which makes
them attractive candidates as electrode materials for
spintronic devices.1 The situation at zero temperature is
simple, as there is only one conducting channel (“spin
up”), and the injected current should be fully spin-
polarized. Many materials, particularly among Heusler
compounds, have been theoretically predicted using band
structure calculations to be half-metallic,18 although re-
liable experimental confirmation is often complicated
by surface effects.19 High magnetoresistance values were
achieved in magnetic tunnel junctions20–23 and spin
valves24 with epitaxial Co-based Heusler-alloy electrodes.
Large nonlocal spin signals, 10 times higher compared to
conventional electrodes, were also demonstrated in lat-
eral spin valves with transparent Ohmic interfaces.25–27

In all of these experiments the spin signal is consider-
ably reduced at room temperature but remains appre-
ciable. Further, Ramsteiner et al.

28 demonstrated spin
injection from Co2FeSi into an (Al,Ga)As light-emitting
diode (LED) structure with an efficiency of at least 50%.
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Based on their device design, they concluded that the
Schottky barrier can not be present at the interface and
argued that the observed efficient spin injection “casts
doubt onto the common belief that tunneling is a prereq-
uisite for spin injection from a metal into a semiconduc-
tor.”

So far the theoretical analysis of spintronic devices
with half-metallic electrodes was based25–27 on the stan-
dard spin-diffusion model,1,5,6,8,29 which assumes the ex-
istence of two weakly coupled conducting channels in
each material.7,8 However, these validity criteria are not
satisfied in true half-metals, and our present goal is to de-
velop an appropriate formalism for such devices, which
should include the effects of thermal spin fluctuations at
finite temperatures. Due to these fluctuations, the elec-
tron wavefunctions lose their pure spin character, and
the density of states (DOS) in a half-metal acquires non-
zero projection onto the “spin down” channel, which is
gapped at zero temperature. However, this state can be
viewed as a small perturbation of the fully collinear spin
state by fluctuating transverse magnetic fields, so that
the local spin direction for all electronic eigenstates is
fluctuating within a narrow cone around the magnetiza-
tion direction. In other words, the number of eigenstates
is not doubled, but rather they acquire a small spin-down
component. In this situation one can not apply the two-
current model, in which independent distribution func-
tions are introduced for spin-up and spin-down electrons,
and the concept of the spin-diffusion length also becomes
meaningless. Therefore, Eq. (1) can not be directly ap-
plied to spin injection from a half-metallic electrode at
T 6= 0.

In the following, we analyze the spin injection from
a half-metallic electrode in the linear response regime
but without making the assumptions of the two-current
model leading to Eq. (1). We start with general consid-
erations in Section II and then proceed to analyze the
elastic scattering region using the random matrix theory
in Section III. Here we derive the formula for spin injec-
tion efficiency, which is similar to (1) but with the effec-
tive resistance r̃F being controlled by spin-flip scattering
probabilities at the interface. A generalized statement of
the conductivity mismatch follows from the unitarity of
the scattering matrix. Based on these results, we then de-
scribe the half-metallic spin-injection system within the
spin-diffusion theory in Section IV. The formula for spin-
injection efficiency is generalized in a natural way to the
case of finite spin-diffusion length in the normal region.
In Section V we discuss the behavior of spin-injection ef-
ficiency, and finally in Section VI we support our conclu-
sions with explicit tight binding s-d model calculations.
The conclusions are summarized in Section VII.

II. HALF-METAL AT A FINITE

TEMPERATURE

The electronic structure of a half-metal at T = 0 has
a band gap in one of the spin channels. If we now con-
sider a thermal fluctuation resulting in a small canting
of individual local spin moments, we can imagine, on the
level of an the self-consistent field theory in the localized
basis, that the effective fields on different atomic sites
have been rigidly rotated off of the magnetization axis
by small angles. (The tight-binding representation is as-
sumed for simplicity and is not essential for the physical
argument.) This is a common approach to spin fluctu-
ations within the noncollinear density functional theory,
whereby the spin moments are assumed to fluctuate adia-
batically slowly compared with electron hopping times.30

This approximation is justified by the fact that typical
times associated with magnon dynamics are much longer
compared to the electron momentum relaxation time.
The Hamiltonian of the system with such adiabatic spin
fluctuation can then be represented as31

