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We present a general formula of the orbital magnetization of disordered systems based on the
Keldysh Green’s function theory in the gauge-covariant Wigner space. In our approach, the gauge
invariance of physical quantities is ensured from the very beginning, and the vertex corrections are
easily included. Our formula applies not only for insulators but also for metallic systems where
the quasiparicle behavior is usually strongly modified by the disorder scattering. In the absence
of disorders, our formula recovers the previous results obtained from the semiclassical theory and
the perturbation theory. As an application, we calculate the orbital magnetization of a weakly
disordered two-dimensional electron gas with Rashba spin-orbit coupling. We find that for the short
range disorder scattering, its major effect is to the shifting of the distribution of orbital magnetization
corresponding to the quasiparticle energy renormalization.
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I. INTRODUCTION

Magnetization is one of the most important and in-
triguing material properties. An adequate account of
magnetization should not only include the contribution
from the spin polarization of electrons, but also the con-
tribution from the orbital motion of electrons. In crys-
tals, due to the reduced spatial symmetry, the orbital
contribution to the magnetization is usually quenched.
For example, it is only of the order of a few percent of
the total magnetization in Fe, Co, and Ni1. However,
that is not to say that the orbital magnetization is small
in all materials. In certain materials with topologically
nontrivial band structures, large contributions can arise
from the effective reciprocal space monopoles near the
band anti-crossings. The orbital magnetization can have
a more important effect, cancel and even larger than the
spin magnetization, which have been confirmed in recent
experiments2,3. Furthermore, the orbital magnetization
is directly connected to many important applications and
it also determines several important material properties.
Some examples include the NMR4–6 , the EPR7 shielding
tensors, the magnetic susceptibility8,9, the orbital mag-
netoelectric coupling and response10–13, and the Hall con-
ductivity14. All these highlight the need to develop com-
plete description of the orbital magnetism in solids.

Several different methods have been employed to study
the orbital magnetization (OM) in crystals15–32. One
major difficulty in the calculation is posed by the evalu-
ation of the operator15,16 r̂ × ĵ, because the the position
r̂ is ill-defined in the Bloch representation. This diffi-
culty can be avoided in a semiclassical approach or be
circumvented by a transformation to the Wannier repre-
sentation. Xiao et al.

18,19 presented a general formula for
OM for metal and insulator, derived from a semiclassical
formalism with the Berry phase corrections. Thonhauser

et al.
20,21 derived an expression of the OM for periodic

insulators using the Wannier representation. From the
elementary thermodynamics, Shi et al.24 obtained a for-
mula for the OM in a periodic system using the standard
perturbation theory, and their result can in principle take
into account the electron-electron interaction effects. The
OM for periodic systems with first-principles were stud-
ied by Lopez et al.

23 and Ceresoli et al.26.

Previous studies are mainly concerned with clean crys-
tal systems. However, real crystals are never perfect,
disorders such as defects, impurities, phonons etc. con-
stantly break the translational symmetry and lead to
scattering events. The effect of disorder scattering on
the OM has not been carefully studied so far. On one
hand, the OM is a thermodynamic quantities, hence it
is expected to be less susceptible to disorder scattering.
On the other hand, the appearance of current operator ĵ
in the definition suggests behaviors similar to transport
quantities which might be strongly affected by the disor-
der scattering. Therefore, it is important and desirable
to have a good understanding of the role played by the
disorder scattering in the OM.

In this paper, we present a general formula of the OM
in disordered systems based on the Keldysh Green’s func-
tion formalism in the gauge-covariant Wigner space33–38.
This approach was developed as a systematic approach
to the nonequilibrium electron dynamics under external
fields. Our formula derived from this approach shares
the advantage of being able to capture the disorder ef-
fects in a systematic way and ensure the gauge invariance
property from the very beginning. We show that in the
clean limit, our formula reduces to the previous results
obtained from other approaches. As an application, we
study the OM in a disordered two-dimensional electron
gas with the Rashba spin-orbit coupling. We find that
the OM is robust against short range disorders. The main
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effect of the scattering by short range disorders is a rigid
shift of the distribution of OM in energy.
The structure of this paper is organized as follows. In

Sec. II A, we outline the Keldysh Green’s function for-
malism which is employed for our derivation. Our general
formula of OM is presented in Sec. II B. In Sec. III, we
apply the formula to study the OM of a two-dimensional
disordered electron gas with the Rashba spin-orbit cou-
pling. Summary and conclusion are given in Sec. IV.
Some details of the calculation are provided in the ap-
pendices.

