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Recent numerical simulations with different techniques have all suggested the existence of a con-
tinuous quantum phase transition between the Z2 topological spin liquid phase and a conventional
Néel order. Motivated by these numerical progress, we propose a candidate theory for such Z2−Néel
transition. We first argue on general grounds that, for a SU(2) invariant system, this transition can-

not be interpreted as the condensation of spinons in the Z2 spin liquid phase. Then we propose
that such Z2−Néel transition is driven by proliferating the bound state of the bosonic spinon and
vison excitation of the Z2 spin liquid, i.e. the so called (e,m)−type excitation. Universal critical
exponents associated with this exotic transition are computed using 1/N expansion. This theory
predicts that at the Z2−Néel transition, there is an emergent quasi long range power law correlation
of columnar valence bond solid order parameter.

PACS numbers:

I. INTRODUCTION

Spin liquid is an exotic quantum many-body ground
state of bosonic spin systems that does not break any
global symmetry of the system, thus it should corre-
spond to a disordered phase in the classic Ginzburg-
Landau paradigm. However, besides being disor-
dered, spin liquids usually also have many proper-
ties beyond the GL paradigm. For example, fully
gapped spin liquids usually have exotic long range
quantum entanglement, which is usually interpreted as
topological order. Algebraic spin liquids have emer-
gent stable gapless excitations even though the sys-
tems break no continuous symmetry (hence these gap-
less excitations are not ordinary Goldstone modes).
In the last decade, candidates of gapless spin liquid
states have been discovered in experimental systems
such as κ−(ET)2Cu2(CN)3

1–4, EtMe3Sb[Pd(dmit)2]2
5–9,

Ba3CuSb2O9
10, Ba3NiSb2O9

11, ZnCu3(OH)6Cl2
12, etc.

In all these materials, no evidence of spin order was found
at temperature much lower compared with the spin in-
teraction energy scale, while a large density of gapless
excitations was discovered in thermodynamics or ther-
mal conductivity measurements3,4,8,9 , thus these sys-
tems cannot be understood using standard semiclassical
physics of spin orders.
In addition to all the experimental studies, thanks to

the rapid development of numerical techniques, more and
more candidates of exotic liquid states have been iden-
tified in frustrated spin models13–17, hard-core quantum
boson model19,20, or even Hubbard model23. All these
phases that are identified numerically are fully gapped
liquid phases with short range correlation between both
spin order parameters and also valence bond solid (VBS)
order parameters. The simplest fully gapped spin liq-
uid state is the Z2 topological liquid state, which has
the same topological order as the toric code model24. In
addition to the fully gapped spectrum, the computation
of critical exponents at the order-disorder transition of

these models19,20,22, and the computation of topologi-
cal entanglement entropy15,21 both convincingly proved
that the spin liquid states of some of these models (such
as the J1 − J2 model on the square lattice, and the ex-
tended Bose-Hubbard model on the Kagome lattice) are
indeed the Z2 topological liquid. In some other models
(such as the spin-1/2 Heisenberg model on the Kagome
lattice13,14, and the Hubbard model on the honeycomb
lattice23), although an accurate topological entanglement
entropy computation is still demanded, it is broadly be-
lieved that the spin liquid state is indeed the Z2 liquid
state, or a similar (Z2)

n liquid state.

Besides the spin liquid state itself, the quantum phase
transitions of these models are equally interesting. For
example, continuous quantum phase transitions between
Néel order and a fully gapped spin liquid phase have been
found in the honeycomb lattice Hubbard model23, and
the J1 − J2 spin-1/2 Heisenberg model on the square
lattice15,16. : phases (plural) In terms of the Landau-
Ginzburg (LG) theory, this transition should be an ordi-
nary O(3) transition, and the Z2 liquid phase is identified
as the disordered phase, while the Néel phase is the or-
dered phase. However, because the Z2 liquid phase has
a nontrivial topological order and topological degener-
acy24, it cannot be adiabatically connected to the trivial
direct product state, thus it should not be identified as
the trivial disordered phase in the classical case. Thus
if the Z2−Néel transition exists, it means that the quan-
tum disordering of the Néel order and the emergence of
the Z2 topological order happen simultaneously at one
point, this unusual fact implies that this Z2−Néel quan-
tum critical point (QCP) must be an unconventional one
that is beyond the LG paradigm. The goal of this paper
is to understand this unconventional QCP.
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II. FAILURE OF THE SPINON THEORIES

