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ABSTRACT 
 

We present a three-dimensional simulation of electrical conductivity in isotropic, 

polydisperse rod networks from which we determine the percolation threshold (φc). 

Existing analytical models that account for size dispersity are formulated in the slender-

rod limit and are less accurate for predicting φc in composites with rods of modest L/D. 

Using empirical approximations from our simulation data, we generalized the excluded 

volume percolation model to account for both finite-L/D and size dispersity, providing a 

solution for φc of polydisperse rod networks that is quantitatively accurate across the 

entire L/D range.  
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I. INTRODUCTION 

Percolation theory describes connectivity of objects within a network structure, 

and the effects of this connectivity on the macroscale properties of the system. 

Computational and analytical studies addressing the percolation of rods are important for 

predicting insulator–conductor transitions composites with conductive particles. Such 

systems include early fiber-reinforced polymer composites and the more recent 

nanocomposites containing carbon nanotubes, metal nanowires and graphene, that have 

sparked considerable interest due the dramatic improvement of the electrical properties of 

insulating polymers at very low filler concentrations (< 1vol% in some cases). Realizing 

the full potential of these novel materials requires an in-depth understanding and 

predictive capability of the key structure–property relationships, particularly geometric 

percolation. 

 Since the early 1980s, extensive analytical and computational studies of 

percolation phenomena have been conducted for sticks in two dimensions1-3 and rods in 

three-dimensions.4-11 Despite this large body of theoretical literature, there are major gaps 

in our understanding of the effects of experimentally typical non-idealities in polymer 

nanocomposites on the percolation threshold (φc) such as non-uniform filler dispersion 

and polydispersity in filler size, shape and properties. Indeed these factors are believed to 

be a major source of the considerable disparity in the thresholds and conductivities 

reported in the literature for seemingly similar nanoparticle/polymer systems.12 This is 

particularly true for carbon nanotubes, for which all synthesis methods yield nanotubes 

with varying diameter, length, and chirality. As the percolation phenomena are strongly 

dependent on the aspect ratio of the filler, wide distributions in filler length and diameter 

are expected to significantly affect the percolation threshold of the final composite. 

Recent analytical work by van der Schoot and coworkers13-15 investigated the impact of 

polydisperse fillers using both percolation and liquid state theories, reporting a very 

strong sensitivity of φc on the degree of filler size dispersity. Chatterjee16, 17 employed a 

modified Bethe lattice approach to estimate φc of polydisperse rod networks, obtaining 

results that are consistent with Otten and van der Schoot’s connectedness Ornstein-

Zernike equation approach.14, 15 However, these analytical approaches employ 

approximations that are mean-field in nature, and can only be considered quantitatively 
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accurate in the limit of very large aspect ratios (L/D  ∞). Berhan and Sastry5 showed 

that convergence to the slender-rod limit solution for monodisperse rod networks  is very 

slow and not achieved for L/D as high as 500. Many important nanofillers have modest 

aspect ratios (<100), and common composite processing techniques such as sonication 

lead to dramatic size reduction for high L/D fillers such as CNTs.18 Thus, the 

appropriateness and practical utility of existing slender-rod-limit theories when predicting 

percolation thresholds in particle networks and nanocomposites must be considered.  

In this paper, we present a simulation study of the effect of filler size dispersity on 

the percolation threshold in three-dimensional isotropic networks containing finite-sized, 

conductive cylinders with modest aspect ratios (L/D = 10 - 100). We have previously 

used this simulation approach to explore the effects of orientation and aspect ratio on the 

electrical properties of polymer nanocomposites with monodisperse fillers.10, 11 In the 

latter study, our simulations successfully predicted experimental φc for silver-

nanowire/polystyrene composites with modest nanowire aspect ratios (L/D < 35). 

Further, using empirical approximations from our simulation data, we will successfully 

generalize the widely used excluded volume model4 for percolation in soft-core, 

monodisperse rod networks to account for finite-L/D and size dispersity of rods. Our 

solution holds for arbitrary distributions in L and D, assuming that the distributions are 

independent, and provides quantitatively accurate φc predictions across the entire L/D 

range. In addition, we adapt Otten and van der Schoot’s slender-rod-limit analytical 

solution14, 15 to extend its applicability to polydisperse networks of finite-L/D rods. Our 

simulation results, coupled with our adaptations of existing analytical models, provide a 

robust and convenient predictive toolkit for composite design and evaluation. 

