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When a frequency chirped excitation is applied to a classical high-Q nonlinear oscillator, its motion
becomes dynamically synchronized to the drive and large oscillation amplitude is observed, provided
the drive strength exceeds the critical threshold for autoresonance. We demonstrate that when such
an oscillator is strongly coupled to a quantized superconducting qubit, both the effective nonlinearity
and the threshold become a non-trivial function of the qubit-oscillator detuning. Moreover, the
autoresonant threshold is dependent on the quantum state of the qubit and may be used to realize
a high fidelity, latching readout whose speed is not limited by the oscillator Q.

In a nonlinear oscillator, the resonance frequency shifts
as a function of the oscillation amplitude. When such a
system is driven, high oscillation energy can be attained
if the frequency of the excitation is modulated to main-
tain resonance. Remarkably, complete synchronization
between the forcing field and the oscillator motion can
be achieved by using a sufficiently strong drive whose
frequency is linearly modulated (chirped) in time. If the
drive strength, however, is weaker than a critical value,
then the system does not synchronize and the forced os-
cillations decay. This phenomenon, known as autores-
onance (AR), plays an important role in diverse fields
of classical physics ranging from planetary dynamics1

to plasma physics2, and has recently been demonstrated
at microwave frequencies in superconducting Josephson
junction circuits3. Further work has explored the inter-
play between autoresonance and quantum mechanics by
cooling a weakly anharmonic circuit such that its ground
state is dominated by quantum fluctuations4 and by real-
izing a circuit with a highly anharmonic level structure5.
In the former, quantum fluctuations simply broaden the
classical AR threshold4,6 whereas in the latter, the dy-
namics are described by quantum ladder climbing7.

In this letter we report the observation of AR in a
superconducting circuit where a weakly nonlinear, pla-
nar microwave cavity is strongly coupled to a transmon
qubit in a circuit quantum electrodynamics architecture.
We observe that both the value and width of the critical
threshold for AR depend on the quantum level structure
of the qubit-cavity system, exhibiting a rich dependence
on qubit-cavity detuning. Our analysis points to the con-
clusion that the initial quantum dynamics that occur in
the few lowest states of the system crucially influence the
final outcome of an applied chirp excitation. This results
in a sensitivity of the AR threshold to the initial qubit
state. Furthermore, we show that analogous to the classi-
cal AR threshold, the variation of qubit state sensitivity
with detuning is correlated with the low-power effective
nonlinearity of the system. At points of optimal bias,
we achieve high readout fidelity and demonstrate that a
qubit coupled to a high Q cavity can be effectively mea-
sured in a chirp time that is significantly shorter than
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FIG. 1: Experimental device: a transmon qubit coupled to
a nonlinear superconducting cavity. (a) Circuit diagram of
the device; the anharmonic resonator is formed from a me-
ander inductor embedded with a Josephson junction and an
interdigitated capacitor. The resonator is isolated from the
50 Ω environment by coupling capacitors Cc and coupled to
a transmon qubit characterized by Josephson and charging
energy scales EJ and Ec respectively. The coupling rate is g.
(b) False color scanning electron micrograph of the the de-
vice with the resonator and qubit junctions (lower and upper
insets).

the cavity equilibration time.

Our device, shown in Figure 1, consists of two super-
conducting, lumped element planar non-linear resonators
that are cooled to their quantum ground state. Though
both oscillators consist of capacitively shunted Joseph-
son junctions, the parameters are chosen such that one
plays the role of a quasi-classical resonator and the other
as a multilevel artificial atom. The quasi-classical res-
onator is composed of a 1.8 µA Josephson tunnel junction
embedded in 1.4 nH of linear inductance, and shunted
with 580 fF of capacitance to realize a resonance at
ω0/2π = 5.3445 GHz. The total Q = 9 × 103 of the
resonator is limited by deliberate coupling to the environ-
ment as set by coupling capacitors Cc, and by losses in the
Josephson junction. The transmon qubit8 with Joseph-
son and charging energies EJ = 100 GHz and EC = 280
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MHz, respectively, is composed of an interdigitated ca-
pacitor shunted with a two junction SQUID with 100 nA
junctions. The qubit 0 → 1 transition frequency can be
tuned between 3 and 15 GHz by adjusting an applied
flux through the SQUID loop. The qubit–resonator cou-
pling rate is g/2π = 118 MHz. The device was fabricated
using standard e-beam lithography and angle deposition
of aluminum on high resistivity silicon4. The chip was
thermally anchored to the mixing chamber stage of a di-
lution refrigerator (T = 30 mK) and shielded from the
environment by superconducting and magnetic shields.