We first argue on general grounds that such a contin-
uous Z2−Néel transition cannot be understood using an
ordinary spinon theory. We stress that we will only con-
sider SU(2) invariant systems here.
First of all, if this Z2 spin liquid phase has a

gapped fermionic spinon excitation fα, then a Néel or-

der parameter can in principle be represented as ~N ∼

(−1)if †
i,α~σαβfi,β. Thus it appears that we can interpret

this Z2−Néel transition as the disorder-order transition
of the vector ~N using an ordinary Landau-Ginzburg the-
ory. However, this theory is incorrect because the vector
~N does not carry any gauge charge, thus the order pa-
rameter does not immediately suppress the Z2 topologi-
cal order. This implies that between the Z2 spin liquid

and the Néel order with nonzero 〈 ~N〉, there must be an
intermediate state with the coexistence of both Néel or-
der and Z2 topological order, and it is usually called the
Néel∗ state. Thus a direct continuous transition between
Z2 and Néel order cannot be obtained this way without
fine-tuning.
In order to suppress the Z2 topological order, the usual

wisdom is to condense a topological excitation that car-
ries the Z2 gauge charge. Then after the topological ex-
citations are condensed, the Z2 gauge field is gapped out
due to Higgs mechanism, and the topological order dis-
appears. Along with suppressing the topological order,
if we want to induce spin order simultaneously, then the
excitation that condenses must also carry certain repre-
sentation of the spin SU(2) symmetry group, in addition
to the Z2 gauge charge. Let us call this gauge-charged
spin excitation a spinon in general. Then the nature of
the spin order and the universality class of this transi-
tion both depend on the particular spin representation
of spinon.
The smallest representation of SU(2) is spin-1/2 rep-

resentation, and there is no consistent “fractional” rep-
resentation of SU(2) group that is smaller than spin-1/2.
Thus let us first assume the spinon is a spin-1/2 boson,
which is described by a two component complex boson
field zα = (z1, z2)

t, and zα is subject to the constraint
|z1|

2 + |z2|
2 = 1. Then zα is coupled to a Z2 gauge field

in the following way:

H =
∑

i,µ

∑

α

−tσz
i,µz

∗
α,izα,i+µ +H.c.+ · · · (1)

where the ellipsis stands for higher order interaction
terms. σz

i,µ is the Z2 gauge field that is defined on the
link (i, µ) of the lattice, and Eq. 1 is invariant under the
gauge transformation

zi,α → ηizi,α, σz
i,µ → ηiσ

z
i,µηi+µ, (2)

where ηi = ±1 is an arbitrary Ising function defined on
the sites of the lattice. The condensed phase of zα is
the spin ordered phase, and because zα is coupled to the

Z2 gauge field, the Z2 topological order is automatically
destroyed due to the Higgs mechanism in the conden-
sate of zα. The gapped phase of zα is the deconfined Z2

topological phase.
Since zα has in total two complex bosonic fields, i.e.

four real fields, then with the constraint |z1|
2+ |z2|

2 = 1,
the entire configuration of zα is equivalent to a three di-
mensional sphere S3. Since the spinon field zα is coupled
to a Z2 gauge field, then the physical configuration of
the condensate of zα is S3/Z2, which is mathematically
equivalent to the group manifold SO(3). Since zα itself
is not a physical observable, inside the condensate of zα
the physical observables are the three following vectors:

~N1 = Re[ztiσy~σz], ~N2 = Im[ztiσy~σz], ~N3 = z†~σz. (3)

