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In a recent inelastic neutron scattering experiment in geugogap state of the high temperature supercon-
ductorYBa2CusOg.6 an unusual ‘vertical’ dispersion of the spin excitationshaa large in-plane anisotropy
was observed. Inthis paper we discuss in detail the spireptibdity of the singletd-density wave, the triplet-
density wave, as well as the more common spin density wawr®with hopping anisotropies. From numerical
calculations within the framework of random phase appratiom, we find nearly vertical dispersion relations
for spin excitations with anisotropic incommensurabiliylow energyw < 90 meV, which are reminiscent
of the experiments. At very high energy > 165 meV, we also find energy-dependent incommensurability.
Although there are some important difference between tleetbases, unpolarized neutron measurements can-
not discriminate between these alternate possibilitresyertical dispersion, however, is a distinct feature bf al
three density wave states in contrast to the supercondustirte, which shows an hour-glass shape dispersion.

I. INTRODUCTION experiment is a vertical dispersion relation of the spintexc
tions with a large in-plane anisotropy in the pseudogae stat
. in_contrast to the ‘hour glass’ dispersion observed in the su
The pseudogap state of high temperature superconduct_o %rconducting stattThe qualitatively different behavior be-
has been studied with numerous experimental tools, yet i een the superconducting and the pseudogap states ssiggest

ongmtlst not resolt\_/e;d.hOr}e V|ev(\j/ proptoses dthat_;che psg;’%?c'different mechanisms. Motivated by the experimental cbser
gap state Is a particie-hole condensate, a density wav ations, we study the spin susceptibility of the three dgnsi

such states that break translational symmetry and hasgstrog, oo -rders mentioned above with hopping anisotropy, which
momentum dependence of the tyﬂ@—f’ two candidate breaksC rotational symmetry and mimics an ‘electronic ne-
densﬂy wave orders that can coup_le t0 inelastic NEULroR SCa e state, which is a collective phenomenon not desdribe
tering ha;ve been F’rOF’OSGd: the singlet_,-density wave by the density functional theo®y-12Here we consider a phe-
(sDDW),” corresponding to angular momentum= 2 buta  3menglogical modeR where we set the hopping terms to
spin singlet, and the spin density wave order (SDW); in thg, anisotropic along- and b-axes, and study the energy-
general classification of density wave ordethe latter corre- o mentum dispersion relations of the dynamical spin suscep
sponds td = 0 buta spin triplet. In addition to the SDDW or- ipijity  The explicit calculation involves random phasg-a
der, its tnplgt counterpat(tDDW) 10dy2_y2, Where_a =+l proximation (RPA) that has been widely discussed in the lit-
corresponding to up and down spins with thexis as the  gra¢re: for some representative papers, see the Refs7.14—1
axis of spin quantization has also interesting properties a The structure of this paper is as follows: in Sec. II, we
deserves more attentidrRecently, Fujimoto proposed that a sketch the calculation of the spin susceptiBiIity ana m
triplet d-wave particle-hole condensate may be realized in th‘i:he numerical results of the sDDW order. In Se(’:. 1, we dis-
hidden order state of the URSI; systent. Since hight. su- cuss the numerical results of the tDDW order. In Sec. IV, we

perconductors have a rich phase diagram, which hosts MaNYso discuss the numerical results of the SDW order. To make

possmle competing orders,. Itis bOth. Important and interes the paper succinct and more accessible, the explicit fofms o
ing to examine the properties of various density wave orde[he spin suscentibility are shown in Appendix A
parameters of higher angular momentum. In this paper we P P y PP '

discuss the three order parameters mentioned above. In addi

tion, we note that a singlet chiral > _ > +d,,-density wavé

aswell agod,:_, +d,, density wave states with interesting II. SPIN SUSCEPTIBILITY: SINGLET DDW
topological properties have been explofe@wing to limita-

tions of space, we do not discuss these order parameters hereIn this section we set up the calculation of the spin suscep-

Inelastic neutron scattering can directly probe magnetic e tibility using SDDW as an example. In the following sections
citations. The scattering cross-section is proportioaaht e will give the results of the other order parameters. To cap
magnetic structure factor, which is proportional to the@ma ture the in-plane anisotropic feature of the pseudogap stat
nary part of the dynamic spin susceptibility via the fluctoiat  the neutron scattering experiment, we consider the SDDW or-
dissipation theorefn Thus, a calculation of the spin suscepti- der with anisotropic hopping terms. In the momentum space,
bility will provide a link between theoretical models andire  the order parameter can be written in terms of the fermion op-
tron scattering experiments. erators as