H{n̂i} =
∑

i

U(n̂i)HiU
+(n̂i) +K (2)

where n̂i is the unit vector parallel to the spin moment on
site i, Hi is the on-site contribution to the Hamiltonian
from site i, and K is the spin-diagonal kinetic (hopping)
part. We can now make a unitary transformation to the
new “rotated” local basis in which Hi is diagonal, which
is effected by unitary matrices U(n̂i). In this new basis
the Hamiltonian is

H̃{n̂i} =
∑

i

Hi +
∑

ij

U+(n̂i)KijU(n̂j). (3)

At zero temperature there are only states of a partic-
ular spin (say, “up”) near the Fermi level. Deviation
of the unitary matrices in (3) from unity at T 6= 0 in-
troduces hybridization between local spin-up and spin-
down states, as well as some randomness in the spin-
conserving hopping matrix elements. The Bloch states
near the Fermi level acquire a small admixture of spin-
down character, and the DOS in the global basis acquires
a spin-down component, but no new Bloch states appear
near the Fermi level. This means that the bulk of a half-
metal at finite (but low) temperatures can be treated as
having one effective spin channel. This situation is qual-
itatively different from a conventional ferromagnet with
two independent spin channels, even if they have very dif-
ferent resistivities. While the conventional ferromagnet
has two independent occupation functions and chemical
potentials for the two spin channels, a half-metal has only
one. Transport across an interface with a normal metal
is discussed in the subsequent sections.
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III. SPIN INJECTION IN THE SCATTERING

FORMALISM

A spin injection device can be analyzed by treating
the F/N interface as an elastic scattering region embed-
ded between diffusive regions, and by matching the so-
lution of the scattering problem with the solution of the
spin-diffusion equation. For a conventional two-channel
ferromagnetic electrode the well-known result is given by
Eq. (1). However, as we have argued in Section II, the
two-current model is inapplicable for a half-metallic elec-
trode. The purpose of this section is to understand the
role of spin coherence for spin injection from the half-
metal at finite temperatures, i. e. in the presence of spin
disorder.
Since the half-metal, as argued above, has only one

effective spin channel, there is no analog of the spin-
diffusion length for it. Therefore, inelastic scattering
should not affect the properties of spin injection, and we
may treat the whole half-metallic electrode as an elastic
scatterer. As we will see in the next section, match-
ing with the solution of the spin-diffusion equation in
the normal metal should simply replace the resistance of
the normal region by its effective resistance rN = ρN lNsf .
Therefore, we first consider the entire spin-injection de-
vice disregarding inelastic scattering altogether.
An elastic spin-injection device can be considered in

the formalism of the scattering theory. We assume that
the F-N device is connected on both sides to equilibrium
reservoirs via ideal Landauer leads. Apart from these
leads we introduce an auxiliary lead in the N region at
such distance from the interface (a few mean-free paths)
that the quantum interference effects occurring at the
interface are left entirely on the left-hand side of this lead.
Each of the two regions can be described by a scattering
matrix:

ŜF =

(

r̂1 t̂′1
t̂1 r̂′1

)

, ŜN =

(

r̂2 t̂′2
t̂2 r̂′2

)

(4)

where, in the standard way, the matrix t̂1 contains am-
plitudes for transmission from the conducting channels of
the left electrode across F into the conducting channels of
the fictitious lead, and similarly for the other subblocks.
At this point we allow the F region to have an arbitrary
magnetic configuration. The transmission matrix t̂ of the
entire F-N junction is

t̂ = t̂2(1− r̂′1r̂2)
−1t̂1. (5)

The charge and spin currents flowing across the junc-
tion are proportional, respectively, to C and Cs:

C = Tr t̂t̂+ , Cs = Tr σ̂z t̂t̂
+ (6)

and we are interested in the spin polarization Pj = Cs/C.
Since we are considering the junction as an elastic scat-
tering region, the spin current in the normal region is
conserved. There is no loss of generality from singling
out the z axis, because its direction is unspecified.