II. SIMULATION METHOD 

A random configuration of straight, soft-core (i.e. interpenetrable), cylindrical 

rods is generated in a large supercell (h = 1 unit, l = √0.1 unit, and w = √0.1 unit). In this 

paper, the centers of mass of the rods are randomly distributed in the supercell and the 

angular distributions of the rod axes are uniformly random to form isotropic networks.  

For the first example of size dispersity, the rod lengths and diameters are normally 

distributed about a specified Lmode and Dmode, with the width of each length and diameter 

distribution (standard deviation, σL and σD) expressed as 0% - 100% of the respective 
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modes.  In the second example of size dispersity, we simulate networks comprised of two 

monodisperse size populations of low- and high-aspect-ratio rods. Here, low-aspect-ratio 

reference rods with L/D = 10 (L = 0.04 unit, D = 0.004 unit) are mixed with various 

fractions of longer (bidisperse distribution in rod length) or thinner (bidisperse 

distribution in rod diameter) rods with L/D = 20, 40 and 80 in the simulation volume.  

 The supercell is divided into tiling cubic sub-blocks, whose length is greater than 

the rod length, and rods which fall into each sub-block are registered. Aided by the sub-

block data structures, the possible neighbors of each rod are determined with 

computational complexity that scales linearly with the total number of rods. Then, the 

shortest distance between the centers of two possible neighboring rods is calculated using 

a close-formed formula, from which one can determine whether they are in contact when 

this shortest distance is < D. A clustering analysis is then carried out to decompose the 

rod configuration into (i) percolating clusters of contacting rods that simultaneously 

touch the top and bottom surfaces of the supercell, and (ii) non-percolating clusters. The 

total conductance is the sum of the individual percolating cluster conductances, and the 

non-percolating clusters are simply ignored. For each percolating cluster, one assumes 

every rod i has a uniform voltage Vi (no internal resistance) that is an unknown variable, 

except for those rods that touch the top (Vi = 1) or the bottom   (Vi = 0). A system of 

linear equations is then established for each cluster, assuming that all the electrical 

resistance results from contact resistances between neighboring rods (contact resistance = 

1 Ω, rod resistance = 0 Ω, matrix resistance = ∞), and the sum of electrical currents that 

flow in and out of any rod (that is not touching the top or bottom surface) must be zero. 

This system of linear equations is solved using the pre-conditioned conjugate gradient 

iterative (KSPCG) method19 as implemented in the Portable, Extensible Toolkit for 

Scientific Computation (PETSc) package, where the incomplete LU factorization 

preconditioner (PCILU) is used, to obtain the cluster conductance. This procedure is 

repeated to generate a large number of configurations to obtain the ensemble-averaged 

conductance. Simulations were performed for each condition at a range of rod volume 

fractions (φ), corresponding to ~2000 – 1,000,000 rods depending on the prescribed 

φ  and L/D. For each case, the simulated conductivity was fit using a power law to obtain 

φc and the exponent t, and in all cases t ≈ 2, the expected value for rods in 3D (Fig. SM1). 
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In addition to finding φc, our simulation method predicts the conductivity at φ > φc, which 

we have previously used to study the effect of orientation.10  

 The assumptions underlying our simulations of rod networks and their 

implications are summarized here: 

(i) Soft-core (or interpenetrable) rods: Rods are allowed to overlap and are 

considered to be in contact when the shortest distance between their centers is less 

than D. While this is an unphysical assumption, our previous results show that it 

introduces negligible error,11 particularly at higher aspect ratios when the overlap 

volume is small relative to the total rod volume.8 

(ii) Contact resistance >> rod resistance: Contact resistance dominates the electrical 

conductivity in polymer nanocomposites with conductive fillers, wherein 

electrons tunnel from one rod to the next across a polymer barrier.  