In particular, we want to address a recent experiment in
underdoped YBaCu;Og 6. The most striking aspect of this (cL+Q7ack75> X 100 Wi Q)



with W, = %2 [cos(k,a) — cos(kyb)], wherea andb are lat-
tice constants. For orthorhombic YBau;Og ¢, @ andb are
unequal, but the difference is very smalk £ 3.828 b =
3.87A)

The two-dimensional mean field Hamiltonian will be

Hsppw = Z Z (Ekclyack,a + 6k+QCL+Q7ng+Q,a
ok

+Z'WkCL,UCk+Q_’g + hc) s (2)

where the summation is over the reduced Brilloin Zone (RBZ)

= (n/a,m/b) is the

bounded by(k,b) £ (k;a) = £m, Q
nesting vector, and, = e, + eo;, With8
€1y = —2t[(1 + 1) cos(kya) + (1 — r) cos(kyb)],
€ar, = 4t' cos(kya) cos(kyb) — p
—2t" [(1 + r) cos(2kza) + (1 — ) cos(2k,b)] . (4)

(3)

For » # 0, we have anisotropic hopping terms which

breaks four-fold rotational symmetry. Note that althoulgé t

anisotropy also modifies the next nearest neighbor hoppin
it is simply a parameter and is lumped into the definition
of ¢’ in our model. The eigenvalues of the Hamiltonian are

Mot = €21 = By with By, = /&2, + W2.

In Fig. 1, the constant energy cuts of the imaginary part of
the transverse spin susceptibility alomgaxis forw < 0.6¢
are plotted. The results along-axis are similar and are
not shown here. Away fronfQ = (n/a,7n/b), the mag-
netic excitations are peaked at the incommensurate positio
(gza, gyb) = (m £ 64, ) and(w, w £ 5, ), where we define the
incommensurability, andd, alonga*- andb*-axes, respec-
tively. From the numerical results, one finds tlhhatand o,
are weakly energy dependent, similar to the inelastic nautr
scattering experimeht Furthermore, a prominent anisotropy
in the incommensurability, < J, can be seen. With the hop-
ping anisotropyr = —0.1, we obtaind, ~ (0.30 + 0.01)7
andd, ~ (0.235+0.015)m, which givesd, /4, ~ 0.78, which
would be again similar té, /., =~ 0.6 reported in the neutron
scattering experiments.

One may further adjust the parameters of this model to fit
the experimental data, but that is not the goal of this paper.
We have varied the chemical potential, to check how the
dispersion relations vary with hole doping; results fofetiént
doping levels are qualitatively similar. In the doping rang
8% < ny, < 20%, there are always weakly energy-dependent

Yhcommensurate excitations, and the incommensuralyity

andJ, increase with increasing doping level as shown in
Fig. 2.

The one-loop spin susceptibility in the momentum and Mat-

subara frequency space is definedssyeing the number of
lattice sites,

ij . 1 ? Wi T i j
W ad i) = =g [ TS0 ). 6

wherei,j = x,y, z, 7 is the imaginary time7" is the time-
ordering symbol, and the spin operators are

Y Chigabascus. (6)

k,a,B

Here 6,5 are the Pauli matrices with spin indicesand 3.
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FIG. 1. Constant energy cuts of ¥} 5 , (¢, w) alonga*-axis when

We can define the longitudinal and the transverse suscepty; — r/p and0.1t < w < 0.6t for the SDDW order. The weakly

bilities asx§*(q, ¢',w) and x§ (¢, ¢',w), respectively, with
S;'E = S £iSY andiw,, — w+1d. For unpolarized measure-
ments, the scattering intensity, contains both the spin-flip
and the non-spin-flip channels,x (x** + 2x*~)/3. How-
ever, in this paper we will present the longitudinal and $ran
verse susceptibilities separately so that it can provideerm
formation about the polarized neutron scattering experisje
which may be achieved in the future.