Following the approach of Waintal et al.,32 we now
introduce the polar decomposition33 of the matrix ŜN :

ŜN =

(

Û 0

0 V̂ ′

)( √
1− T i

√
T

i
√
T

√
1− T

)(

Û ′ 0

0 V̂

)

(7)

where T is the matrix of the eigenvalues of t̂2t̂
+
2 , while

Û , Û ′, V̂ , and V̂ ′ are unitary matrices, which are all di-
agonal in spin space. Since the fictitious node can be
introduced at a sufficient distance from the surface to
eliminate all quantum interference effects, we can safely
use the isotropic approximation,34 i. e. assume that the
spatial factors of the unitary matrices Û , Û ′, V̂ , and V̂ ′

are distributed uniformly in the unitary group. We sub-
stitute (5) in (6), use (7) for t̂2 and r̂′2, and integrate
over the unitary ensemble. This integration is easily per-
formed using the method of Ref. 35 to the leading order
in the number of conducting channels in the leads. In
this leading order, each unitary matrix is matched to its
own conjugate, resulting in a ladder diagram.35 Averag-
ing over the eigenvalues of t̂2t̂

+
2 is performed simultane-

ously. The result can be written in this form:

Cs =
∑

λµ

σz
λ

[

1− R̂(1− TN)
]−1

λµ
TµTN . (8)

Here λ and µ denote a pair of spin indices, σz
λ is the σ̂z

matrix written as a vector (1, 0, 0,−1), TN is the proba-

bility of transmission through the N region, R̂ is a 4× 4
matrix32 with elements

Rλµ ≡ Rσσ′,ss′ =
1

Nch

∑

mn

(r′1)mσ,ns(r
′
1)

∗
mσ′,ns′ (9)

where m, n enumerate the Nch conducting channels in
the auxiliary lead, and Tµ is a 4-vector with elements

Tµ ≡ Tss′ =
1

Nch

∑

mnσ

(t1)ms,nσ(t1)
∗
ms′,nσ. (10)

In this last expression nσ labels the channels of the lead
feeding the F region. The expression for C is obtained
from (8) replacing σz

λ by a 4-vector representation of the
unit matrix 1λ = (1, 0, 0, 1). Note that Tµ =

∑

λ Tµλ1λ,
where Tµλ is defined as Rµλ but with matrix elements of
t1 instead of r′1.

36

The unitarity of ŜF requires that t̂1t̂
+
1 +r̂′r̂′+ = 1. This

condition implies that Tλ =
∑

µ(δλµ − Rλµ)1µ. Substi-

tuting this in (8) we find that Cs vanishes to first order
in TN . Since the charge current is proportional to TN ,
this leads to Pj → 0 at TN → 0. In the limit of a two-
channel device with weak coupling between the channels,
this result reduces to the conductivity mismatch obstacle
for spin injection.11 However, our result is more general,
because it is valid for any magnetic structure of the F
region and for any choice of the z axis. The only excep-
tion is the case of a half-metal at T = 0 with no spin-flip
scattering at the interface, for which the only non-zero
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component of Tµ is T↑↑ (in the reference frame where
the z axis is aligned with the magnetization). In this
exceptional case we obviously have Pj = 1 at any TN .
Let us now find the spin polarization Pj for a finite

TN , assuming that the electrode is an axially symmet-
ric (i. e. collinear) magnet with spin disorder. For a
macroscopic interface, the summation over the conduct-
ing channels automatically averages Rλµ and Tµ in (8)
over the spin disorder ensemble. This self-averaging does
not necessarily occur in a point-contact, in which case
an additional averaging over spin disorder configuration
is required for the spin current (8) and its charge coun-
terpart. Re-expanding the inverse matrix in (8), we can
obtain a series of terms describing multiple scatterings
at the interface. Since the electron scatters repeatedly
from the same spin disorder configuration, the averages
of the matrix products do not decouple. However, since
correlations between successive scattering events do not
change the asymptotic behavior of Pj , it is a reasonable

approximation to replace R̂ and Tµ by their averages 〈R̂〉
and 〈Tµ〉 even for a point contact.
Let us assume that spin-orbit coupling at the surface

is weak, and that all spin-flip processes are dominated
by spin-disorder scattering. Then the matrices 〈R̂〉 and
〈Tµ〉 should be invariant with respect to rotation in spin
space around the magnetization axis. This condition im-
plies that 〈T↑↓〉 and 〈T↓↑〉 vanish, along with all elements