A simple application of the Fierz identity
∑

a σ
a
αβσ

a
γρ =

2δαρδβγ − δαβδγρ proves that these three vectors are or-
thogonal to each other. Since the first homotopy group of
SO(3) is π1[SO(3)] = Z2, inside this spin ordered phase
there are vortex-like topological defects. Two of these
vortices can annihilate each other.
The spin-1/2 boson field zα can be viewed as the low

energy mode of the usual Schwingber boson bα, but our
argument is more general, and it is independent of the

microscopic origin of zα. If one of the three vectors ~Ni is
identified as the Néel vector, then this phase must have
two other spin vector orders that are perpendicular to
the Néel vector. The condensation transition of zα while
coupled to a Z2 gauge field is usually called the O(4)∗

transition25.
Now let us assume the spinon of the Z2 topological

phase carries a spin-1 representation. A spin-1 represen-
tation is a vector representation of SU(2), i.e. it can be
parametrized as a unit real vector ~n, |~n|2 = 1. Now the
coupling between the spinon and Z2 gauge theory reads

H =
∑

i,µ

∑

a

−tσz
i,µn

a
i n

a
i+µ + · · · (4)

Again, since ~n couples to a Z2 gauge field, it is not a
physical observable: ~n and −~n are physically equivalent.
If vector ~n condenses, the condensate is in fact a spin
nematic, or quadrupole order, with physical order pa-
rameter

Qab = nanb −
1

3
δab. (5)

This spin order has manifold S2/Z2, which also supports
vortex excitation since π1[S

2/Z2] = Z2. One example
state of this type is the spin quadrupolar state that has
been observed in the spin-1 material NiGa2S4

26–28.
We have discussed two types of unconventional QCPs

between Z2 liquid phase and spin orders. In either case,
the spin ordered phase is different from the ordinary
collinear Néel order, because a Néel order should have
ground state manifold (GSM) S2. In particular, in both
cases we have considered, the spin ordered phase must
have a nontrivial homotopy group π1, which corresponds
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to the vison excitation of the Z2 gauge field. Gener-
alization of our analysis to higher spin representations
is straightforward, but the conclusion is unchanged. As
we already discussed, in Ref.15 and Ref.23, a continuous

quantum phase transition between a fully gapped spin
liquid phase and a Néel order was reported. If the fully
gapped spin liquid discovered in these numerical works
is indeed a Z2 spin liquid as we expected, then such con-
tinuous quantum phase transition is beyond the spinon
theory discussed in this section. In order to understand
the continuous transition between the gapped spin liq-
uid and Néel order reported in the phase diagram of the
Hubbard model on the honeycomb lattice23, in Ref.29–31

the authors had to introduce extra “hidden” order pa-
rameters in the Néel phase, which change the GSM of
the Néel phase completely.
In this section we argued on general grounds that the

Z2−Néel transition cannot be interpreted as the conden-
sation of an ordinary spinon. Our argument is indepen-
dent of specific spin model or lattice structure. However,
this argument can only be applied to SU(2) invariant
systems. For a system with U(1) symmetry, for exam-
ple the hard-core Boson model on the Kagome lattice
discussed in Ref.18,21,22, the transition between Z2 topo-
logical phase and the superfluid phase can be understood
as the condensation of a fractionalized “half-boson” that
couples to the Z2 gauge field, and this transition is the
so-called 3d XY∗ transition.

III. EXOTIC Z2−NÉEL QUANTUM CRITICAL

POINT

A. Phase diagram around Z2 spin liquid driven by

e and m excitations

In order to understand the direct continuous transi-
tion between the Z2 spin liquid and the Néel phase, we
should first put these two phases in the same phase di-
agram. One candidate theory that contains both phases
was proposed in Ref.34. Let us first write down a minimal
unified field theory proposed in Ref.34:

L =

Nz
∑

α=1

|(∂µ − iaµ)zα|
2 +

Nv
∑

α=1

|(∂µ − ibµ)vα|
2

+ sz |zα|
2 + sv|vα|

2 +
i

π
ǫµνρaµ∂νbρ + · · · (6)

In this field theory, there are two types of matter fields, zα
and vα, and they are interacting with each other through
mutual Chern-Simons (CS) fields aµ and bµ, which grant
them a mutual semionic statistics i.e. when vα adiabati-
cally encircles zα through a closed loop, the system wave-
function acquires a minus sign. This is one of the key
properties of the Z2 topological phase. Here zα corre-
sponds to the electric (e−type) excitation of the Z2 liq-
uid, and vα corresponds to the magnetic (m−type) exci-
tation. vα is usually called the vison excitation.