For the sDDW orderxz*(q,¢',w) = 2x¢  (¢,¢',w) be-

energy-dependent incommensurate peak positions are dhaiikie
dashed lines. The results of ¥ 4 (¢, w) are similar and omitted.

Note that hopping anisotropy is not necessary for the exis-
tence of the nearly vertical dispersions. To demonstrase th
the numerical results with isotropic hopping are plotted in
Fig. 3. Herer is set to0, u = —0.806¢, and the hole dop-
ing level isn;, = 10.03%. All the other parameters are the

cause up-spin and down-spin parts of the Hamiltonian arsame as in Fig. 1. One can still find nearly vertical disp&rsio

identical. The explicit form of the one-loop susceptilyilis

with incommensurability, ~ (0.255+0.015)7 even without

shown in Eq. (Al1- A4), and we calculate the RPA susceptithe hopping anisotroply’

bility as shown in Eqg. (A5-A6) in Appendix A. For illustra-
tive purposes, we seét= 0.15 eV, ¢’ = 0.32¢, " = 0.1¢/,
Wy = 0.65t, r = —0.1, andkgT = 0.05¢. The chemical po-
tential is set tqu = —0.805¢ in order to obtain a hole doping
level of nj, =~ 10.07%, approximately the doping level in the

The neutron scattering experiments show vertical disper-
sions in the energy rang# meV < w < 60 meV,® and
the numerical results exhibit a nearly vertical dispersiap
tow < 0.6t = 90 meV with the chosen parameters, which are
similar to experiments. It is interesting to see how the t@xci

experiment. Other similar choices of the parameters do ndion peaks evolve at higher energies, so in Fig. 4 we present

change the conclusions.

the numerical results along theé-axis for0.7¢t < w < 1.4t,
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FIG. 2. Doping-dependence of incommensurabifityandd,. Here

1 is adjusted to obtain different doping levels, and all theeotpa-
rameters are the same as in Fig. 1.

IMipa(Cholly= )

) ~ w=0.1t
e =02t
——=0.3t

—=—w=0.4t

0.7/
06 /

0.3 1 b =05t
0.2 ——w=0.6t
0.13

1.2 1.

0.8 1.0
FIG. 3. Constant energy cuts of ¥} 5 , (¢, w) alonga*-axis when

gy = 7 /b for the sDDW order. Here = 0, ;. = —0.806t, and alll
the other parameters are the same as in Fig. 1.

where all the parameters are the same as in Fig. 1 except for|

the energyv. The results along*-axis are again so similar

- n ,
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FIG. 4. Constant energy cuts of ¥} 5 , (¢, w) alonga*-axis when
gy = w/band0.7t < w < 1.4¢ for the sDDW order. The energy-
dependent incommensurate peak positions are marked vstieda
lines.

ing from the scattering from the upper banrg(+ E}) to the
lower band €2+, — E%+4), and the scattering from the lower
band €2, — Ey) to the upper bandtfy +, + Ey+4). The last
two terms, on the other hand, are intraband scattering.heor t
purpose of illustration, an example of the band structuk an
the scattering process is plotted in Fig. 5, where the iatedb
and intraband scattering are shown with arrows.
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that they are not shown here. In Fig. 4, one finds that the
high energy spin excitations are strongly energy dependengs 5. Energy spectrunfh.. + x) of the SDDW system as

The incommensurate peaks move towarg @ in the range
0.7t < w < 0.9¢, and eventually disappearat= 1.0¢, where
the intensity aroung = @ is enhanced. Whea =~ 1.1t, a
central peak emerges at the commensurate posjtien Q.
As the energy is further increased, the central peak splits i
to two peaks deviating fromy) with incommensurability),

and ¢y, which are marked by dashed lines. Unlike the low-

energy incommensurability, andd, 6, andd, are energy-

(kza, kyb) goes along the route(0,0) — (w,0) — (m,7) —
(0,0). The solid (dashed) arrows indicate the interband (intrepa
scattering, and the dashed line is the chemical potentidlhe pa-
rameters are the same as in Fig. 1.