〈Rσσ′,ss′〉 with σ − σ′ 6= s − s′. The 〈R̂〉 matrix is thus
block-diagonal. From the structure of (8) it is clear that
we are only interested in the 2 × 2 block spanned by
indices 1 and 4. (The 22 and 33 diagonal elements repre-
sent the spin-mixing conductance,37 which turns out to
be irrelevant to the problem at hand.) As seen from (9),
the diagonal elements of this block are the total spin-
conserving reflection probabilities for spin-up and spin-
down electrons R↑ = 〈R↑↑,↑↑〉 and R↓ = 〈R↓↓,↓↓〉, while
the off-diagonal elements are the total spin-flip reflec-
tion probabilities R↑↓ = 〈R↑↑,↓↓〉. Reciprocity requires
that 〈R↑↑,↓↓〉 = 〈R↓↓,↑↑〉. Let us also denote T↑ = T↑↑

and T↓ = T↓↓. (Note that T↑ and T↓ include both spin-
conserving and spin-flip processes.) We can now calculate
the spin polarization from (8):

Pj =
Ptr̃F

r̃F + rN
(11)

where Pt = (T↑−T↓)/(T↑+T↓), rNGN = (1−TN)/(2TN),

1

4GN r̃F
=

T↑T↓

T↑ + T↓

+R↑↓, (12)

and GN = (e2/h)Nch. Note that Pt is the spin polariza-
tion of the current injected in the auxiliary lead if the N
region is detached from it.
The expression (11) includes the effects of spin disor-

der, but not the effects of inelastic spin relaxation. For
a conventional (not half-metallic) electrode, spin relax-
ation must be included on both sides of the junction. In
the presence of spin-flip processes at the interface, the

solution of the spin-diffusion equations becomes rather
complicated38 even if spin-flip reflection R↑↓ is neglected.
The situation is simpler in the case of a half-metallic elec-
trode, because inelastic spin relaxation should only be
included in the N region. In the next section we will see
that in this case the elastic resistance of the normal re-
gion rN in (11) should simply be replaced by its effective
resistance.
Note that interfacial spin-flip scattering due to spin-

orbit interaction was studied in some detail for metal-
lic N/N and F/N interfaces.39,40 Temperature-dependent
interfacial spin-flip scattering in the presence of non-
equilibrium spin accumulation was suggested as a source
of asymmetric response in a nonlocal spin valve.41

IV. SEMICLASSICAL THEORY

In the previous section we found that under rather gen-
eral assumptions the scattering at the interface between
the half-metal and the normal metal is described com-
pletely by spin-dependent transmission probabilities and
the spin-flip reflection probability on the normal metal
side. The effects of spin coherence are effectively elimi-
nated by spin disorder averaging. We can therefore use
the standard semi-classical treatment, taking into ac-
count that the half-metal has only one spin channel, and
incorporating spin-flip scattering at the interface. Apart
from giving a complementary picture of spin injection,
this treatment confirms the expectation about the role of
the spin-diffusion length in the normal metal and shows
the invariance of the results with respect to the location
of the left lead.
Instead of treating the whole F/N device as an elas-

tic scatterer, we now consider only the interfacial F/N
region (a few mean-free paths on both sides) embedded
between infinite diffusive regions. The half-metallic (F)
region carries only one spin channel (even at finite tem-
perature), but the N region has two channels. Similarly
to Rashba’s treatment of the F-N junction with spin-flip
transmission at the interface,38 the interface is assigned
the spin-flip conductance Σ↑↓ in addition to the spin-
conserving Σ↑↑. In addition to these terms, we also need
to introduce spin relaxation in the normal metal due to
spin-flip scattering at the interface. Physically, even if
the F electrode is insulating, the spin accumulation in
the normal metal can relax through interfacial spin-flip
scattering. Introducing the appropriate electrochemical
potential drops at the interface, the spin-dependent cur-
rents on the normal metal side of the interface can be
written as follows:

jN↑ (0) = Σ↑↑(ζ
N
↑ − ζF ) + R̃↑↓(ζ

N
↑ − ζN↓ ) (13)

jN↓ (0) = Σ↑↓(ζ
N
↓ − ζF ) + R̃↑↓(ζ

N
↓ − ζN↑ ) (14)

where the new term is the one with R̃↑↓. Matching with
the solution of the spin-diffusion equation can be worked
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out in the usual way.38 The terms containing bulk con-
ductivity in the F region drop out, and after some al-
gebra we reproduce Eq. (11) with rN now being the ef-
fective resistance ρN lNsf (as anticipated), Pt replaced by

PΣ = (Σ↑↑ − Σ↑↓)/(Σ↑↑ +Σ↑↓), and

1

4r̃F
=

Σ↑↑Σ↑↓

Σ↑↑ +Σ↑↓

+ R̃↑↓. (15)