The coupled transmon/nonlinear oscillator is modeled
by the generalized Jaynes-Cummings-Kerr Hamiltonian
(~ = 1),

H = ω0a
†a+Ka†a†aa+

∑
i

εi|i〉〈i|+

+

Nl∑
i,j=0

gij |i〉〈j|(a† + a), (1)

where εi are the transmon energy levels, gij are the cou-
pling matrix elements between the transmon and the
cavity8, Nl is the effective number of transmon levels,
and a†(a), is the creation (annihilation) operator for the
resonator mode. Terms in the Hamiltonian describing
dissipation and excitation have been suppressed. Here
we have modeled the large critical current junction as
a Kerr nonlinearity9 with Kerr coefficient K/2π = −60
kHz since the junction is inductively shunted and results
only in weak anharmonicity. The transmon junction in-
ductance, on the other hand, participates strongly in the
circuit resulting in quantized anharmonicity where only
a few quantum levels participate in the dynamics.To il-
lustrate the effect of the qubit on the resonator mode, we
can write an effective Hamiltonian for the system that is
valid for a small number of excitations in the dispersive
regime12 |∆| � g01 (∆ ≡ ε1 − ε0 − ω0),

Heff = ε+ ωn̂− λn̂2, (2)

where n̂ = a†a is the cavity photon number operator,
and ε, ω, and λ are the effective (qubit state depenedant)
qubit energy, resonator frequency, and nonlinearity of the
system, respectivley. For the case of Nl = 2, Eq. 1 can be
diagonalized exactly and written in the form of Eq. 2 but
for higher numbers of qubit levels, the coefficients ε, ω,
and λ must be determined numerically. We find that
the effective nonlinearity, λ changes significantly with
the state of the qubit12. In the classical Duffing oscil-
lator Hamiltonian, the AR threshold has been shown to
be dependent on the nonlinearity7. As such, we expect
the dependence of λ on detuning and the qubit state to
influence the AR threshold.

To quantify the role of λ in determining the AR thresh-
old, we begin by characterizing the low-power steady-
state response of the system as the qubit detuning is var-
ied to be positive or negative. The transmission of the
oscillator, shown in Figure 2, was recorded with a vec-
tor network analyzer using a weak probe tone, while the
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FIG. 2: Energy levels and the effective nonlinearity λ of the
strongly coupled system. (a) The measured coefficient of non-
linear response for a strongly coupled system versus qubit-
cavity detuning for the qubit prepared in the ground state in
the low excitation regime. Theory curves for the model Eq.
(1) with Nl = 2 (blue), Nl = 3 (gray), and for a model of
coupled nonlinear classical oscillators (red) are shown. The
arrows indicate the locations of avoided crossings of the level
pairs |1, 3〉 ↔ |0, 4〉 and |1, 4〉 ↔ |0, 5〉. (Inset) The transmis-
sion of the resonator when driven with tone at ωd that occu-
pied the resonator with n̄ = 0.4 (black) and n̄ = 10 (gray)
off-resonant photons. (b) Energy levels of the qubit-oscillator
model with Nl = 7 show the avoided crossings in the 4 and 5
excitation manifold. (c) Quantum trajectory simulation of the
system exhibits a general trends of increasing effective non-
linearity λ with diminishing qubit-cavity detuning (∆) with
abrupt reductions associated with avoided crossings in the 4
and 5 excitation manifold. For these simulations, the qubit
energy levels were modeled as a Duffing nonlinearity.