FIG. 1: The global phase diagram of Eq. 6, which describes
four different states on a distorted triangular lattice, or a
square lattice. Eq. 6 assumes that the e−type excitation zα
and m−type excitation v condense separately.

The minimal field theory Eq. 6 has symmetry
SU(Nz)×SU(Nv). However, depending on the details of
the microscopic model, the higher order interactions be-
tween matter fields can break this symmetry down to its
subgroups. We will first ignore this higher order symme-
try breaking effects, and focus on the case with Nz = 2,
and Nv = 1. In Ref.34, the authors used the model Eq. 6
with Nz = 2, Nv = 1 to describe the global phase dia-
gram of spin-1/2 quantum magnets on a distorted tri-
angular lattice, which is a very common structure in
many materials. The same theory can be applied to the
square and honeycomb lattice as well, and in this paper
we will take the square lattice as an example. Here zα is
a bosonic spin-1/2 spinon, and v is the low energy mode
of a vison, and it corresponds to the expansion of the

vison at two opposite momenta ± ~Q:

τ ∼ vei
~Q·~r + v∗e−i ~Q·~r, (7)

thus v is a complex scalar field. On the square lattice or
distorted triangular lattice, there is a Z8 anisotropy on v,
that is allowed by the symmetry of the lattice34,35. This
anisotropy is highly irrelevant in the quantum critical
region, and it will be ignore throughout the paper.
The phase diagram of this model is tuned by two pa-

rameters: sz and sv, and depending on the sign of these
two parameters, there are in total four different phases
(Fig. 1):
Phase 1. This is the phase with sz > 0, sv > 0. In

this phase, both matter fields zα and v are gapped, and
they acquire a topological statistic interaction through
the mutual CS fields. Since all the matter fields are
gapped, the low energy properties of phase 1 is described
by the mutual CS theory only. The mutual CS theory de-
fined on a torus has a four-fold degenerate ground state,
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thus this phase is precisely the gapped Z2 topological
phase36.
Phase 2. sv > 0, sz < 0. When vison v is gapped,

integrating out v induces a Maxwell term for gauge field
bµ, which implies that the flux of bµ is condensed. In
other words the flux-creation operator (denoted as Mb)
acquires a nonzero expectation value. Mb corresponds to
a Dirac monopole configuration of bµ in the space-time.
Due to the mutual CS coupling between gauge fields aµ
and bµ, the condensate of Mb breaks aµ to a Z2 gauge
field. Thus after we integrate out v and bµ, the spinon zα
is only coupled to a Z2 gauge fields. Thus when Nz = 2,
the condensate of zα has GSM SO(3) as was discussed
in the previous section. An example of this phase is the
spiral spin density wave phase. Once we assume sv > 0,
Eq. 6 precisely reduces to the previously studied O(4)∗

theory for the transition between Z2 spin liquid and spiral
spin order25.
Phase 3. sv < 0, sz > 0. This is a phase where

v condenses while zα is gapped out. This phase is the
four fold degenerate columnar VBS phase that breaks the
reflection and translation symmetry of the lattice. The
columnar VBS order parameter can be written as v2Ma,
where Ma is the monopole operator of gauge field aµ,
which creates a 2π flux of aµ. When sz > 0, spinon zα
is gapped, and it leads to a Maxwell term for aµ. This
implies that Ma is condensed, and it breaks bµ to a Z2

gauge field. In this case the low energy effective theory
that describes phase 3 is a complex field v that couples
to a Z2 gauge field, thus our theory reduces to the pure
vison theory that was thoroughly discussed in Ref.35.
Phase 4. sv < 0, sz < 0. This is a phase where

both zα and v condense. Because in this phase the only

gauge invariant order parameter that condenses is ~N ∼
z†~σz, this is precisely the collinear Néel phase with GSM
S2. In fact, when v is condensed, the gauge field bµ
acquires a mass term b2µ due to the Higgs mechanism.
Then integrating out v and bµ leads to a Maxwell term
for gauge field aµ, due to the mutual CS coupling. Thus
the spinon zα is coupled to a dynamical gapless U(1)
gauge field aµ. Then the GSM of the condensate of zα is
S3/U(1) = S2, which is equivalent to the collinear Néel
order. Thus under the assumption sv < 0, Eq. 6 reduces
to the CP(1) model that describes the deconfined QCP
between Néel and VBS order37,38.
We have shown that the mutual CS formalism Eq. 6

unifies many previously discussed exotic states and ex-
otic phase transitions. A more detailed discussion of the
phase diagram can be found in Ref.34.

