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Subjecting a magnetic tunnel junction (MTJ) to a spin current and/or electric voltage induces
magnetic precession, which can reciprocally pump current through the circuit. This results in an ac
impedance, which is sensitive to the magnetic field applied to the MTJ. Measuring this impedance
can be used to characterize the coupling between the magnetic free layer and the electric current as
well as a read-out of the magnetic configuration of the MTJ.

The development of the next generation of computer
memory and logic can be made possible by current-
driven effects through magnetic multilayers by utilizing
the mechanisms of tunnel magnetoresistance [1] and spin-
transfer torque [2]. These effects have been demonstrated
to efficiently read and write bits as furnished by magnetic
domains [3]. Somewhat less utilized are the recently dis-
covered torques due to the voltage-induced anisotropy
[4]. The applied voltage induces a charge build up at the
tunnel-barrier interface with the transition-metal ferro-
magnet. The strong electric field at the interface modi-
fies electronic structure along with the local occupation
of the d-character bands in the transition metal. Due to
spin-orbit coupling, this results in the anisotropic inter-
action between the local excess charge and the magneti-
zation. Conventional MTJ spin-torque devices can ben-
efit from the voltage-induced anisotropy by reducing the
critical switching current for a fixed thermal stability [5].
Recently, it has been shown that this voltage-controlled
magnetic anisotropy (VCMA) can induce ferromagnetic
resonance [6, 7] or reverse the magnetic direction [8].

Here, we include the reciprocal backaction of magnetic
dynamics on the circuit. Applying an ac voltage drives
precession of the magnet that in turn pumps current, con-
tributing to the ac impedance. In order to illustrate two
physically distinct mechanisms of voltage-induced spin
torques, we consider two special MTJ structures: (a) a
ferromagnet (F)|insulator (I) bilayer with interfacial spin-
orbit interaction and (b) an F|I|F heterostructure where
one of the ferromagnetic layers is pinned and the other
free. See Fig. 1 for schematics. In Fig. 1(a), the fer-
romagnet is agitated by voltage-induced anisotropy [4],
while in Fig. 1(b) the free magnetic layer is driven by
spin-transfer torque [2]. In practice, these two scenarios
can be accessed by varying the thickness of the spacer:
for thicker spacers that are Ohmically opaque the VCMA
must ultimately dominate, while for thinner spacers the
spin-transfer torque should become progressively more
important. In the former case, within our model, the
impedance vanishes when the equilibrium magnetization
is parallel or perpendicular to the direction of induced
anisotropy. In the latter case, we find that the impedance
is enhanced when the magnetic equilibrium is nearly per-
pendicular to the direction of polarization of the spin cur-
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FIG. 1. Schematics of magnetic tunnel junction subjected to
a magnetic field, as part of an ac circuit that drives magnetic
precession by VCMA (a) or Slonczewski torque (b), and the
equivalent circuit diagrams (below) showing the additional
impedance due to pumping by magnetic dynamics.

rent. If the magnitude of the VCMA and spin-transfer
torque are comparable, we can tune between these effects
by applying a magnetic field. The resultant impedance
shift can be used to characterize the magnitude and the
nature of the coupling between ferromagnet and circuit,
as well as to probe magnetic configuration.

The following analysis of voltage-controlled magnetic
anisotropies [Fig. 1(a)] applies to a general class of MTJ’s
that break mirror symmetry normal to the face of the
magnetic layer, inducing Rashba-type spin-orbit interac-
tion [9]. Consider an F|I bilayer subjected to a voltage
V in the external circuit, wherein the free energy of the
transferred charge Q is F [Q] = −QV . We treat the ferro-
magnetic layer to be monodomain with free-energy den-
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where V is the volume of the ferromagnetic layer and
M = (Mx,My,Mz) is the magnetization vector. To be
specific, we take the xy cross section of the magnet to be
an ellipse elongated in the x direction. Nx+Ny+Nz = 4π
are the demagnetization factors (with Ny > Nx), H is
the applied field along the semimajor (x) axis, and K is
the perpendicular anisotropy that can be induced by the
insulating layer in the absence of voltage. We consider
a geometry wherein the perpendicular anisotropy over-
comes the long-range dipole field such that Nx > Nz−K
and, when no magnetic field or voltage is applied, the
equilibrium orientation of the magnet is perpendicular
to the interface (z axis). Under application of a mag-
netic field along the semimajor axis of the ellipse, the
equilibrium magnetization tilts away from the z axis as