The interband and intraband terms of Eq. (A3) flort <
w < 0.6t are plotted in Fig. 6 and Fig. 7, respectively. The

dependent and increase with increasing energy. Note that t@sults for higher energy.7t < w < 1.4t are not shown be-
observe), andd;, the neutron scattering experiment needs tocause they are very similar. From Fig. 6 and Fig. 7, one finds

be performed with very high energy > 1.1t = 165 meV),
or perhaps high energy resonant inelastic X-ray scattedng
be of use?®

that the intensity neay = @ is mainly from the contribution
of the interband terms, whereas the contribution of theaintr
band terms arise whedq is away from@Q. From Eq. (A3),

The reason for the unusual vertical dispersions at low enwe can see that gt= @, the intraband terms vanish and only
ergies and a different behavior at high energies can be undethe interband terms contribute, leading to magnetic eticita
stood by examining the imaginary part of Eg. (A3). In this peaked around ~ 1.1¢. In the vicinity of¢ = @, interband
equation, the first two terms are interband contributios-ari terms still dominate, and we may expand them to first order in



0q = |g — Q| and obtain n
q | q Q | ! Im)(intra(qx’qy: B @)

~ 0.7 — =01t

N 2k [nr(ean £ Br) = np(€akrg F Brag)] X 0.6 = I\ w=0.2t

O(w — € F Er + €2r1q F Errq) 0-57 N o0t

=~ F 2k [nr(ear F Bx) —nr(er + Ex) 0.4 N it = w=0.4t

+an§1§E) |E=cor 7B, Vi (€2 F Ey) - 6q} X 0.3/ e =05t

v =06t
e o3

which will be peaked afg = (£2E), —w)/ [Vi(€2r F Ex)]- B o8 . 1.0 12 1I4qxa/7r
However, for low energies, the energy conservation condi-

tion cannot be satisfied unlegs, is very small, which di-

minishes the difference between the Fermi functions ansl thuf/G- 7- Constant energy cuts of the intraband terms ofdmy, (¢, w)
suppresses the intensity. Therefore, there is no enhameegd p " Ed- (A3) alonga”-axis wheny, = /b for 0.1t < w < 0.6t.

in the vicinity of ¢ = Q for low energies. For higher ener-
gies, the energy conservation factor will be satisfied, &ed t
intensity at the incommesurate position§ éndd;) will be
enhanced and the excitation peaks can be seernas.1t in

Fig. 4.
g We now consider the tDDW order, and choose the spin

In contrast, away frong = @, the intraband terms dom- o ; SR
inate. The peak positions of the energy conservation facduantization axis to be theaxis without any loss of general-

tor, 6(w — ear F Ei + €249 = Eitq), Move away front) ity, that is,
with increasingo. On the other hand, the coherence factor t G = s =
’ . c c X i(d-Gop)Wi =1(Z2 - Tag)Wy. 7
(14 (e1x€1k4q +Wka+q)/_(EkEk+q)] vanishes aty = Q (Chiquachs) o<l o) Wi =i Wi 0
and develops with increasing — Q|. For the chosen pa- The tbDW mean field Hamiltonian is therefore
rameters, the energy dependence of these two oppositéseffec
almost cancels out in the energy rargel w < 0.6¢, lead- Hippw = Z Z (ekcL o Chio T Eh+QC4 0.0 CheQuo
ing to the weakly energy-dependent positions of local max- o k ’ ’
ima (0, andd,) as in Fig. 7. Such a dispersionless feature
is sensitive to the parameters because it depends on whether
the contribution of the intraband terms overcomes that ef th which has the same eigenvalues as the SDDW Hamiltonian.

interband terms away fror®. The nature of the excitation I O
; S : The explicit form of the one-loop and RPA susceptibilities a
peaks due to the interband terms is distinct from the intieba eqiven in Eq. (A7- A12) in Appendix A,

terms. The dominant contribution of the interband terms ar _ The constant energy cuts of the imaginary part of the spin

deter_mined by _the energy conservaﬁon factor and the Femgusceptibility of the tDDW order along*-axis are shown in
functions, leading to sharper excitation peakgmat: ¢/, ) Fig. 8. The hopping anisotropy is set to0 for simplicity

y .
and(m, 7 = d), whereas the intraband terms also depend Ofind the parameters are the same as in Fig. 3. The longitudinal

the gohgrer:ce dfa?tor:, resultullg u;trglatlvely (;)roadeingmllo susceptibility behaves similar to the sDDW order whereas th
maxima instead of sharp peaks(at: 6., 7) and(m, m £ ). yansyerse susceptibility is significantly different irethicin-

ity of ¢ = @Q. In comparison with the sDDW order, the in-

IIl. THE TRIPLET d-DENSITY WAVE ORDER

+Z‘O-W]CCL’UC]C+Q7U + h.C.) , (8)