Eq. (15) is equivalent to (12) with the replacement

GNT↑ → Σ↑↑, GNT↓ → Σ↑↓, and GNR↑↓ → R̃↑↓. At first
sight, there is a discrepancy, because Σ↑↑ and Σ↑↓ are the
interface conductances while Ts are the total transmission
probabilities of the entire half-metallic electrode. How-
ever, these expressions are, in fact, consistent, because r̃F
is invariant with respect to the choice of the boundary of
the interface region at which the chemical potential ζF is
evaluated. In order to see this, let us rewrite Eq. (13)-
(14) for the same F-N junction with a different choice of
this boundary and denote the new chemical potential (at
that boundary) by ζF0 . This can be viewed as a simple
redefinition of the thickness of the interface region. The
chemical potentials on the normal side of the interface,
however, are evaluated at the same point. The conduc-
tance and reflectance parameters corresponding to the
new choice of ζF0 will be denoted Σ0

↑↑, Σ
0
↑↓, and R̃0

↑↓.
For a half-metallic electrode the spin polarization of

the current injected into the N region under the condi-
tion ζN↑ = ζN↓ is determined by the ratio α = Σ↑↓/Σ↑↑,
which should depend only on temperature. Therefore,
Σ↑↓/Σ↑↑ = Σ0

↑↓/Σ
0
↑↑. The charge current is

j = Σ↑↑(ξ↑ + αξ↓) = ΣF∆ζF (16)

where we denoted ξs = ζNs −ζF and ∆ζF = ζF −ζF0 , and
ΣF is the conductance of the half-metallic region between
the points where ζF and ζF0 are evaluated.
Equating the two different expressions for the same

spin-dependent currents (13)-(14), we can write

(Σ0 − Σ)ξ↑ +Σ0∆ζF + (R̃0 − R̃)(ξ↑ − ξ↓) = 0 (17)

α(Σ0 − Σ)ξ↓ + αΣ0∆ζF − (R̃0 − R̃)(ξ↑ − ξ↓) = 0 (18)

where we simplified the notation by dropping indices:
Σ = Σ↑↑, R̃ = R̃↑↓, and similarly for Σ0 and R̃0. Fur-
thermore, substituting ∆ζF from (16), we obtain a sys-
tem of two linear homogeneous equations for ξ↑ and ξ↓.
For this system to have a solution, the determinant of
the coefficient matrix should vanish, which leads to

α

1 + α
(Σ0 − Σ) + R̃0 − R̃ = 0. (19)

This expression implies that r̃F defined in (15) does not
depend on the definition of the boundary of the interface
region on the half-metallic side. Physically, this prop-
erty follows from the unitarity of the scattering matrix
and can not be satisfied without introducing the spin-flip
reflection terms in (13)-(14).

FIG. 1. Equivalent resistor circuit for spin injection from a
half-metal.

Spin injection from a half-metallic electrode may be
schematically represented by the equivalent resistor cir-
cuit shown in Fig. 1. The resistances are defined as
r↑↓ = 1/R̃↑↓, r↑ = 1/Σ↑↑, and r↓ = 1/Σ↑↓. Interest-
ingly, the effective resistance 4r̃F in (15) can measured
between the terminals of r↑↓ if the N part of the circuit
is disconnecting and the left terminal is left open. PΣ

is given by (r↓ − r↑)/(r↓ + r↑). The physical location of
the left terminal of the circuit can be selected anywhere
inside the half-metal. According to the arguments pre-
sented above, the change of this location redefines the
three resistances r↑, r↓, r↑↓ while leaving r↑/r↓ ∼ α, r̃F ,
and Pj invariant. Note that the degradation of magnetic
order at the interface may significantly affect PΣ and r̃F .