II. ORBITAL MAGNETIZATION OF

DISORDERED SYSTEMS

A. Keldysh Green’s function formalism

We employ the Keldysh Green’s function formalism
in the Wigner representation33, which has recently been
used to study the current response of multi-band systems
under an electric field34,35. In the Wigner representation,
Green’s functions and the self-energies are expressed as
functions of the center-of-mass coordinates (T ,X), the
energy ε and the mehanic momentum p. The energy
and the mechanic momentum are the Fourier transforms
of the relative time and space coordinates respectively.
The Dyson equations in the presence of external elec-

tromagnetic fields can be written as
[

εÎ − Ĥ0(p)− Σ̂(ε)
]

⋆ Ĝ(ε,p) = Î , (1a)

Ĝ(ε,p) ⋆
[

εÎ − Ĥ0(p)− Σ̂(ε)
]

= Î . (1b)

Each quantity with an underline in the above equations
is a matrix in Keldysh space. Specifically, we have

Ĝ ≡

(

ĜR 2Ĝ<

0 ĜA

)

, Σ̂ ≡

(

Σ̂R 2Σ̂<

0 Σ̂A

)

, (2)

Ĥ0 ≡

(

Ĥ0 0

0 Ĥ0

)

, Î =

(

σ̂0 0
0 σ̂0

)

, (3)

where Ĝ(R,A,<) are the (retarded, advanced, lesser)

Green functions, and Σ̂(R,A,<) are the corresponding self-
energies, Ĥ0 is the Hamiltonian in the absence of external
electromagnetic fields, σ̂0 is the identity matrix. The ⋆
operator in Eq.(1) is defined as

⋆ ≡ exp

[

iq~

2
Fµν

(←−
∂ pµ

−→
∂ pν −

←−
∂ pν

−→
∂ pµ

)

]

, (4)

with the differential operators
←−
∂ and

−→
∂ operating on the

left-hand and the right-hand sides respectively, q = − |e|
is the electron charge, and Fµν = ∂Xµ

Aν(X)−∂Xν
Aµ(X)

is the electromagnetic field tensor, µ and ν label the
four dimensional space-time components and the Ein-
stein summation convention is assumed. It should be

noted that the energy ε and the mechanic momentum p

include the electromagnetic potentials Aµ(X), both are
gauge invariant quantities. The ⋆ operator in Eq.(1) only
involves the physical fields, so it is also gauge invariant.
In this formalism the gauge invariance is respected from
the very beginning and easily maintained during the per-
turbative expansion, which is an important advantage33.
Here we consider the situation with a uniform weak

magnetic field along the z-direction, i.e. B = (0, 0, B).
Then the various quantities can be expanded in terms of
B. In particular, Green’s functions and the self-energies
can be expressed as

Ĝα(ε,p) = Ĝα
0 (ε,p) + e~BĜα

B(ε,p) +O(B2), (5)

Σ̂α(ε) = Σ̂α
0 (ε) + e~BΣ̂α

B(ε) +O(B2), (6)

with α = R,A,< for the retarded, advanced and lesser
components respectively. Here functions with the sub-
script 0 are of zeroth order in the external magnetic field
strength (note that they include scattering effects). We
have

Ĝ
R(A)
0 (ε,p) =

[

ε− Ĥ0(p)− Σ̂
R(A)
0 (ε)

]

−1

, (7)

Ĝ<
0 (ε,p) =

[

ĜA
0 (ε,p)− ĜR

0 (ε,p)
]

f(ε), (8)

where f(ε) is the Fermi distribution. The functions with
subscript B are the linear response coefficient to the ex-
ternal field. They can be solved from the Dyson equation.
It is usually convenient to decompose the lesser compo-
nent Ĝ<

B and Σ̂<
B (which are related to particle distribu-

tion) into two parts, with one part from the Fermi surface
and the other part from the Fermi sea39,

Ĝ<
B(ε,p)= Ĝ<

B,I(ε,p)∂εf(ε)+Ĝ
<
B,II(ε,p)f(ε) (9)

Σ̂<
B(ε) = Σ̂<

B,I(ε)∂εf(ε) + Σ̂<
B,II(ε)f(ε). (10)

From the Dyson equation (kept to the linear order in B),
it is straightforward to show that

Ĝ<
B,I = Σ̂<

B,I = 0, (11)

i.e. there is no Fermi surface term in the linear order
lesser component, and for the Fermi sea term we have

Ĝ<
B,II(ε,p) = ĜA

B(ε,p)− ĜR
B(ε,p), (12)

Σ̂<
B,II(ε) = Σ̂A

B(ε)− Σ̂R
B(ε). (13)

The retarded and advanced Green’s function Ĝ
R(A)
B and

self-energy Σ̂
R(A)
B are determined from the following self-

consistent equations

Ĝ
R(A)
B =

i

2

[

Ĝ
R(A)
0 v̂x(∂py

Ĝ
R(A)
0 )− (∂py

Ĝ
R(A)
0 )v̂xĜ

R(A)
0

]

+Ĝ
R(A)
0 Σ̂

R(A)
B Ĝ

R(A)
0 , (14)

where the velocity operator is defined as v̂i ≡
1
i~

[

x̂i, Ĥ
]

.