(iii) Contact resistance is fixed: While the contact resistance is a strong function of 

the inter-rod distances due to tunneling, substituting a step function by 

implementing a constant contact resistance is reliable.11 Furthermore, an arbitrary 

constant value of the contact resistance (1 Ω) is sufficient to qualitatively capture 

experimental trends in the simulated conductivity.10   

Points (i) and (iii) are consistent with the tunneling percolation model proposed by 

Balberg and coworkers.20-24 Here, the tunneling conductance of particles separated by a 

distance larger than the typical tunneling range is considered negligible and these 

connections are essentially ‘removed’ from the tunneling network (contact resistance = 

∞). Thus, the observed conformity of experimental systems to geometric percolation 

theory arises from the percolation-like tunneling network of particles that have neighbors 

separated by distances of the order of the tunneling decay distance or less.  

III. RESULTS AND DISCUSSION 
 

In the widely used excluded volume model,4 φc is determined by the excluded 

volume of the filler particles, rather than their true volume, where the excluded volume is 

defined as the volume surrounding a particle into which the center of mass of a second, 

identical but differently oriented particle cannot enter without contacting the first particle.  

Specifically, the critical number of filler particles per unit volume required for 
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geometrical percolation, Nc, is inversely proportional to the average excluded volume of a 

filler particle, Vex_rod:  

Nc ∝
1

Vex _ rod

         (1) 

In the slender-rod limit (L/D → ∞), it has been shown, using a cluster expansion method6, 

7 that this proportionality becomes a true equality. The average excluded per rod in a 

randomly oriented system of  soft-core, cylindrical rods is given by:25  
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where L and D are the length and diameter of the cylinder, respectively. Note that Eq. (2) 

for cylindrical rods is more appropriate for our simulations and experiments than the 

approximation based on the excluded volume of a sphero (end-capped) cylinder that we 

have used previously.10, 11 Thus, the percolation threshold for an isotropic network of 

monodisperse cylindrical particles is given by: 
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where Vrod = (π/4)D2L is the volume of a cylinder. Equation (3) predicts a decrease in φc 

with increasing rod aspect ratio, which is consistent qualitatively with experiments and 

simulations.  

 An underlying assumption of infinite aspect ratio makes Eq. (3) most appropriate 

for fillers with very high aspect ratio. This is due to the fact that the percolation threshold 

in a three-dimensional isotropic rod system has higher order dependencies on R/L that 

vanish in the slender-rod limit.6, 7 Néda et al.9 conducted Monte Carlo simulations of 

isotropic, three-dimensional, soft-core rod networks and used their simulation data to 

derive a relationship between Nc and Vex_rod that gives a numerical approximation of the 

constant of proportionality in Eq. (1) as a function of the rod-aspect-ratio. They 

introduced a variable s such that 

 s = NcVex _ rod −1,        (4) 
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where Nc is extracted directly from their simulations. Their results confirmed the 

analytical prediction that s = 0 in the limit of R/L  0 and demonstrated that ln (s) varies 

linearly with ln (R/L). Berhan and Sastry5 calculated s values from their Monte Carlo 

simulations for L/D ranging between 15 and 500, showing very slow convergence of s to 

the slender-rod limit value of 0.  

 Thus, a more appropriate analytical solution for the percolation threshold for 

isotropic, monodisperse rods with finite-L/D is:   

φc = NcVrod =
(1+ s)Vrod

Vex _ rod

=
(1+ s)

π
4
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D π
4
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+
π
4

D2L 3+ π( )
,  (5)      

     
where s values are obtained empirically from simulation data, and Eq. (5) reduces to Eq. 

(3) in the slender-rod limit when s = 0.  The reader should note that the quantity                 

1+s = Nc Vex_rod is numerically equal to the average number of bonds or contacts per 

object at percolation, Bc.4, 5 This follows from the fact that in an excluded volume 

framework, the critical number of bonds per object corresponds to the number of centers 

of objects which enter the excluded volume of a given object.4 By definition, Bc (or 1+s) 

is also equivalent to the total excluded volume when the simulation volume is a unit cube. 

Using φc from our results and Eq. (5), calculated (1+s) values for L/D = 10 - 100 and 

subsequently found [Fig. 1]:  

 s = 3.2
R
L

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

0.46          (6) 
Equation (6) gives the empirical correction factor for predicting φc for isotropic, 

monodisperse, soft-core rods with arbitrary L and D using the finite-L/D excluded 

volume solution (Eq. 5). Equation (6) is in good agreement with Berhan and Sastry’s5 

expression s = 5.23(L/R)-0.57 , further corroborating our simulation method [Fig. SM2]. 