V. SPIN INJECTION EFFICIENCY FOR A

HALF-METALLIC ELECTRODE

The conductance and reflectance parameters defined
in Eq. (13)-(14) depend only on the properties of the
interface region and not on the properties of the bulk
half-metallic region attached to it. Therefore, the spin
injection efficiency does not depend on the thickness of
the half-metallic electrode. This result is valid as long
as the half-metallic region is not so thin as to violate
the assumptions of the diffusion theory. In practice this
means that it should be thick compared to the electronic
mean-free path.
Using this property, we can formally include an arbi-

trarily thick half-metallic layer in the definition of the
interfacial region, so that the conductances Σ↑↑, Σ↑↓ are
made very small (and thus the resistances r↑ and r↓ in
Fig. 1 very large). Then the first term in the right-hand
side of (15) is negligible compared to the corresponding

asymptotic value R̃∞
↑↓, which is always finite at finite tem-

perature. Thus, efficient spin-injection is possible only
when R̃∞

↑↓
<∼ r−1

N . In other words, spin injection is sup-

pressed at rN ≫ (R̃∞
↑↓)

−1 = r∞↑↓. On one hand, this con-
dition is similar to the conductivity mismatch, because
it sets a certain limit for rN . On the other hand, the
physical picture is quite different, because this limit is
not related to the conductivity of the half-metal.
For generality let us allow for the existence of a mag-

netically unpolarized resistive barrier (such as a tunnel
junction) at the interface, and let Tc denote the transmis-
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sion probability across this barrier. From the first term
in (15) we can deduce r̃F ∼ (αGNTc)

−1. Alternatively,

we can find R̃∞
↑↓ by adding a large resistor on the left of

Tc with transmission probability TF ≪ Tc. In order to
reflect with a spin-flip, an electron incident from the N
side must first tunnel across the barrier in order to reach
the spin-disordered region; this gives a factor Tc. Since
we require TF /Tc → 0, the electron is reinjected back into
the N region with probability 1. The probability of spin
flip adds a factor α, so we obtain R̃∞

↑↓ ∼ αGNTc and con-
firm the above result for r̃F . An electron can also scatter
with a spin flip on the transverse exchange field intro-
duced by the spin density penetrating across the barrier.
This mechanism contributes in the same order to R̃∞

↑↓.

In the Ohmic regime (low-resistance interface with
Tc ∼ 1), we have GN r̃F ∼ 1/α. Since GN rN ∼ lNsf/l,
where l is the mean-free path in the normal metal, we
find that spin disorder suppresses spin injection when
α ≫ l/lNsf . At small T we expect α ≈ 〈θ2〉/4, where θ
is the polar angle of the injected spinor. The parameter
α is approximately related to the reduced magnetization
m = M(T )/M(0) of the half-metal as 2α ≈ 1−m. (This
quantity is proportional to the partial minority-spin DOS
in the global spin basis.) Thus, the above condition shows
the range of temperatures for which Ohmic spin injection
from a half-metal may be possible.
It is interesting to compare this result with the case of a

two-channel ferromagnet with the same spin polarization
of DOS, for which the efficiency of Ohmic spin injection is
given by Eq. (1) with rc = 0. Setting ρ↓ ∼ ρ↑/α, we find
rF ∼ ρ↑l

F
sf/α, which should be compared to r̃F ∼ ρN l/α

in the case of a half-metallic electrode. The dependence
on the spin polarization of the globally defined DOS is
similar, but the overall factor is different: the product
ρ↑l

F
sf is replaced by ρN l in the case of a half-metal.

For spin injection in semiconductors from metals, typ-
ically ρN ≫ ρ↑, while lFsf is usually fairly small.39 Thus,
the effective resistance of a half-metallic electrode may
be much larger compared to a conventional ferromagnet
with a similar spin polarization of the DOS, which is an
advantage for practical applications. On the other hand,
since r̃F does not depend on the resistivity of the half-
metal, there is no benefit in increasing this resistivity. In
particular, a magnetic semiconductor should not neces-
sarily be a better spin injector than a highly conductive
half-metal, assuming that half-metallicity is maintained
at the interface in both cases.
For an actual device (e. g. F/N/F) it is necessary that

lNsf is not small compared to the length L of the chan-

nel, and l/lNsf should be replaced by l/L if lNsf ≫ L.
Thus, for Ohmic spin injection from a half-metal it may
be beneficial to use a lightly doped semiconducting chan-
nel in order to maximize the mean-free path there. This
is contrary to the conventional conductance mismatch
considerations, according to which it is desirable to de-
crease ρN by increasing the doping concentration. The
mean-free path in lightly doped silicon may be as high as
30 nm at room temperature42. For a short channel with