B. Z2−Néel transition driven by (e,m) excitation

Now we are ready to discuss our theory for the direct
continuous transition between Z2 liquid phase and Néel
phase. In a Z2 topological phase, using the standard
notation, there are three types of topological excitations:
the electric excitation e, the magnetic excitation m, and

FIG. 2: (a) For a SU(2) invariant system, if one condenses the
ordinary spinon of the Z2 spin liquid phase, the spin ordered
state must have ground state manifold SO(3). One example
state of this kind is the spiral spin density wave. (b) If the
(e,m) type of excitation of the Z2 spin liquid condenses, the
spin order can be the ordinary Néel order. At the Z2−Néel
QCP, both Néel and columnar VBS order parameters have
power-law correlation.

their bound state (e,m). In Eq. 6, the spinon field zα
is the e−type excitation, while the vison field v is the
m−type excitation. Eq. 6 is based on the assumption
that inside the Z2 liquid phase the e−type and m−type
excitations have lower energy than (e,m), thus in the
global phase diagram Fig. 1, the Néel and Z2 topological
phases are separated by a multicritical point sz = sv = 0.
However, if we consider the opposite possibility, namely
the (e,m)−type excitation has the lowest energy in the
Z2 spin liquid, then a different quantum phase transition
can occur by condensing the (e,m)−type excitation.

Let us first take the simplest Toric code model24

as an example: H =
∑

i −σ
x
i,−xσ

x
i,xσ

x
i,−yσ

x
i,y −

σz
i,xσ

z
i,yσ

z
i+x,yσ

z
i+y,x. The “condensation” of an excita-

tion simply means that the system enters a phase were
the kinetic energy of this excitation dominates. It is well-
known that in the Toric code model the condensation
of the e−excitation is driven by a magnetic field hzσ

z
i,µ,

while the condensation of m−excitation is driven by field
hxσ

x
i,µ, because these two fields enable the hopping of e

and m excitations respectively. In order to “condense”
the (e,m) excitation, we simply need to turn on field
hyσ

y
i,µ, which hops the (e,m) excitation along the diago-

nal directions of the square lattice. When any of the three
excitations is condensed, the system enters a trivial po-
larized state without any topological degeneracy. Gener-
ally speaking, in the topological phase, starting from one
of the topological sectors on the torus, the other sectors
can be generated by locally creating a pair of topologi-
cal excitations, and annihilating them after adiabatically
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moving one excitation of the pair around the torus. Be-
cause all three types of topological excitations are mutual
semions, condensing one of the three excitations will lead
to a strong local flux fluctuation for the other two exci-
tations, thus the other two excitations are confined in
this condensate, i.e. the system no longer has topological
degeneracy.
In our current case, both e and m excitations carry

extra global symmetries besides their gauge charges. In
order to describe the (e,m) excitation in our situation,
let us define new complex bosonic fields φα and ψα:

φα = zαv, ψα = zαv
∗. (8)

φα and ψα carry the quantum number of (e,m) excita-
tion. Because v is a complex variable, fields φα and ψα

are independent of each other, and they interact with
each other as follows:

L =
∑

α

|(∂µ − iaµ − ibµ)φα|
2 + |(∂µ − iaµ + ibµ)ψα|

2

+ r(|φα|
2 + |ψα|

2) +
i

π
ǫµνρaµ∂νbρ

+ g(|φ|2)2 + g(|ψ|2)2 + u|φ|2|ψ|2 − wφ†~σφ · ψ†~σψ.(9)

Notice that φα and ψα carry gauge charges of both gauge
fields aµ and bµ. In order to understand the QCP at r = 0
more quantitatively, it is more convenient to define new
gauge field A±

µ = aµ ± bµ, then the Lagrangian reads :