In this approach, the disorder effects are captured by

the self-energies Σ̂
R(A)
0 and Σ̂

R(A)
B , which allows a sys-

tematic perturbative treatment. In the weak disorder
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regime, the self-consistent T -matrix approximation pro-
vides a good approximation scheme. In this approxima-
tion, we have

Σ̂
R(A)
0 (ε) = nimpT̂

R(A)
0 (ε), (15)

and

Σ̂
R(A)
B (ε)=nimpT̂

R(A)
0 (ε)

∫

d2p

(2π~)2
Ĝ

R(A)
B (ε,p)T̂

R(A)
0 (ε),

(16)

where nimp is the impurity concentration and the T -
matrix is expressed as

T̂
R(A)
0 (ε) = V̂imp

(

1−

∫

d2p

(2π~)2
Ĝ

R(A)
0 (ε,p)V̂imp

)−1

,

(17)

with V̂imp being the impurity potential.

The equilibrium Green’s functions Ĝ
R(A)
0 and the self

energies Σ̂
R(A)
0 can be obtained by solving Eqs. (7), (15)

and (17) self-consistently. Then the linear order coef-

ficients Ĝ
R(A)
B and Σ̂

R(A)
B can be solved from Eqs. (14)

and (16). Finally, we can obtain Ĝ<
B,II through Eq. (12)

and the linear response of the system in the external mag-
netic field can be completely determined.

The lesser Green’s function contains the information of
particle distribution. In our case, both the external mag-
netic field and the disorder scattering affect the quasi-
particle distribution. Before we proceed, it is interesting
to observe how the non-trivial band geometry (described
by the Berry curvature) can be captured by the present
Wigner space Green’s function formalism. For a homo-
geneous system, the electron density can be written as

ne =
1

i

∫

dε

2π

∫

d2p

(2π~)2
tr
[

Ĝ<(ε,p)
]

. (18)

In the absence of the disorder scattering, the eigenstates
are well-defined Bloch states grouped into energy bands.
Using the theorem of residues, we can express the ground
state electron density in the presence of a constant mag-
netic field as (see Appendix C)

ne =
∑

n,occ

∫

d2p

(2π~)2

[

1 +
e

~
B · Ωn(p)

]

. (19)

The summation is over all the occupied states, and
Ωn(p) = i〈∇punp| × |∇punp〉 is the Berry curvature of

the Bloch state |n,p〉 = eip·x/~|unp〉. It can be seen that
the Fermi-sea volume is changed linearly by a magnetic
field when the Berry curvature is nonzero. This effect was
previous interpreted as the modification of phase space
density of states18.

B. Formula of orbital magnetization

We start from the standard thermodynamic definition
of the OM density at zero temperature24:

M = −

(

∂K

∂B

)

µ

, (20)

where K = E − µN is the grand thermodynamic po-
tential, B is a weak magnetic field. Since we are con-
cerned with the orbital contribution, the small Zeeman
coupling between the electron spin and external field will
be dropped. The potential K can be expressed through
the lesser Green’s function,

K =
1

i

∫

dε

2π

∫

d2p

(2π~)2
tr
[(

Ĥ − µ
)

Ĝ<(ε,p)
]

. (21)

Using Eqs. (20), (21) and (9), we find that the OM can
be written as

M = −ie~

∫

dε

2π

∫

d2p

(2π~)2
tr
[(

Ĥ − µ
)

×
(

ĜA
B(ε,p)− ĜR

B(ε,p)
)]

f(ε). (22)

From this expression, we can see that the OM has con-
tributions from the whole Fermi sea, with no separate
Fermi surface contribution such as that for the transport
quantities.
In this formula, the impurity scattering effect comes

in through two terms: the self-energy Σ̂R,A
0 which modi-

fies the ground state electronic structure and the vertex

corrections associated with Σ̂R,A,<
B which represent an

interplay between the magnetic field and the impurity
scattering. We may separate out the terms containing

Σ̂R,A,<
B and write the OM explicitly as

M = M I +M II , (23)

where

M I =
e~

2

∫

dε

2π
f(ε)

∫

d2p

(2π~)2

×
∑

ij

Tr
[

ǫij(Ĥ − µ)ĜA
0 (ε,p)v̂iĜ

A
0 (ε,p)v̂jĜ

A
0 (ε,p)

−(ĜA
0 → ĜR

0 )
]

, (24)

and

M II = −ie~

∫

dε

2π
f(ε)

∫

d2p

(2π~)2

×Tr
[

(Ĥ − µ)ĜA
0 Σ̂

A
BĜ

A
0 − (Ĥ − µ)ĜR

0 Σ̂
R
BĜ

R
0

]