L ∼ 300 nm this would allow Ohmic spin injection at α <∼
0.1. Although this is an order-of-magnitude estimate, at
face value it allows spin injection for M(T )/M(0) >∼ 0.8.
In elemental transition metals the reduced magnetization
drops to 0.8 at about 75% of the Curie temperature, so
this limitation is not very restrictive, particularly since
the half-metallic gap may be closed by magnetic disorder
at much lower temperatures.43 A similar estimate applies
to nonlocal spin valves with a copper channel, where at
room temperature the mean-free path is on the order of
30 nm, and the spin-diffusion length is a few hundred
nanometers.39 It is possible that efficient spin injection
across a transparent interface observed in Ref. 28 can be
understood in a similar way.
From the point of view of interface engineering, it is

always necessary to avoid the depletion region near the
surface.15 On the other hand, we would like to point out
that in the Ohmic regime the existence of interface states
in the “wrong” spin channel does not necessarily preclude
spin injection, as it would with a tunnel barrier. If these
states are strongly hybridized with the normal region,
they can be regarded as a part of the corresponding spin
channel. (See Ref. 44 for a related discussion.) It is, how-
ever, important that the magnetic continuity and order-
ing at the interface is maintained. Otherwise, partially
ordered regions or “loose spins” can provide strong spin-
flip scattering at relatively low temperatures, thereby vi-
olating the α <∼ l/lNsf inequality and suppressing spin
injection. Thus, interface design based on chemical simi-
larity of the F and N regions45 may in practice be coun-
terproductive, because it may be expected to facilitate
interdiffusion.
With a tunnel barrier at the interface, the temper-

ature range allowing efficient spin injection extends to
α <∼ (l/lNsf)/Tc. As in the case of a conventional ferromag-
netic electrode, the tunnel barrier is favorable for spin in-
jection. In the case Tc ≪ l/lNsf spin injection is possible
at any temperature, and its efficiency is proportional to
Pt = (1 − α)/(1 + α). (Of course, this assumes that the
half-metal continues to behave as a single-channel con-
ductor at elevated temperatures; real materials with a
small half-metallic gap do not necessarily behave in this
way.)

VI. TIGHT-BINDING CALCULATIONS

In this section we verify the conclusions of the general
theory using tight-binding calculations for a specific re-
alization of a half-metal based on the s-d model. Static
spin disorder is introduced by randomizing the direc-
tions of the exchange fields on different sites according to
the mean-field distribution function corresponding to the
specified value of the magnetization. The spin injection
device is treated as an elastic system. We use a single-
band Hamiltonian with nearest-neighbor interactions in
the simple cubic lattice. For the half-metallic region, the
energies in one spin channel are made very large in order
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FIG. 2. Schematic picture of the band alignment for the
spin injection device without spin disorder. Darker and
lighter bands correspond to majority and minority spins. The
minority-spin band in the half-metallic region is shifted up
beyond the energy range shown in the figure. The horizontal
dashed line shows the Fermi level, and the vertical black bars
show the amplitude of random disorder.

to lift it far above the Fermi level. This is the limit of a
large s-d exchange integral. The half-metallic and normal
regions are sandwiched between two non-magnetic leads.
The hopping and band center parameters are selected as
showin schematically in Fig. 2. Calculations were per-
formed for supercells with the 10× 10 cross-section. The
2 × 2 conductance matrix Gss′ was obtained using the
Landauer-Büttiker approach, averaging over 100 config-
urations of spin and Anderson disorder. Brillouin zone
integration was performed using a 5× 5 mesh, which was
sufficient for convergence. To simulate diffusive trans-
port, random disorder was applied to both half-metallic
and semiconductor regions. Fig. 2 illustrates the rela-
tive amplitude of random disorder relative to the band
widths.
Since the spin current in the normal region is con-

served, the spin polarization of the current flowing into
the right electrode is identified with the spin injection
efficiency:

PG =
G↑↑ +G↓↑ −G↑↓ −G↓↓

G↑↑ +G↓↑ +G↑↓ +G↓↓

. (20)

According to the results of the previous sections, the de-
pendence of PG on the total resistance of the normal layer
reflects the dependence of spin injection efficiency on the
effective resistance rN .
In the following we verify the following properties of

the spin injection efficiency PG for a half-metallic elec-
trode: (1) Independence of PG on the thickness of the
half-metal; (2) The form (11) of the dependence of PG

on the resistance of the normal region; (3) Dependence of
r̃F on the magnetization of the half-metal, r̃F ∼ α−1; (4)
Dependence of r̃F on the transparency of a thin tunnel
barrier inserted at the interface, r̃F ∼ T−1

c .
The inset of Fig. 3a shows PG as a function of the

thickness of the half-metallic region at m = M/M(0) =
0.9, with a 50-monolayer thick normal region. It is seen
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FIG. 3. a. Conductance polarization as a function of the
inverse resistance-area product for the reduced magnetization
m = 0.8. Inset: Same quantity as a function of the thickness
of the half-metal at m = 0.9. b. Effective resistance r̃F as a
function of α−1, where α = (1−m)/2.

that PG is independent of the thickness of the half-metal,
in agreement with the general results. In all subsequent
calculations the thickness of the half-metal is fixed at 5
monolayers.