My, r(quy:z:w) tensity of ImJ}g;A(q,w) of the tDDW order is suppressed
e b e w=0.1t in the vicinity of ¢ = Q. The intensity exhibits a V-shaped
0.25t =02 curve around; = @ atw = 0.1¢, which evolves gradually
——w=0.2t
e =03t to a U-shaped curve at = 0.6t. Here we can also see the

0.20._-
0.15
0.10f
0.0

nearly vertical dispersion of the incommensurate spintaxci
= w=04t tions d, ~ (0.255 & 0.015)7. Notice that for unpolarized
——w=0.5t measurements, with oc (x** + 2x™)/3, there will still be
— =0.6t the vertical dispersion away from= Q.
The difference between the sDDW and tDDW order is that
iN Xiag(4, w) Of the tDDW order, Eq. (A9), th&V, W, term
0.8 10 12 1‘.4qxa/” of the coherence factor changes sign and reduces the inter-
band contribution. As a result, the intensity in the vigirof
. g = Q is suppressed. The significant difference between the
FIG. 6. Constant energy cuts of the interband terms afdiy, (7,w)  transverse and the longitudinal susceptibilities shoelmit
in Eq. (A3) alonga™-axis wheng, = m/bfor 0.1¢ < w < 0.6t. one to distinguish the singlet and the triplet orders in spin
polarized measurements. On the other hand, the sign change
of W), Wy, does not affect the intraband terms as much as
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the interband terms, so the nearly vertical dispersionstdue interchange, there is also a difference in the intensityiado

the intraband contribution can still be seen away fipm Q. q = @ between tDDW and SDW, which could be observed

if spin-polarized experiments with high resolution coulel b
achieved, although one cannot be sure because of the non
universal nature of this difference. Away frogn= @, we

can also see the vertical dispersions of the incommensurate

2z T
IMyRpA(Ox.ay= b W)
——w=0.1t

30 =02 spin excitations withy, ~ 0.287. Again, for unpolarized
25 =03t measurements, there will still be the vertical dispersivay

! ——w=0.4t fromg = Q.

157 A T e=03t To understand the swap of the susceptibilities between
1.0¢) —~—w=06t tDDW and SDW, we should compare Eq. (A3) and Eq. (A9)
0.5¢ for the tDDW with Eq. (A15) and Eq. (A16) for the SDW;

‘ = ‘ ain we can see that at = Q, W, Wy, = —W? in tDDW, and
0.8 1.0 1.2 1.4 this leads to a minus sign, whils? in SDW does not. There-
x fore, the form of the coherence factors of SDW is opposite
lmXEEA(qx,qFB,w) to tDDW in the vicinity of¢ = Q). As a result, the intensity
=01t of Imx}.p4(g,w) for SDW in the vicinity ofg = Q is en-

——w=0.2t hanced due to the dominant interband contribution, whereas
=03t the intensity of Imy37 4 (¢, w) is suppressed in the vicinity

e =04t of ¢ = Q. Thus, the difference in coherence factors leads
to the “interchanging” behavior between tDDW and SDW,
the different momentum dependence of the order parameters
—~w=06t also leads to distinct momentum dependence argquadQ.
Away from ¢ = @, on the other hand, both Iy}, 5 4 (¢, w)

and Imy%p 4 (g, w) show vertical dispersion relations due to
intraband contributions.

" s~ w=05t

e‘: 4q><a/7r

08 1.0 12 1.