, (25)

where ǫij with i, j ∈ {x, y} is the 2D antisymmetric ten-
sor, and the second term in the bracket in Eq.(24) means
that the second term is the same as the first term except
that all the ĜA

0 are replaced by ĜR
0 . Such a decomposi-

tion scheme was also adopted in the study of anomalous
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Hall conductivity35, and in that context, the two parts
are referred to as the intrinsic part and extrinsic part re-
spectively. It should be noted that the intrinsic part M I

also has impurity scattering effects in it (see Eq. (7) and
Eq. (15)), it is intrinsic in the sense that it only contains
quantities that are of zeroth order in the external field.
As for the extrinsic part M II , it is easy to see that it is
already linear order in nimp (see Eq. (16)). Therefore in
the weak scattering regime, the extrinsic part is expected
to be much smaller than the intrinsic part.
The above formula is our main result. From this for-

mula, we see that there is no separate Fermi surface con-
tributions like those in the transport quantities, which is
consistent with OM being a thermodynamic equilibrium
property. This formula applies for both insulators and
metals. The quantities in this formula can be calculated
from the Dyson equation according to our prescription
described in the previous section. It can also be straight-
forwardly implemented in the numerical calculation, ei-
ther from effective models or from first principles.
In the clean limit, we only have the intrinsic part. The

general result reduces to (see Appendix D for the deriva-
tion)

M =
∑

np

fnp

[

mn(p)−
e

~
(ǫnp − µ)Ωn(p)

]

, (26)

where mn(p)=(e/2~)i〈∇punp|[ǫn(p)−Ĥ0(p)]×|∇punp〉
is the orbital moment of the Bloch state |n,p〉 and
Ωn(p)= i〈∇punp| × |∇punp〉 is the Berry curvature. The
first term in Eq. (26) is a sum of the orbital magnetic mo-
ments associated with each Bloch state40,41, and the sec-
ond term is a Berry-phase correction to the OM. There-
fore, the OM can be written as

M =Mm +MΩ. (27)

This clean limit result was previously derived from the
standard perturbation theory of quantum mechanics by
Shi et al.

24 and also from the semiclassical theory by
Xiao et al.

18. Now it is also reproduced as a special
limiting case of our general formula.

III. APPLICATION TO A TWO-DIMENSIONAL

ELECTRON GAS WITH RASHBA SPIN-ORBIT

COUPLING

A. Model

In this section, we apply our theory to study the orbital
magnetization of a two dimensional electron gas with
Rashba spin-orbiting coupling. The Rashba model was
proposed in 196042. It has a great success in describing
the two dimensional electron gas confined at the semicon-
ductor heterostructures, which was a primary playground
of the spintronics research in the past two decades, such
as spin hall effect43, anomalous hall effect35,36, and topo-
logical phase of Rashba superconductor44,45. The Rashba

spin-orbit interaction be realized in in InGaAs/GaAs het-
erostructure. The Hamiltonian for the model reads

Ĥ = Ĥ0 + Ĥimp, (28a)

Ĥ0 =
p2

2m
σ̂0 + α (pxσ̂

y − pyσ̂
x)−∆0σ̂

z , (28b)

Ĥimp = uimpσ̂
0
∑

~rimp

δ(~r − ~rimp), (28c)

where (σ̂x, σ̂y, σ̂z) are the three Pauli matrices and σ̂0

is the identity matrix, α is the strength of the spin-
orbit coupling, and term −∆0σ̂

z is the Zeeman splitting
which can be introduced by the exchange coupling with
a nearby ferromagnet or magnetic dopants. These two
terms both lift the spin degeneracy, but have different
time reversal symmetry property. The spin-orbit cou-
pling term is even under time reversal while the Zeeman
term is odd. Ĥimp is the disorder potential from the ran-
domly distributed short range impurities with strength
uimp. The energy dispersion of the Hamiltonian Ĥ0 is
given by

Eλ(p) =
p2

2m
− (−1)λ

√

∆2
0 + α2p2, (29)

where λ = 1, 2 labels the upper and lower band respec-
tively.
The interplay between spin-orbit interaction and Zee-

man splitting can influence on the transport property
of two-dimensional electron gas46. Experimentally, the
strength of Rashba coupling can be tuned by controlling
the gate voltage47,48, as being successfully demonstrated
in the system of InGaAs/GaAs or LaAlO3/SrTiO3

49 het-
erostructures. For our model, the minima of the lower
band occur at a finite wave vector and the dispersion
assumes a Mexican hat shape (see Fig. 1 (a)) when the
Rashba coupling energy scale50 mα2 is larger than the
Zeeman coupling strength. When the Zeeman coupling
dominates over the Rashba energy, the minimum of the
lower band E2 occurs at the origin (see Fig. 2 (a)).
Let’s first consider the clean limit, in which case the

orbital magnetic moment and the Berry curvature of each
Bloch state can be calculated straightforwardly:

m1(p) = m2(p) =
e

2~

∆0α
2

∆2
0 + α2p2

, (30)