In order to obtain the asymptotic dependence of PG

on the resistance of the normal region, we have added a
tunnel barrier of variable height and thickness between
the semiconductor and the right lead. This is neces-
sary, because otherwise the localization effects become
important when the disordered normal region is made
too long,46 and the diffusive scaling breaks down. The
length of the normal region is fixed at 50 monolayers.
Fig. 3a shows the dependence of PG on the total resis-
tance of the scattering region (which is dominated by the
auxiliary tunnel barrier) for the reduced magnetization
of m = M/M(0) = 0.8. It is clearly seen that PG goes to
zero linearly with r−1

N , in agreement with Eq. (11).

Next we evaluate the dependence of the effective re-
sistance r̃F on the magnetization m of the half-metal.
To this end, for a given m the PG is calculated from
the configurationally averaged spin-dependence conduc-
tances for a set of thicknesses of the normal region rang-
ing from 10 to 200 monolayers (all within the range where
weak localization effects are undetectable). The PG(rN )
dependence is then fitted to Eq. (11) for each m. The
magnitude of Pt decreases with decreasing magnetiza-
tion but always remains somewhat larger than m. (This
is likely due to the fact that the conduction electrons
sample spin disorder over a few sites, effectively decreas-
ing the transverse fields.) The dependence of r̃F on the
magnetization is shown in Fig. 3b, where α = (1−m)/2,
as above. Linear dependence r̃F ∝ α−1 confirms the pre-
dictions of the general model, in which r̃F ∝ R−1

↑↓ ∼ α−1.
This divergence of r̃F at low temperatures may be used
experimentally as a signature of a true single-channel
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half-metal, although at very low temperatures the inter-
facial spin-orbit scattering may take over and cut off the
divergence.
Finally, we considered the effect of a single-monolayer

tunnel barrier at the F/N interface. We set m = 0.6 for
the half-metal and varied the thickness of the semicon-
ductor region from 10 to 200 monolayers, as above. As
above, PG calculated from the averaged spin-dependent
conductances was fitted to Eq. (11), extracting the
r̃F (Tc) dependence. Tc was varied by changing the height
of the tunnel barrier. Fig. 4 shows the results suporting
the inverse relationship r̃F ∝ T−1

c . Together with the re-
sults shown in Fig. 3, we find r̃F ∝ (αTc)

−1, as expected.

VII. CONCLUSIONS

We have analyzed the spin injection from a half-
metallic electrode into a normal (or semiconducting) re-
gion in the presence of thermal spin disorder. The two-
current model with independent populations of the two
spin channels is inapplicable to a half-metallic ferromag-
net. The spin injection efficiency is described by Eq. (11),
in which rN is the conventional effective resistance of the
normal metal, while r̃F is controlled by spin-flip scat-
tering at the interface with the ferromagnet. Although
r̃F does not depend on the thickness of the half-metallic
layer, its dependence on the spin polarization of the den-
sity of states and on the contact resistance is similar to
the case of a conventional ferromagnet. Explicit sim-
ulations for the tight-binding s-d model confirm these
general conclusions. In the case of a transparent inter-
face, efficient spin injection is possible in the temperature
range corresponding to α <∼ l/lNsf , where α is the relative

deviation of the (surface) magnetization from saturation,
and l is the mean-free path in the N region. A rough
estimates suggests that efficient spin injection from half-
metallic Co-based Heusler alloys into silicon or copper

may be possible at room temperature across a transpar-
ent interface. Adding a tunnel barrier at the interface
with transparency Tc extends this temperature range to
α <∼ l/lNsfT

−1
c .
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41 S. Garzon, I. Žutić, and R. A. Webb, Phys. Rev. Lett. 94,

176601 (2005).
42 L. Weber and E. Gmelin, Appl. Phys. A 53, 136 (1991).
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