FIG. 8. Constant energy cuts of Mgp.(q,w) (upper) and

Imx:54(q,w) (lower) for the tDDW order along:*-axis when Im)(ZRZPA(qX,qy:Z,w)
gy = m/b. The parameters are the same as in Fig. 3. b ——w=0.1t
y N . ——w=0.2t
7 p N, T w=03t

L8 /4y W\ o w=04t

2.0

| w=05t

IV. THE SPIN DENSITY WAVE ORDER 1.0://,
f —— w=0.6t

Finally, we also consider the SDW order, which has the or-

der parameter ‘ i ‘
0.8 1.0 12 14587
(Chialhp) o (2 Fap)As. ©) "
+Q,a a s ImXEE’A(qX’qy:E’w)
The SDW mean field Hamiltonian will be 05 =0l
NIV LN\ w=02t
Hspw = Z Z (Ekc;ack,a + 6k+QCL+Q_’UCk+Q,U 0.4/ N\ e =03t
o k u" LN Vox N N e
. 0.3/ / B\ 7/ \ w=0.4t
+oAsc;, ChtQ,o T h.c.) , (20) P £ _ w3V —~—w=05t
’ 025/ 77N W N
i y, — w=0.6t
where the eigenvalues now becotig, = ey + Ej; with 0.1/
EP = /€2, + A2. The explicit forms of the spin susceptibil- ‘ ‘ - o/
ities are given in Eq. (A13- A17) in Appendix A. 0.8 1.0 1.2 1.4%

The constant energy cuts of ki¥p,(¢,w) and

|mX§13A(QaW) for the SDW order along*-axis are plotted FIG. 9. Constant energy cuts of Wis(g,w) (upper) and
in Fig. 9. Here we set the SDW gap to Be = 0.65¢ and Imx %54 (q,w) (lower) for the SDW order alorsg*-a)xis wheng, =

p = —1.026t. The hole doping level i), = 10.02%. The 7/, HereA, = 0.65¢t, u = —1.026t, and the other parameters are
results are interesting: IRj;p4(q,w) and Imf5,(q,w)  the same as in Fig. 8.

for SDW order seem to be ‘interchanged’ in comparison

with those for the tDDW order in Fig. 8. In addition to this



V. CONCLUSION where
In conclusion, we have attempted to provide an explana- 8 .
tion of a recent neutron scattering measurement in an under- g, (k, k', iw,,) = — dT@ZWmT<TCk,g(T)CL_U>.

doped high temperature superconductor, which point to the
fact that the pseudogap state is not a continuation of the sy
perconducting state beldW.. The salient feature is a vertical
dispersion seen abovE& in the spin excitations, as opposed
to an hourglass shape dispersion seen befow We have  &%(q,q',iwm) = 6.4 Xiiag(@: iwm) + 8q.q+QXa# (¢ W),
also explicitly checked that the consistency with experitee | . T, T,

does not require any fine tuning of the parameter. In fact, as® (¢:4' 1wm) = 0q.9'Xeiag(2: 1wm) + Oq.0+@Xofr (:1m),
demonstrated, the vertical dispersion observed in ouutzlc

tion does not require — b anisotropy (see Fig. 3); of course where the subscripts ‘diag’ and ‘off’ refer to the diagonadia

on phenomenological grounds such anisotropy should be insff-diagonal terms of the one-loop spin susceptibilitgpec-
cluded, as we have. Note that our peaks appear to be sharpgiely.

than those observed in experiments. With a quadratic Hamiltonian, these terms can be written

Although couched in the language Hartree-Fock theoryy, terms of the Green’s function matrices by applying Wick’s
augmented by RPA, a thorough analysis of the properties gheorem, and we have

various alternate order parameters should be a useful guide
We also checked a band structure to contain electron pock-
ets as well, but the rqbust aspects of the conclusions WErR=s (g, iwm) = 1 Z Tr(Go(k + q, i€n + iwm)Go(k, icn)],
unchanged. The vertical dispersion feature appears to per- BN Pyt
sist in the doping rang8% < n;, < 20%. At higher en- . 1 . , , . ,
ergies, we find energy dependent incommensurability due toXeff (g, iwm) = BN Z Z[Gf’(k’ + g, den + iwm)Go (k, den)]j1,
the interband contributions. We also contrast the spin dy- ) koo 571
namics of the tDDW and SDW orders, v_vhich e>_<hibit differ- X(Ia;(q,iwm) =% ZTT[GT(k + qien + iwm) G (K, ien)],
ent features aroung = @, which could in principle allow BN
one to identify the spin nature of the underlying phase ina , 1 . , , . ,
spin-polarized neutron scattering experiment with higgore  Xoff (g, dwm) = BN > Z[GT("’ + gy den + iwm) G (K den)ljt,
lution. The transverse and the longitudinal spin dynamies a o 7
interchanged between SDW and tDDW. In principle, a whole
class of _h|gher angglar momentum particle-hole condeesathhereTr is the trace, and’,
are possible. Experimental evidence of these order paesiset e

. ) the Hamiltonian.
should be a major step forward. The tDDW is such an uncon- ) )
ventional hidden order that its discovery would be of great For sDDW, the up-spin and down-spin components are
importance. Note that tDDW is even invariant under time re-dentical. Fore =t or |, we have
versal.