Ω1(p) = −Ω2(p) = −
1

2

∆0α
2

(∆2
0 + α2p2)

3
2

. (31)

It is interesting to observe that for the same wavevec-
tor the orbital moments of the two bands have the same
magnitude and the same sign, while the Berry curvatures
have the same magnitude but opposite signs. It should
also be noted that both the orbital moment and the Berry
curvature would vanish if either α or ∆0 vanishes. From
Eq.(26), we further see that the OM is nonzero only when
both the spin-orbit coupling and the exchange coupling
are present.
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FIG. 1. (Color online) (a) Electronic band dispersions of our
model given by Eq. (29). (b) Orbital magnetization (M , solid
red curve) of disordered free system and its two components
Mm (dashed blue curve) and MΩ (dash-dotted green curve)
as functions of Fermi energy EF . They are plotted in units
of e/~. The parameters are chosen as 2mα2 = 3.59 and ∆0 =
0.1.

FIG. 2. (Color online) (a) Electronic band dispersions of our
model given by Eq. (29). (b) Orbital magnetization (M, solid
red curve) of disorder free system and its two components
Mm (dashed blue curve) and MΩ (dash-dotted green curve)
as functions of Fermi energy EF . They are plotted in units
of e/~. The parameters are chosen as 2mα2 = 0.08 and ∆0 =
0.1.
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FIG. 3. (Color online) (a) Orbital magnetization (OM) as
a function of Fermi energy EF with different impurity con-
centration nimp. (b) Density of OM with different impurity
concentration nimp. These quantities are plotted in units of
e/~. The parameters are chosen as 2mα2 = 3.59, ∆0 = 0.1,
and uimp = 0.1.

Analytical expressions of the OM can be easily ob-
tained for the clean limit using Eq.(26). For example, for
the case with EF > ∆0, we have

M =
e∆0

4π~
(EF +

∆2
0

2mα2
)

[

1

(∆2
0 + α2p2F1

)
1
2

−
1

(∆2
0 + α2p2F2

)
1
2

]

+
e∆0

8πm~α2
[(∆2

0 + α2p2F1
)

1
2 − (∆2

0 + α2p2F2
)

1
2 ], (32)

where pF1,2
is the Fermi momenta of the two bands.

B. Results

Now we analyze the OM of the disordered 2D Rashba
model in detail. The calculation procedure follows our
discussion in Sections IIA and II B. Since we have seen
that both the spin-orbit coupling and the exchange cou-
pling are essential ingredient for the OM, in the following
we shall consider two different regimes of the model deter-
mined by the competition between the Rashba spin-orbit
coupling and the exchange coupling. For each regime, we
first analyze the clean limit where the physical picture is
more transparent, and then study the influence of disor-
der scattering which is the focus in this paper.
We first consider the regime where the Rashba coupling

dominates over the exchange coupling, i.e. 2mα2 ≫ ∆0.
The typical band dispersion in this regime is shown in
Fig. 1 (a) (with 2mα2 = 3.59 and ∆0 = 0.1). In this
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FIG. 4. (Color online) (a) Orbital magnetization (OM) as
a function of Fermi energy EF with different impurity con-
centration nimp. (b) Density of OM with different impurity
concentration nimp. These quantities are plotted in units of
e/~. The parameters are chosen as 2mα2 = 0.08, ∆0 = 0.1,
and uimp = 0.1.

regime, the bottom of the lower band occurs at a finite
wavevector. The energy spectrum around the origin has
an effective Dirac cone structure with a local gap 2∆0 at
p = 0. Both the orbital moment and the Berry curva-
ture are concentrated near this band anticrossing point,
as is evident from Eqs.(30) and (31). Fig. 1 (b) shows
the OM for the clean limit. The orbital moment contri-
bution Mm and the Berry curvature contribution MΩ

are also plotted in Fig. 1 (b). We can see that as the
Fermi energy EF increases from the lower band bottom,
MΩ increases while Mm decreases. The increasing rate
ofMΩ is higher than the decreasing rate ofMm, so the
overall OM is increasing. The OM reaches its maximum
when EF = −∆0, which corresponds to the local band
top around the origin in momentum space. As the Fermi
energy sweeps across the local energy gap between −∆0

and +∆0, the OM decreases approximately linearly with
EF . The linearity can be understood by noticing that
from Eq.(26)) the derivative of the OM with respect to
EF is just the momentum space integral of the Berry
curvature. The Berry curvature distribution is concen-
trated near the band anticrossing point, corresponding to
the small region around the origin in the present model.
When the Fermi energy is within the gap, the Berry cur-
vature integral only has contribution from the lower band
and is almost constant, therefore leading to the linear
energy dependence of OM. This linear decrease of OM
stops when the Fermi energy touches the bottom of the
upper band at +∆0. Above the upper band bottom,MΩ

andMm almost cancel each other and the OM is vanish-
ingly small. Throughout the spectrum, Mm is positive