L =
∑

α

|(∂µ − iA+
µ )φα|

2 + |(∂µ − iA−
µ )ψα|

2

+ r(|φα|
2 + |ψα|

2) +
i

4π
ǫµνρA

+
µ ∂νA

+
ρ −

i

4π
ǫµνρA

−
µ ∂νA

−
ρ

+ g(|φ|2)2 + g(|ψ|2)2 + u|φ|2|ψ|2 − wφ†~σφ · ψ†~σψ. (10)

In this field theory, φα and ψα are almost decoupled
from each other, i.e. they are only coupled through the
quartic terms u and w. The mass gaps r for φα and ψα

are equal, because the vison modes v and v∗ are guar-
anteed to be degenerate by the symmetry of the square
lattice. φα and ψα are introduced as bosonic fields, but
gauge fields A+

µ and A−
µ make them fermionic fields af-

ter the standard flux attachment, due to the existence of
the Chern-Simons terms in this Lagrangian. In our for-
mulation, fields φα and ψα can still condense by tuning
parameter r in Eq. 10. After φα and ψα both condense
simultaneously, A+

µ and A−
µ are both gapped out based

on the Higgs mechanism, and in the Higgs phase the only
gauge invariant operators are

φ†~σφ, ψ†~σψ. (11)

Since these two vectors both carry the same quantum
number as the Néel order parameter z†~σz, in Eq. 10 w
is naturally positive, thus these two vectors are aligned
parallel with each other, so the condensate of φα and ψα

has a manifold S2, i.e. it is the standard collinear Néel

order. The difference between this new transition and
the ordinary spinon theory is illustrated in Fig. 2.
What is the universality class of this transition? The

simplest possibility is that, both u and w are irrelevant at
the transition, although they are relevant in the conden-
sate of φα and ψα. Under this assumption φα and ψα are
completely decoupled at the transition r = 0. Then in
this case this transition is described by the simple Chern-
Simons-Higgs model:

L =
N
∑

α=1

|(∂µ − iAµ)φα|
2 + r|φα|

2 + g(
∑

β

|φβ |
2)2

+
iN

8θ
ǫµνρAµ∂νAρ. (12)

Here we have generalized the equation to have N flavors
of matter fields φα, and introduced a statistical angle
θ. Our physical situation corresponds to N = 2 and
θ = π. Notice that Eq. 12 explicitly breaks the time-
reversal symmetry due to the Chern-Simons term. But
the complete theory Eq. 10 is time-reversal invariant, be-
cause under time-reversal transformation φα and ψα are
exchanged, the two gauge fields A+

µ and A−
µ are also ex-

changed.
The critical exponents of this transition can be com-

puted using a systematic 1/N expansion. Ref.33 has com-
puted the critical exponent ν defined as ξ ∼ |r|−ν , here
we will focus on the scaling dimension of φ†T aφ at the
QCP, where T a is the SU(N) generator. To the first order
1/N expansion, this scaling dimension reads

∆[φ†T aφ] = 1 +
4

3π2

(

4

N
−

1

N

θ2/4

1 + θ2/64

)

. (13)

Thus the so-called anomalous dimension of the Neel order
parameter reads

η = 1 +
8

3π2

(

4

N
−

1

N

θ2/4

1 + θ2/64

)

. (14)

This number can be checked numerically. If such quan-
tum phase transition between Néel order and topological
order is discovered in experimental systems, then this
critical exponent η can be detected by measuring the
spin-lattice relaxation rate 1/T1 ∼ T η in nuclear mag-
netic resonance (NMR) experiments at the quantum crit-
ical region of the phase diagram43.
Let us briefly comment how we obtain this result in