0
The one-loop spin susceptibility also has diagonal and off-
agonal terms

(k,ie,) can be obtained from

Gy (kyie) =
ACKNOWLEDGMENTS 1 1€+ €1 — €2k Wi
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Therefore, we have

Appendix A: The explicit forms of spin susceptibility
X6 (¢, 4", w) = dq,q' Xdiag(qs W) + 0g,¢+QXoft(¢; W), (AL)

- - _ 1
In tr,1e den§|ty wave systems we considered above, thexg (¢,¢,w) = §ng(q’q/’w)’ (A2)
Green’s functions form matrices

A . _ ga(kvkaiwm) ga(l{ak‘FQaiwm)
Gk dtom) = ( 0o (bt Q) kiton) go(k+ Quk+ Q. i) ) €T
|

) ( w)* lz (1_€1k€1k+q+Wka+q) nr(eap+Er)—nr(eanyq—Friq) nr (e —Er)—nr(e2k4+¢+Eriq)
Xdiag\d, W) = N 2k FxFrtq w—ear—Erteantq—EBriqtid w—cont EpteanqtErsqtio

1 €1k€1k+qtWiWiigy | nr(can+Er)—nr(c2k49+Ertq) nr(eap—Fr)—nr(e2k1q—Friq)
+ N Zk(l + EpEgkyq ) w—eap—FEpteoptqtErpqtid w—eap+Epteoptq—FErqpqt+io |7 (A3)



i —€1kWikiqte€iktrq Wi nr(eox+Er)—nr(c2niq—Friq) np(e2k—Er)—nr(e2k4q+Friq)
Xoﬁ(qaw) izk( +q +4q )[_ ( (e2k-+q +q) _ nF( ) (€244 +4q

- N EkEk+q W7€2k7Ek+€2k+q7Ek+q+i5 W752k+Ek+€2k+q+Ek+q+’L‘5
_|_nF(52k+Ek)_nF(52k+q+Ek+q) ne(ear—Er)—nr(€2n4q—Friq) (A4)
w—eap—FEpteoptqtEryqtid w—eap+Epteaptq—FErqpqt+io |7

wherenp(F) is Fermi-Dirac distribution function, andis (¢ = ¢).

set t00.06t¢ for the numerical calculation in order to obtain  For the tDDW order, the Green’s function matrices become
smooth curves. Applying random phase approximation, we

obtain the RPA susceptibilit§ Go(k,ic) =
sy 1 1€ + €1 — €ok oWy
~2z X0 (q,q1,w) e —— . .
Xipale,d' w) = < - (A5) ic — eq1,)2 — E2 ( —ioWy,  de—ep —e )
QZII_ngz(Q1aq/aw) ( Qk) F
ot— wheres = +1 for up-spin ands = —1 for down-spin, and
. X (¢q1,w) : =P
Xhpalad w)=> - (A6)  the spin susceptibility will become

1 f_ U)A((J)ri((th/vw)

zZZz / zZZ
wherexz*(q, ¢',w) andyg ~ (¢, ¢, w) are the two by two ma- X0™(4:4'5) = Oo.q Xaiagl ). (A7)
trices from Eq. (A1) and Eq. (A2), respectively. For the nu- Xg (¢:¢sw) = 5q.,q/x;ﬁ;g(q,w) + 00,0 +QXor (¢:w), (A8)
merical calculation, we séf = W, = 0.65¢ and compute the
imaginary part of the diagonal terms of the RPA susceptybili wherexgi (¢, w) is the same agdiag(g, w) in Eq. (A3), and

-ij—( w): LZ ( _ E1k61k+q*Wka+q) nrp(e2p+FEr)—nr(e2k1q—Friq) _|_nF(€2k*Ek)*nF(62k+q+Ek+q)
Xdiag\ 4> 3N Zak ExFriq w—con—FErnteantq—Eriqtio w—cant ExteantgtBryqtio