M̄ = (H/Ñx, 0,
√
M2

s − (H/Ñx)2), where Ms = |M| is

the saturated magnetization, Ñx = Nx − Nz + K and
Ñy = Ny − Nz + K. Note that Ñx, Ñy > 0 are guaran-
teed by Ny > Nx > Nz −K. For simplicity, we restrict

|H| < MsÑx.
The tunneling layer is treated as a parallel plate ca-

pacitor of capacitance C, storing energy F [q] = q2/2C
where q is the charge on the surface of the insulator.
The structure of the device breaks mirror symmetry in
the direction perpendicular to the interface. We treat
the lateral dimensions of the device macroscopically, as
compared with the microscopic spin-orbit interactions in-
ducing VCMA, and thus require the coupling to be rota-
tionally symmetric around the z axis. Subject to these
symmetries, the anisotropy controlled by voltage must be
induced in the direction of the broken mirror symmetry.
To satisfy time reversal symmetry, the free energy must
be of even order in magnetization. Since there are no
Ohmic losses associated with tunneling through the junc-
tion, we suppose the dominant interaction between the
magnetization and the electric circuit to be nondissipa-
tive. Dissipative corrections could be taken into account
similarly to Ref. [10]. Because this torque is induced by
the electric field at the interface, we take the energy to
be proportional to electric flux in the insulating layer.
The coupling, up to quadratic order in magnetization,
is F [M, q] = −νqm2

z/2 where ν is the phenomenological
coupling between the projection of the magnetic direction
along the z axis, mz = Mz/Ms, and the circuit. The full
free energy is the sum of these individual components
F = F [M] + F [Q] + F [q] + F [M, q].

The equation of motion of the ferromagnet is described
by the Landau-Lifshitz-Gilbert (LLG) equation [11]

ṁ = −γm×H + αm× ṁ , (2)

where γ is the gyromagnetic ratio and α is the dimen-

sionless Gilbert damping. The magnetic direction vector
is m = M/Ms and H = −V−1∂F/∂M is the effective
field. Applying a small ac voltage to the circuit induces
precession of the magnet due to the VCMA. Treating the
response to voltage linearly, the solution to the equations
of motion for the magnet is a damped harmonic oscilla-
tor, driven by voltage, centered around the equilibrium
value of magnetization, m̄ = (m̄x, m̄y, m̄z), with reso-

nance ω0 = γMs

√
m̄2

zÑxÑy. To obtain an expression of

the current through the circuit Q̇, we note that the dif-
ference in change in charge between the reservoir and the
capacitor is the leakage current due to tunneling through
the insulator Q̇ − q̇ = σV where σ is the junction con-
ductance (disregarding magnetoconductance). Neglect-
ing impedance in the external circuit, ∂QF = −∂qF , we
find

Q̇ = CV̇ + σV + νCmzṁz . (3)

In addition to the resistor and capacitor in parallel, the
precession of the magnet pumps current, which is recip-
rocal to the VCMA. For the resonant driving at ω0, the
additional impedance, informed by the circuit diagram
in Fig. 1(a), is

ZVC =
ν2

αω2
0S

m̄2
xm̄

2
zÑy

Ñy + m̄2
zÑx

, (4)

where S = VMs/γ is the total spin angular momentum.
We have suppressed higher-order terms in α, assuming
α � 1, which it typically the case in practice. Notice
that on resonance ZVC is real, but away from resonance
it is generally complex valued. The impedance is second
order in ν reflecting the VCMA driving of the magnet and
subsequent self-consistent pumping by magnetic preces-
sion. ZVC is proportional to the product of the equi-
librium value of magnetization along the x and z axes,
being maximized at an intermediate polar angle, and can
therefore be modulated by applied magnetic field. The
effect is larger for smaller Gilbert damping.

Let us now consider an MTJ wherein the torque is
induced by spin current polarized along the direction of
the pinned layer (x axis) [2], as sketched in Fig. 1(b).
(Note that one can obtain a similar effect also in an F|I
bilayer due to spin-orbit interaction [12].) The equation
of motion of the magnet coupled to an external circuit
by Slonczewski torque is

ṁ = −γm×H + αm× ṁ + µ(Q̇− q̇)m× x×m , (5)

where µ = S(~/2e)P/(1 + m̄xP
2) [13], as determined by

microscopic considerations, characterizes the strength of
the torque induced by current on the magnet. P is the
tunneling spin polarization. The torque is proportional
to the leakage current, Q̇ − q̇, through the capacitor.
The equation of motion for charge satisfying microscopic
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FIG. 2. Relative change in impedance as a result of VCMA
(black solid) or Slonczewski torque (red dashed) as a function
of MgO spacer thickness, evaluated at m̄x = 0.73 and m̄x = 0,
respectively. The kinks near d ≈ 2 nm correspond to the
crossover at σ ∼ ω0C.