Eq. 13. Similar calculation without the θ term was ob-
tained before. See Fig.3 and Fig.4 of the previous work39

for necessary Feynman diagrams. First, we need to eval-
uate wave function renormalization of φ from both gauge
fluctuation and the density fluctuation, which contain the
factor(1/N). Then, using the standard operator inser-
tion method, one can calculate renoramlization function
of the corresponding vertex. We note that the traceless
condition, (Tr(T a) = 0), reduces one diagram compared

with the calculation of the scaling dimension of |~φ|2 and
simplify our calculation.
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In the limit of θ → ∞, i.e. the CS term is ef-
fectively zero, these results converges to the ordinary
CP(N − 1) results computed in Ref.39. In the limit of
θ → 0, the gauge fluctuation is totally frozen by the CS
term, and the universality class of this quantum criti-
cal point only acquires corrections from the short range
self-interaction between field φα, thus it is equivalent to
an O(2N) transition of the O(2N) bosonic vector field
(Re[φ1], · · ·Re[φN ], Im[φ1], · · · Im[φN ]). Scaling dimen-
sion of the “Néel” type operator (∆[φ†T aφ]) in our theory
is larger than that in the CP(N − 1) theory with large
N , i.e. at the Z2−Néel QCP, the anomalous dimension of
the Néel order parameter is predicted to be larger than
that of the deconfined QCP between the Néel and VBS
order. This prediction can be tested in the future by a
careful comparison between the critical exponents of the
J1 − J2 model and the J −Q model40–42.
It is pretty clear that at least in the large−N limit,

the perturbation of u in Eq. 10 is irrelevant, because in

this limit the scaling dimension ∆[|~φ|2] = ∆[|~ψ|2] = 2,
i.e. ∆[u] = −1. Higher order 1/N or ǫ expansion is de-
manded to determine whether w is relevant or not at this
transition.
Assuming at the QCP r = 0 both u and w are irrele-

vant, then besides the Néel order parameter, some other
physical order parameters also have power-law correla-
tion. For example, the columnar VBS order parameter
can be written as

VBS ∼ ψ†
αφαMa ∼ v2Ma, (15)

where Ma is the monopole operator for gauge field aµ.
When φα and ψα both have a large N component, the
scaling dimension ofMa is proportional to N . Thus with
large N the VBS order parameter is expected to have a
much larger scaling dimension compared with the Néel
order parameter at the Z2−Néel QCP. We stress that
the VBS order parameter has short-range correlation in
the Z2 spin liquid and the Néel phase, its emergent quasi
long range correlation occurs only at the QCP. This result
has already been confirmed numerically in Ref.16, and it
was demonstrated that the scaling dimension of the VBS
order parameter is indeed larger than that of Néel order
at the QCP16.
In 2+1 dimension, the entanglement entropy of a con-

formal field theory can in general be written as S =
cL− β, where the first term is the nonuniversal area law
contribution, while the second term is a universal con-
stant. In Ref.44, it was argued that at a QCP where
a bosonic field condenses while coupling to a discrete
gauge field, the universal entanglement entropy is a di-
rect sum of the contribution from the bosonic matter
field and the contribution from the discrete gauge field:
β = βb + βgauge. This conclusion is based on the as-
sumption that the matter field dynamics is not affected
by the discrete gauge field in the infrared limit, and this
is indeed true for the XY∗ transition observed in Ref.22.
However, at the exotic Z2−Néel transition discussed here
where the (e,m)−type excitations condense, the bosonic

matter fields φα and ψα are indeed strongly affected by
the gauge field, thus at this QCP the universal entan-
glement entropy β is no longer a direct sum of the two
different degrees of freedom of the system. The univer-
sal entanglement entropy of field theory Eq. 12 in the
large−N limit can be found in Ref.45.

C. A Toy model with N = 1

Now let us discuss a toy model with N = 1. This is
actually the case where the critical theories can be all
understood exactly. This field theory with N = 1 can be
applied to the following extended Toric-code model:

H =
∑

i

Kxσ
x
i,−xσ

x
i,xσ

x
i,−yσ

x
i,y +Kzσ

z
i,xσ

z
i,yσ

z
i+x,yσ

z
i+y,x

+
∑

i,µ

hxσ
x
i,µ + hzσ

z
i,µ + · · · . (16)