In Fig. 2, we compare the L/D-dependence of the percolation threshold from our 

experimental silver nanowire-polystyrene composites11 to (i) results from our simulations 

of monodisperse, isotropic networks of soft-core cylinders,11 (ii) the excluded volume 

model slender-rod solution4 [Eq. (3)], and  (iii) the finite-L/D excluded volume model 

solution [Eq. (5)] using  values from our simulations [Eq. (6)]. Quantitative comparison 
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of our simulations and model to experiments is credible because our silver nanowire-

polystyrene composites meet the following important criteria: nanowires have narrow 

size dispersity and well-defined electrical properties, are straight cylinders and are well 

dispersed in the polymer matrix.11 The slender rod limit solution significantly 

underestimates φc relative to our experimental and simulation values, and this 

discrepancy is more pronounced for lower L/D values.  On the other hand, there is 

reasonable agreement between the experimental values and results from our simulations 

of soft-core, finite-sized cylindrical rods. Finally, φc predictions from our finite-L/D 

analytical solution are in excellent agreement with our simulation data, showing that Eq. 

(5) and (6) are successful in extending the applicability of the excluded volume solution 

to networks of soft-core, monodisperse rods with finite L/D.  In our earlier publication,11 

we highlighted the agreement between the simulations and experiments in Fig. 2. Here, 

we have made the critical advance of providing an analytical expression that captures the 

simulation and experimental results. This excluded volume theory for finite-size 

cylinders serves as the foundation from which we explore the impact of size dispersity in 

isotropic systems.  

We propose a valuable extension to our finite-L/D excluded volume model 

solution to predict φc for isotropic networks of rods with arbitrary distributions in L and 

D. We accomplished this by a heuristic generalization of the monodisperse case by taking 

the average of Eq. (5), with the assumption that L and D distributions are independent: 
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Furthermore, we use Eq. (6) from our monodisperse simulations to calculate spoly as a 

function of the number average of L and R of the polydisperse rods.  

spoly = 3.2
R n

L n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0.46         (7b) 

The first term in the denominator of Eq. (7a) is negligibly small at low L/D and vanishes 

as L/D increases, and thus the expression is dominated by the weight average term in the 

denominator. The result is a weight average dependence of the percolation threshold on 
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the rod dimension distributions, and is in qualitative agreement with the infinite-L/D 

analytical solutions by van der Schoot and co-workers.13-15 A weight average dependence 

is intuitive, since higher L/D rods in the polydisperse network play a more critical role in 

network expansion. Experimentally, where the exact form of the size distributions may 

not be known, the sample mean and variance suffice to estimate the first and second 

moments of L and R distributions in Eq. (7). The generalization of the (1+s) correction 

factor in Eq. (7b) involves a number average because the quantity (1+s) = Bc, or the total 

excluded volume, is proportional to the number density of rods at percolation, Eq. (4). 

Thus, as expected, calculating (1+spoly) based on the weight average of the rod 

dimensions resulted in a poorer fit to simulation data, particularly for large size 

distributions, Fig. SM5. 

Firstly, we compare our analytical expression [Eq. (7)] to simulations of rods 

having experimentally relevant Gaussian distributions in L and D. In Fig. 3, we plot 

simulation results and generalized model [Eq. (7)] predictions of the impact of Gaussian 

distributions of varying width on the percolation threshold for rod networks that have 

polydispersity in L only, D only, or both L and D.  For wide distributions (σL ,  σD > 30% 

of Lmode, Dmode) we truncate negative values of L and D, breaking the symmetry of the 

Gaussian distribution and  resulting in an excess of longer (Lmode < ‹L›n < ‹L›w) or wider 

rods (Dmode < ‹D›n < ‹D›w). Figure 3 shows that φc is insensitive to polydispersity for 

narrow distributions   (σL , σD < 30%) and when there is comparable size polydispersity 

in both L and D (σL = σD). On the other hand, a significant decrease in φc relative to the 

monodisperse case is observed for large dispersities in L when σD = 0, due to the 

abovementioned asymmetry of the L  distribution that results in an excess of longer high-

L/D rods.  Conversely, large dispersities in D when σL = 0  cause φc  to increase due to an 

excess of wider low-L/D rods. Moreover, we also observe excellent agreement between 

our simulations and predictions from our generalized excluded volume model solution 

[Eq. (7)] for polydisperse rod networks. Similar results were obtained for rod networks 

with a lower Lmode/Dmode = 10 (Supplemental Data).  
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Secondly, we explore the effect of bidisperse distributions in rod size on isotropic 

networks comprised of two size populations, namely low- and high-aspect-ratio rods. 