FIG. 5. (Color online) Orbital magnetization (OM) as func-
tions of Fermi energy EF and the impurity concentration nimp

in units of e/~. The parameters are chosen as ∆0 = 0.1, and
uimp = 0.1, except the Rashba energy: (a) 2mα2 = 3.59, (b)
2mα2 = 0.08.

while MΩ is negative, corresponding to the paramag-
netic and diamagnetic responses respectively. This has
a clear explanation in the semiclassical picture: Mm is
due to the self-rotation of the wavepacket which is para-
magnetic, while MΩ is from the center-of-mass motion
of the wavepacket hence is diamagnetic16.
When the exchange coupling dominates over the

Rashba energy, The minimum of the lower band occurs at
the origin. Compared with the previous case, there is no
local gap at p = 0. The typical band dispersion is shown
in Fig. 2 (a) (with ∆0 = 0.1 and take 2mα2 = 0.08).
The overall shape of the OM is similar to that for the
first case. Its distribution over spectrum is mainly below
the upper band bottom. However, due to the absence of
the local gap, the kink point at −∆0 in Fig. 1 (a) merges
with the lower band bottom. Moreover, the two contri-
butionsMΩ andMm strongly cancel each other and the
resulting OM is much smaller.
Now let’s consider the effects of disorder scattering on

the OM in our model. When the disorder scattering is
turned on, the translational invariance is broken. We can
no longer define quantities such asMΩ andMm. Their
effects are merged into the sophisticated expression in
Eq.(23). Fig. 3 (a) and Fig. 4 (a) show the OM versus
EF for the two regimes we discussed above. The different
curves in each figure correspond to different impurity con-
centrations nimp. Compared with the clean limit where
nimp = 0, we see that the shape of the OM curve is al-
most unchanged but mainly its position is shifted by the
scattering. This behavior is more obvious when we look
at the density of OM shown in Fig. 3 (b) and Fig. 4 (b).
For the clean limit, we see that the major contribution to
the OM is from the states at the band bottom and at the
local band edge. The effect of disorder scattering here
is to shift the the density of OM distribution in energy.
Such a shift can be understood by noticing that the OM
only has the Fermi sea contribution. The main effect of
scattering in Eq.(23) is the shift of energy arising from
the real part of the self-energy correction51. For the short
range disorder model, the disorder potential is a constant
in momentum space, hence the self-energy is independent
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of the state, which results in a rigid energy shift for all the
states. For a general disorder potential, the energy shift
would be generally different for different states therefore
the distribution of OM would be distorted. The effects of
finite range disorders are currently under investigation.
To leading order, the shift should be linear in the disor-

der density nimp. In Fig. 5 we plot the OM as a function
of EF and nimp. The linear dependence of the energy
shift in nimp is clearly observed. Apart from the energy
shift, the scattering induced state broadening is mani-
fested as the smoothing of the peaks of the density of
OM, which can be clearly observed in Fig. 3 (b) and
Fig. 4 (b). The peaks of OM are only slightly decreased
by the scattering. This means that the OM carried by
the electronic states are quite robust against scattering.
Moreover, Fig. 3 (b) and Fig. 4 (b) show us a sign

change of density of OM when the OM sweeps across its
maximum. The change indicates the transition from the
paramagnetic to diamagnetic susceptibility52,53. When
the impurities are present, the position of transition point
is moving along EF -axis with increasing nimp.

IV. CONCLUSIONS AND OUTLOOK

In summary, we have derived a formula of the OM
of disordered electron systems based on the Keldysh
Green’s function theory. This approach was developed
as a systematic approach to the nonequilibrium electron
dynamics under external fields. In the formula, OM is
expressed in terms of the Green’s functions and self-
energies, which can be solved from the Dyson equations,
and systematic approximation schemes to the disorder
effects can be employed. We find that there is no Fermi
surface contribution like in the case of the current re-
sponse. Our formula applies not only for insulators but
also for metallic systems, where the quasiparicle behav-
ior is usually strongly modified by the disorder scatter-
ing. It can also be straightforwardly implemented in the
numerical calculation. In the clean limit, our formula
reduces to the previous result obtained from other ap-
proaches. As an application, we calculate the OM of
a weakly disordered two dimensional electron gas with
Rashba spin-orbit coupling. The result shows that in the
simplest white noise short range disorder model, the OM
is robust against weak scattering and the main effect of
scattering is a rigid shift of the distribution of OM in en-
ergy, which can be attributed to the real part of the self
energy.
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Appendix A: Self-consistent equation for Σ̂R