time-reversal symmetry consistent with Eq. (5) is [14]

Q̇ = σ(V − µSṁ ·m× x) + CV̇ . (6)

In contrast to the above VCMA model, σ = σ0(1 +
m̄xP

2), the tunnel magnetoconductance, depends on the
relative orientation of the pinned and free magnetic lay-
ers. Similar to the previous case, we apply an ac voltage
at resonance which drives magnetic dynamics and shifts
the impedance due to the charge pumping from magnetic
precession. Again neglecting terms higher-order in α, the
associated impedance is

ZST = −µ
2S

α

m̄4
zÑx

Ñy + m̄2
zÑx

. (7)

Although at resonance ZST is real and negative, the
second law of thermodynamics bounds the Slonczewski
torque parameter µ2 ≤ α/σS [10], ensuring positivity of
1/σ+ZST. Note that ZST vanishes when the equilibrium
magnetization is perpendicular to the z axis.

We now make an estimate of the effect for practical
memory devices. Specifically, we consider a 150×70 nm2

elliptical nanopillar of CoFeB/MgO, where the thickness
of the magnetic layer is 1.6 nm, giving Nx = 0.2 and
Ny = 0.5. The other relevant parameters are taken from
Ref. [7]: α = 3× 10−2, Ms = 950 emu/cm3, ν = 2.8 µerg
statV−1 cm−1, K = 12, P = 0.5, and σ0 = 1.6 mS at the
MgO thickness of d = 0.86 nm (with the exponential de-
cay length as a function of d of 0.15 nm [15]). Our figure
of merit is the relative change in impedance as a result of
VCMA or spin-transfer torque: Z ≡ |Z−Z0|/|Z0|, where
Z is the total impedance of the circuit in the presence of
the magnetic dynamics and Z0 is the impedance of the
static junction (taking dielectric constant of MgO to be
ε = 10). To evaluate ZVC and ZST, we first choose the
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FIG. 3. Relative change in impedance as a result of VCMA
(black solid) or Slonczewski torque (red dashed) as a function
of m̄x at the MgO spacer thicknesses d = 2 nm and d =
0.5 nm, respectively. The voltage is assumed to be applied at
the frequency of ferromagnetic resonance, ω0, which depends
on m̄x.

magnetic field H such that m̄x maximizes the dimension-
less geometric factors in Eq. (4) and Eq. (7): m̄x = 0.73
and m̄x = 0, respectively. Varying the tunnel barrier
thickness d at a fixed magnetic field, we plot the cor-
responding Z in Fig. 2. ZVC increases exponentially
reaching the maximum at ∼ 1% near d ≈ 2 nm. Past
this thickness, the junction ac behavior crosses over from
the resistive to capacitive regime, in which ZVC falls off
inversely with d. Since spin-transfer torque is roughly
proportional to conductance for thin barriers, ZST ∝ σ
decreases exponentially with increasing spacer thickness,
for d . 2 nm. For thicker barriers, ZST becomes pro-
portional to σ2, doubling the logarithmic slope in its d
dependence. For the smallest feasible spacer thickness of
0.5 nm, the relative change in impedance is ∼ 10−4.

Next, allowing the external magnetic field to vary, we
plot ZVC and ZST as a function of equilibrium value of
magnetization in Fig. 3, fixing d = 2 nm and d = 0.5 nm,
respectively. (These choices for d are motivated by the
respective maxima in Z in Fig. 2.) In the case of Slon-
czewski torque, there is a small asymmetry in the func-
tion Z(m̄x) around zero due to variation of σ and µ with
m̄x. Note that the functional dependences of ZVC and
ZST on m̄x are qualitatively distinct (with the former
having double-lobe and the latter single-lobe profiles),
allowing for a clear experimental differentiation between
VCMA and spin-transfer torque regimes by measuring ac
impedance as a function of magnetic field.

Measuring the ac impedance shift due to resonant mag-
netic dynamics could be an efficient method for charac-
terizing the magnitude of the coupling between voltage
and ferromagnet (ν) and current and ferromagnet (µ),
as well as distinguishing between the two scenarios. Fur-
thermore, when the thickness of the spacer is large, and
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thus the conductance is prohibitively small to utilize tun-
nel magnetoresistance, one could envision that measuring
the ac impedance may be used as a nondestructive low-
dissipation bit read-out. Owing to the promising energy
efficiency of VCMA and the reciprocal effect, we expect
an active search for ferromagnet-insulator interfaces with
higher values of ν, which could electrically control and
read the direction of the magnet without tunneling cur-
rent.
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