Here the e−type (m−type) excitation is the end of a
string product of σx (σz). The e and m−type excita-
tions view σz and σx as Z2 gauge fields respectively, and
the hx and hz terms enable the hopping of these excita-
tions. Unlike the standard toric-code model24, here we
keep Kx, Kz > 0. When Kx, Kz > 0, both σz and σx

have a π−flux in the ground state. Then the dynamics
of both e and m type of excitations are frustrated, and

both excitations have two different minima ± ~Q in their
band structure. As a result, the low energy dynamics of e
and m excitations are described by complex scalar fields

z and v expanded at momentum ~Q. If one of these two
fields condenses while the other one remains gapped, the
Z2 topological order is destroyed, and the system must
spontaneously break the lattice translation symmetry as
well. The condensates of e andm−type excitations phys-
ically correspond to the valence bond solid phases of σz

and σx respectively.
When N = 1, if e and m type of excitations condense

separately, then the phases in Fig. 1 would be Z2 liquid,
VBS order of σx, trivial phase, and VBS order of σz

(counted counterclockwise around the multicritical point
sz = sv = 0). On the other hand, if the bound state
(e,m) has the lowest energy in the Z2 liquid phase, then
again we can introduce two independent complex fields
φ and ψ as φ = zv, ψ = zv∗. Then the transition driven
by the condensation of φ and ψ is described by Eq. 12
with N = 1 and θ = π/2.
What kind of transition is this? If in Eq. 12 the com-

plex field φ is also coupled to an external U(1) gauge
field Aext

µ , then we can see that in the disordered phase
of φ, after integrating out the massive φ and dynam-
ical gauge field Aµ, the lowest order contribution to
the effective Lagrangian of Aext

µ is still a Maxwell term:

Leff ∼ (∂Aext)2 + cθ(∂2Aext)(∂Aext) + · · ·. While in
the condensate of φ, the effective Lagrangian of Aext

µ ac-
quires a Chern-Simons term at level 1. This analysis
implies that this transition is equivalent to a topological
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transition between a trivial insulator and a Chern insu-
lator with Chern number 1. The universality class of this
type of topological transition of Chern insulator is very
well-understood, it can be simply described by a 2+1d
Dirac fermion:

L = ψ̄γµ∂µψ +mψ̄ψ, (17)

here the trivial insulator and Chern insulator correspond
to m > 0 and m < 0 respectively, and m = 0 corresponds
to the quantum critical point at r = 0 in Eq. 12 with N =
1. Thus we conjecture that when N = 1 and θ = π/2, the
critical point in Eq. 12 is dual to a massless free Dirac
fermion. In Ref.46 a similar conjecture was made that
the 3D XY transition is dual to a massless Dirac fermion
coupled to a noncompact U(1) gauge field.

IV. SUMMARY AND DISCUSSION

In this work we have discussed a possible theory for
the direct continuous transition between the Z2 liquid
phase and the Néel order, and this is a candidate the-
ory for the liquid-Néel transition observed in Ref.15,23.
We have taken the square lattice as an example, but re-
sults discussed in this paper can also be applied to the
honeycomb lattice after straightforward generalization.
Evidences of a quantum transition between spin liquid

and magnetic ordered phase were discovered in the ma-
terial κ−(ET)2Cu2(CN)3

47. It was also proposed that
the ground state of κ−(ET)2Cu2(CN)3 is a Z2 spin liq-
uid with Bosonic spinons43. Thus the theory proposed
in our current paper may be applied to the material
κ−(ET)2Cu2(CN)3, after the nature of its ground state
is further clarified. The critical exponent η calculated
in Eq. 14 can be measured by NMR relaxation rate
1/T1 ∼ T η at the quantum critical region.
In our theory, we exploited the fact that in two spa-

tial dimensions, the e and m−type excitations are both
point like defects, thus their nontrivial statistics can be
described well with a mutual Chern-Simons theory. By
contrast, in a three dimensional Z2 liquid phase, there is
a mutual semion statistics between the point particle like
e−excitation and loop like m−type excitation. Thus the
effective field theory for the three dimensional Z2 liquid
phase is the so-called BF theory Leff ∼ i

π
ǫµνρτaµ∂νbρτ ,

where aµ is the U(1) gauge field that couples to the
e−type point particle, and bµν is an antisymmetric rank-
2 antisymmetric tensor gauge field that couples to the
m−type loop excitation. The global phase diagram
around the three dimensional Z2 liquid phase is another
interesting subject, and we will leave it to future studies.
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