0 and

explicit forms of ĜR

0

The Green functions and self-energies in the absence
of the external fields are obtained from the coupled self-
consistent equations (7), (15) and (17). In our model,
a direct analytical integration in ε shows that

ΣR0
0 (ε) =

nimpuimp

(

1− uimpg
R0
0 (ε)

)

(1− uimpgR0
0 (ε))2 − u2

impg
Rz
0 (ε)2

, (A1)

ΣRz
0 (ε) =

nimpu
2
impg

Rz
0 (ε)

(1− uimpgR0
0 (ε))2 − u2

impg
Rz
0 (ε)2

, (A2)

ΣRx
0 (ε) = ΣRy

0 (ε) = 0, (A3)

where

gR0
0 (ε) =

m

4π~2

∑

σ

ln
GR

0 (ε,Λ, σ)

GR
0 (ε, 0, σ)

−mα2g̃R0 (ε), (A4)

gRz
0 (ε) = (−∆0 +ΣRz

0 (ε))g̃R0 (ε), (A5)

and

g̃R0 (ε) =
m

4π~2RR(ε)

[

∑

σ

σ ln
(

ε− p2/2m

+ µ− ΣR0
0 (ε) +mα2 + σRR(ε)

) ]p=Λ

p=0
,(A6)

GR
0 (ε, p,±) =

(

ε− p2/2m+µ−ΣR0
0 (ε)

∓
√

α2p2 + (−∆0+ΣRz
0 (ε))2

)

−1
,(A7)

RR(ε) =
(

(mα2)2 + 2mα2(ε+ µ− ΣR0
0 (ε))

+(−∆+ΣRz
0 (ε))2

)

1
2 ,

(A8)

where Λ is the cut-off in momentum integration, and

ĜR
0 (ε) = GR0

0 (ε)σ̂0 +
∑

l=x,y,z

GRl
0 (ε)σ̂l, (A9)

with

GR0
0 (ε,p) =

(

ε− p2/2m+ µ− ΣR0
0 (ε)

)

G̃R
0 (ε, p),

(A10)

GRi
0 (ε,p) =

(

−αǫijzpj + δiz(−∆0 +ΣRz
0 (ε))

)

G̃R
0 (ε, p),

(A11)

G̃R
0 (ε, p) = (ε− p2/2m+ µ− ΣR0

0 (ε))2

+α2p2 + (−∆0 +ΣRz
0 (ε))2, (A12)

and ǫijl is the anti-symmetric tensor, (i, j, l, · · · ) label
the Cartesian components. The same results have been
obtained in Ref. 35.
For each ε, the self-energy can be calculated by iter-

ations which can be performed until the the prescribed
accuracy is reached.
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Appendix B: Self-consistent equation for ĜR

B and Σ̂R

B

and their explicit forms

The equations for solving the first order corrections ĜR
B

and Σ̂R
B are presented here. Using Eqs. (14) and (16), the

retarded Green’s function ĜR
B can be rewritten as

ĜR
B(ε) = GR0

B (ε)σ̂0 + ~GR
B(ε) · σ̂, (B1)

with

GR0
B (ε,p) = (GR0

0 (ε,p)2 + ~GR
0 (ε,p)

2)ΣR0
B (ε) + 2GR0

0 (ε)~GR
0 (ε,p) · ~Σ

R
B(ε)

+ G̃R
0 (ε,p)(∂px

Ĥ0(p)× ~GR
0 (ε,p)) · (∂py

Ĥ0(p)), (B2a)

~GR
B(ε,p) = G̃R

0 (ε,p)
~ΣR
B(ε)− G̃R

0 (ε,p)G
R0
0 (ε,p)(∂px

Ĥ0(p))× (∂py
Ĥ0(p))

− G̃R
0 (∂px

H0
0 (p))~G

R
0 (ε,p)× (∂py

Ĥ0(p)) + G̃R
0 (∂py

H0
0 (p))~G

R
0 (ε,p)× (∂px

Ĥ0(p))

+ 2 ~GR
0 (ε,p)

(

GR0
0 (ε,p)ΣR0

B (ε) + ~GR
0 (ε,p) ·

~ΣR
B(ε)

)

, (B2b)

and the inner product of two vectors are defined as

~A · ~B =
∑

l=x,y,z

AlBl. (B3)

From Eqs. (16) and (17), we write the self-energy Σ̂R
B(ε) as

Σ̂R
B(ε) = ΣR0

B (ε)σ̂0 +
∑

l=x,y,z

ΣRl
B (ε)σ̂l, (B4)

with

ΣR0
B (ε) = nimpu

2
imp

(

(1− uimpg
R0
0 (ε))2 − u2

impg
Rz
0 (ε)2

)−2

×
[(

(1− uimpg
R0
0 (ε))2 + u2

impg
Rz
0 (ε)2

)

gR0
B (ε) + 2(1− uimpg

R0
0 (ε))uimpg

Rz
0 (ε)gRz

B (ε)
]