power of an off-resonant drive at frequency ωd was varied.
The number of off-resonant photons was calibrated using
the ac stark shift for ∆/2π = 2.64 GHz, and using the
measured cavity Q at each detuning. As shown in Fig-
ure 2(a), the resonant response of the nonlinear resonator
shifts to lower frequency for increasing drive powers. As
a note, we also observed a reduction of the resonator Q
when the qubit is near resonance. This reduction may
be attributed to a power broadening as the excitation
gradually becomes more qubit-like. At each detuning,
we extract the effective nonlinearity, λ, of the resonator
by fitting the power-dependent resonance frequency to a
straight line. These results are plotted in Figure 2(a) as
a function of the detuning. We also plot the calculated
nonlinearity for Nl = 2 and Nl = 3 transmon levels. The
calculated nonlinearity for Nl = 2 agrees poorly with
the data, indicating that higher levels of the transmon
should be included in the analysis, even in the regime
of weak excitation10. A calculation based on coupled,
classical nonlinear oscillators agrees well with the data
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FIG. 3: (a) The transmitted magnitude for chirp sequences
with drive voltages that were above (black), near (dashed),
and below (gray) the AR threshold. (Inset) Pulse sequence:
the qubit manipulation pulse was applied immediately before
the start of the chirp sequence. (b) The average transmitted
magnitude near 400 ns versus drive voltage shows S|0〉 (black)
and S|1〉 (red) for ∆/2π = 0.59 GHz.

for ∆ < 0, but does not capture the significant reduc-
tions in the nonlinearity observed for ∆/2π = +0.5 and
∆/2π = +0.7. To explain the origin of these features, we
show the calculated energy levels of the system as a func-
tion of detuning, obtained by numerical diagonalization
of Eq. (1) with 7 transmon levels and K = 0 in Figure
2(b). The energy levels show clear avoided crossings for
|0, n〉 and |1, n−1〉 energy levels for n = 4 and n = 5 near
∆/2π = 0.5 and ∆/2π = 0.7. We note that the avoided
crossings for the n excitation manifold are large, on the
order of

√
ng and introduce gaps that effectively isolate

the lower manifold of photon excitations from the rest
of the anharmonic ladder. With the probe employed at
these frequencies, the classical nonlinearity is disrupted
by the avoided crossings and the description of the system
with a constant anharmonicity is insufficient. This effect
manifests as a reduction of the measured nonlinearity for
these detunings. To verify this, we have simulated the
nonlinear response of the system when the qubit energy
levels are modeled as a Duffing nonlinearity. The en-
ergy levels exhibit the same structure, and the simulated
nonlinearity exhibits corresponding abrupt reductions as
displayed in Figure 2(c).

For the range of detunings that we probed, the cou-
pled system nonlinearity in the low excitation regime
is dominated by the qubit, and consequently reflects
the quantized levels of the system. In contrast, when
n̄ � 1 a large number of excitations are added to the
coupled cavity-qubit system, the effect of the qubit is
diminished11 and the effective nonlinearity of the cav-
ity is dominated by the weaker Kerr term. Since the
Kerr nonlinearity originates from a relatively large criti-
cal current Josephson junction, the nonlinearity persists
to high powers. To study this regime, we now turn to
examining the transient response of the system to a fre-
quency chirped drive. The chirp excitation pulse, gen-
erated using a voltage controlled oscillator as previously
described4, started at 5.54 GHz and was ramped down to
5.14 GHz in 500 ns. In Figure 3(a) we show the response

10
0

50

V d
 (n

V)

1.51.00.50.0-0.5-1.0
 Δ/2π (GHz)

10
0

50V d
 (n

V)

1.51.00.50.0-0.5-1.0
 Δ/2π (GHz)

 Digitizer voltage (mV)
0 1 2 3 4 5

(a)

(b)

S|1

S|0

FIG. 4: Measured autoresonance and threshold sensitivity on
the level structure and initial qubit state. (a) Color plot shows
S|1〉 versus qubit detuning. The dashed line indicates the AR
threshold, V|1〉. AR measurements were not taken for small
values of the detuning as indicated by the hatched region. (b)
Color plot of S|0〉 with V|0〉 indicated as a solid black line. The
AR threshold, V|1〉, is also plotted for comparison as a dashed
black line. The two arrows indicate the location of avoided
crossings in the 4 and 5 excitation manifold.

of the oscillator to the chirped excitation for varying drive
amplitudes. The data are the average of 10,000 chirp se-
quences. As the drive approaches the resonance, energy
is transferred and oscillation amplitude begins to build.
When the drive amplitude is weak (gray), we observe that
after small excitation the system relaxes back to low am-
plitude oscillations. In contrast, when the drive is above
(black) a threshold value, the oscillator builds up energy
and oscillates at high amplitude, behavior indicative of
phase locking of the oscillations to the drive. Near the
threshold, in a given chirp sequence, the resonator prob-
abilistically locks or not into high amplitude oscillations,
resulting in the dashed average trace.