+ 1 Z (1 + E1k€1k+q*Wka+q) nrp(e2p+FEr)—nr(e2k4q+Friq) np(eap—FEr)—nr(e2k1q—Friq) (Ag)
2N k EpEgkyq w—eap—FErtesptqtEryqtio w—eap+Epteaptq—Epypqtido |2

+—( ) _ =i Z (€1ka+q+€1k+qu) _ nr(e2xt+Er)—nr(e2rtq—Eriq)  nrF(e2—FEr)—nr(e2k4q+Friq)
Xoff ’ T 2N k ErEk+q w—eap—Epteaptq—Eppqtid w—eap+Epteaptqt+Eryqtid

+ nr(eap+Er)—nr(e2ptrq+FEriq) + nrp(eak—Er)—nr(eaktq—Friq) (AlO)
w—eap—Epteaptqt+Eryqt+id w—eap+Epteappq—Eppqtid | °

The RPA susceptibility of the tDDW order will be For the SDW order, the Green’s function matrices become

Go(k,i€) =

x5 (¢, 4", w)
1-Ux§ (g, ¢ w)

1€+ €1 — €2k oAy )

1
Xipale, d' w) = (A11) (i€ — €ar)2 — (EP)? ( ol i€ — €1k — €2k

. ) B 5 (g qu,w) The longitudinal and transverse spin susceptibility are
Xhpale,d w) =) = . (A12)
RPA I — UAJri( ! w) 2z / 2z
a1 Xo \9L, 4 Xo (¢, 4, w) = 6q7q’Xdiag(q w), (AL13)
XS__((L ¢, w) = 0qq Xdlag( w) + dq,q +QXoff (g, w),
(Al4)

wherex§*(q,¢',w) is from Eq. (A7) andyy  (¢,¢',w) is a
two by two matrix from Eq. (A8). wherexgiq(¢ w), X:ﬂ;g(q, w), andygy (¢, w) now become



¥ Ll -

s s
2z _ erpeiprqt Ay | nr(ea+Ey)—nr(caniq—Ep )
Xdiag(va) - 5 ) ;

E5E5+q w—egk—E5+€2k+q—Es+q+i5

nr(esk =By ) —nr (e2rtq+Bisy)
w_52k+Es+52k+q+Es+q+i5

1 €1p€iptqt A2 nF(52k+E;§)*nF(€2k+q+E;§+q)
+ x5 22+ 255 | oo ES +id
ke Fitq 2k =B eantpqt EY,  +i

w_52k+E,§+€2k+q_E7§+q+i5

nF(E2kE)§)nF(E2k+qEI§+q):| (A15)

s s
+— _ 1 €1k€1ktq— A2 nr (e +Ep )—nr(e2ktq— Ly ,)
Xdiag(Qaw) - 9N Zk(l - 5 ) |: 3

E,fE,f+q w7€2k7EE+62k+q7E]§+q+i5

77fF(52k_E1§)_nF(52k+q+E1§+q)
w762k+E5+62k+q+E]§+q+i5

+LZ (1+ elkelk+q—A§) nr(ean+E; ) —nr(eanyqtEry,)
2N k E; Ek+q w—eap—E} +52k+q+Ek+q+i5

nr(ean—ER)—nr(e2ntrq—Ep ) (A16)
w—eap+Ey +52k+q*Ek+q+i5 ’

s S S s s s S s
+— A —Ey+E, ”F(52k+Ek)*”F(€2k+q+Ek+ ) E;—Ep, "F(€2k*Ek)*”F(€2k+q*Ek+ )
Xoft (@:w) =55 2 |( ‘) =+ ( : 3

EJEy; wtea+Ef —ezpiq— By, +i0

ESE

w+€2k—Es_€2k+q+E1§+q+i‘5

k+q k+q
(E5+E5+q)"F(EszrE;f)*nF(Equ*ng) _ (E5+Ef+q nr(esk =By ) —nr(e2rtq+Eiy ) (A17)
EEEE+Q w+€2k+E1‘§—62k+q+Ei§+q+i5 E5E5+q w+€2k_Es_52k+q_E)§+q+i6 :

The RPA susceptibility of the SDW order is in the same form  hastDDW order in Eqg. (A11) and Eq. (A12).
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