, (B5a)

ΣRz
B (ε) = nimpu

2
imp

(

(1− uimpg
R0
0 (ε))2 − u2

impg
Rz
0 (ε)2

)−2

×
[(

(1− uimpg
R0
0 (ε))2 + u2

impg
Rz
0 (ε)2

)

gRz
B (ε) + 2(1− uimpg

R0
0 (ε))uimpg

Rz
0 (ε)gR0

B (ε)
]

, (B5b)

ΣRi
B (ε) = nimpu

2
imp

(

(1− uimpg
R0
0 (ε))2 − u2

impg
Rz
0 (ε)2

)−1
gRi
B (ε), (B5c)

and we have

gRα
0,B(ε) =

∫

d2p

(2π~)2
GRα

0,B , (B6)

where α ∈ {0, x, y, z}. The zeroth order components GRα
0 are computed as in appendix A and are used as input for

the above equations.

Appendix C: The particle density

Here, we present the derivation of Eq.(19). In the absence of disorder scattering,

ĜR,A
0 (ε,p) = [ε− Ĥ0(p)± i0+]−1. (C1)

At zero temperature, plugging Eq. (C1) into Eqs. (12) and (18), we can obtain

ne = −

∫

dε

π

∫

d2p

(2π~)2

{

∑

n

1

ǫ − ǫnp + i0+
+ e~B

∑

nm

1

(ǫ− ǫnp + i0+)2
1

ǫ− ǫmp + i0+

× ℑ[〈unp|v̂x(p)|ump〉〈ump|v̂y(p)|unp〉]
}

. (C2)

unp are the eigenfunctions of the unperturbed Hamiltonian and ǫnp the eigenvalues. The integral over ǫ contains
simple and double poles. Using the residue theorem54, we obtain

ne =

∫

d2p

(2π~)2

∑

n,occ

{1 + 2ie~B
∑

m

ℑ[〈unp|v̂x(p)|ump〉〈ump|v̂y(p)|unp〉]}, (C3)
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where occ denotes summing over occupied states. Further simplification can be made by using the Sternheimer
equation

υ̂j(p)|unp〉 = (ǫnp − ǫn′p)|
∂unp

∂pj
〉+

∂ǫnp
∂pj
|unp〉, (C4)

and we finally arrive at the equation

ne =
∑

n,occ

∫

d2p

(2π~)2

[

1 +
e

~
B · Ωn(p)

]

. (C5)

Appendix D: Orbital magnetization in the clean limit

The derivations of Eq.(27) for the OM in the clean limit are present below. When the relaxation rate vanishes,
substituting Eq. (C1) into Eq. (24), we can write Eq. (24) as

M = e~

∫

dε

2π
f(ε)

∫

d2p

(2π~)2

∑

nm

(ǫnp − µ)ℑ[〈unp|v̂x(p)|ump〉〈ump|v̂y(p)|unp〉]

×

[

1

(ǫ− ǫnp + i0+)2
1

ǫ− ǫmp + i0+
−

1

(ǫ− ǫnp + i0+)2
1

ǫ− ǫmp + i0+

]

(D1)

Using the residue theorem, we find that

M = −e~

∫

d2p

(2π~)2
× [

f(ǫmp)− f(ǫnp)

(ǫmp − ǫnp)2
+

f ′(ǫnp)

ǫnp − ǫmp

]×ℑ
∑

nm

(ǫnp − µ)[〈unp|v̂x(p)|ump〉〈ump|v̂y(p)|unp〉] (D2)

where f ′

np ≡ ∂f(ǫnp)/∂ǫnp. With the help of the Sternheimer equation Eq. (C4), we obtain

M =
i

2
e~

∫

d2p

(2π~)2

∑

n

[

(ǫnp − µ)〈
∂unp

∂p
|[ǫnp − Ĥ0(p)]× |

∂unp

p
〉f ′

np − 〈
∂unp

∂p
|[ǫnp + Ĥ0(p)− 2µ]× |

∂unp

∂p
〉fnp

]

∣

∣

z
.

(D3)

The above result can be written as

M =
∑

np

{

mn(p)fnp + (ǫnp − µ)mn(p)f
′

np −
e

~
(ǫnp − µ)Ωnp(p)

}

, (D4)

where mn(p) = (e/2~)i〈∇punp|[ǫn(p) − Ĥ0(p)] × |∇punp〉 is the orbital moment of state n,p and Ωn(p) =
i〈∇punp| × |∇punp〉 is the Berry curvature. At zero temperature, f ′ becomes a δ-function of (ǫnp − µ), therefore we
have in this case

M =
∑

np

[

mn(p)fnp −
e

~
(ǫnp − µ)Ωn(p)

]

. (D5)
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