Examining the response of the resonator at a specific
point in the chirp sequence, the average amplitude of os-
cillations shows a typical “S-curve” as shown in Figure
3(b) that transitions from a low average transmitted volt-
age, corresponding to no locking events to high average
voltage corresponding to a locking probability P = 1.
The threshold exhibits a finite width that arises from
the initial quantum fluctuations of the oscillator and can
be explained semiclassically4. To examine the effect of
different quantum initial states on the AR dynamics we
compare S-curves for the qubit prepared in either the
|0〉 or |1〉 state. The |1〉 state was prepared by apply-
ing a π pulse to the qubit immediately before the start
of the chirp sequence. In Figure 3(b) we display S|0〉
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and S|1〉, S-curves for the initial |0〉 and |1〉 states for
∆/2π = +0.59 GHz. We note that the AR threshold for
the two states are significantly different, and correspond
to a maximum discrimination or AR capture fidelity12 of
90%. Given perfect distinguishability between the low-
and high-amplitude responses of the oscillator, the AR
capture fidelity would correspond to the single shot read-
out fidelity. We note that this value is consistent with
near-unity fidelity for mapping the initial qubit state onto
the AR response of the oscillator after accounting for de-
cay of the qubit |1〉 state due to a finite T1 = 1 µs.

In Figure 4(a) we plot S|1〉 versus qubit detuning. The
dashed line indicates V|1〉, which is defined as the drive
voltage where the locking probability P = 1/2 for the
qubit prepared in the excited state. Similarly, Figure
4(b) displays S|0〉, with the solid line indicating V|0〉, the
corresponding threshold value for the ground state. Note
that V|1〉 is superimposed for comparison. Similar to the
low power nonlinearity, the response is asymmetric for
positive versus negative detuning. When the qubit is
below the resonance, the threshold for the excited state
is higher than that for the ground state, consistent with
the expected dependence3 of Vc ∝ ω−1/2 based on the
dispersive cavity shift due to the qubit, as well as with
the dependence of λ (Eq. 2) on the qubit state.

In contrast, when the qubit is tuned above the cav-
ity resonance, the threshold for the excited state is re-
duced compared to the ground state, which varies dra-
matically with qubit detuning up to ∆/2π ∼ 1 GHz,
where again the threshold for the qubit exited state is
higher compared to the ground state. Surprisingly, the
quasi-periodic structure of the high power signal emanat-
ing from thousands of photons in the cavity reflects the
detailed level structure of the cavity QED model in Eq.
(1). For ∆ > 0, this level structure is significantly per-
turbed due to many avoided crossings in the transmon-
cavity spectrum. For the qubit in the ground state, the

values of ∆ for which the threshold is sharply reduced
correspond to the avoided crossings that cause drastic
changes to the low power nonlinearity. The reductions
of the threshold for the excited qubit state fit well with
the next set of avoided crossings between the |1, n〉 and
|2, n− 1〉 levels.

In conclusion, we have demonstrated AR capture in a
weakly nonlinear oscillator coupled strongly to a quan-
tum system. The interaction modifies the AR threshold
depending on the specific qubit-oscillator level structure,
and provides a probe of the initial quantum state. We
have harnessed this effect to realize a high-fidelity, latch-
ing qubit readout whose speed, unlike techniques em-
ploying amplitude modulation13,14, is not limited by the
oscillator Q and can be controlled by the strength of the
drive11,15–17. In our experiment, a frequency chirp pulse
sequence of 200 ns is sufficient for readout whereas am-
plitude modulation would require a ∼ 3 µs pulse for a
our Q = 9000 resonator, far exceeding the T1 lifetime of
the qubit. As such, this new measurement technique is
potentially a valuable resource for new types of super-
conducting qubit circuits which incorporate very high-Q
superconducting 3D resonators18.
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