These networks exploit the dominant contribution of high-L/D filler particles in network 

formation and the processability of low-L/D particles.  Similar networks were studied by 

van der Schoot and co-workers13-15 for rods with infinite-L/D, and by Rahatekar et al. 

who simulated the effects of small additions of low-L/D rods to oriented networks of 

high-L/D rods.26 To simulate a bidisperse network morphology, we define reference rods 

with L/D = 10 (LRef = 0.04 units, DRef = 0.004 units), and longer high-L/D rods (L > LRef, 

D = DRef) where the rod-length ratio is rL = LLong/LRef. The amount of longer rods added to 

the network is given as a relative volume fraction FLong = φLong/(φLong +φRef). By 

increasing FLong, φc is lowered and the reduction in φc is most pronounced at small FLong 

for larger rL, Fig. 4(a). We also observe excellent agreement between our simulations and 

predictions from our generalized excluded volume model expression [Eq. (7)], showing 

that the solution holds for arbitrary distributions in L and D. Similar results were obtained 

for rods with a bidisperse distribution in diameter, with the higher L/D rods in the 

bidisperse system being thinner (D < DRef, L = LRef) and FThin = φThin/(φThin +φRef) 

(Supplemental Data). Note that others use a number fraction notation (x) and report a 

very dramatic reduction in φc for small xLong, versus a moderate effect for large xThin.14 We 

report bidispersity in volume fraction, because the volume of rods depends differently on 

L and D (V ∝ D2 vs. V ∝ L), and volume fraction is experimentally more accessible than 

number fraction. 

For completeness, we consider the analytical model of Otten and van der Schoot 

for the case of soft core, finite L/D, polydisperse rod networks. In their comprehensive 

theoretical study,14, 15 they use tools from both percolation and liquid state theories to 

formulate a general analytical expression for the percolation threshold for polydisperse 

cylindrical fillers in the slender-rod limit (L/D  ∞). For ideal (soft-core) rods, their 

slender-rod limit solution for the φc of rods with arbitrary distributions in L and D is:
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We perform a series of calibrations on this solution to adapt it to polydisperse networks 

of finite-L/D rods.  First, we calibrate their monodisperse result in the slender-rod limit, 

φc = D/2L, against the corresponding excluded volume result [Eq. (3)] which has been 

proven to be exact in this regime.6, 7 We then apply the (1+s) factor from our simulations 

for finite-sized monodisperse cylinders [Eq. (6)]. Finally, we generalize the calibration 

factor from the finite-L/D monodisperse case to polydisperse rod networks by taking the 

respective number averages, yielding a calibrated version of Otten and van der Schoot 

solution for isotropic, finite-L/D rod networks with arbitrary distributions in L and D:  
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Equation (9) shows the same weight average dependence on L as our generalized 

excluded volume theory [Eq. (7)], but their dependencies on D differ slightly. In Fig. 

4(b), we compare φc results from our simulations, as-published Otten and van der Schoot 

model [Eq. (8)], and calibrated Otten and van der Schoot model [Eq. (9)] for rod 

networks with bidispersity in length. Their as-published solution [Eq. (8)] significantly 

underestimates φc of the bidisperse network relative to our simulations of finite-L/D 

cylindrical rods, and the extent of this underestimation is more pronounced at lower FLong 

when the mean-L/D of the rod ensemble is smaller.  In contrast, there is very good 

agreement between our simulations and our calibration of the Otten and van der Schoot 

model [Eq. (9)]. Note that fits to the simulation data are comparable for our generalized 

excluded volume expression [Eq. (7)] and the calibrated Otten and van der Schoot model 

[Eq. (9)].  
IV. CONCLUSIONS 

In conclusion, we have simulated three-dimensional isotropic networks of finite, 

soft-core, conductive cylinders with Gaussian and bidisperse distributions in their length 

and diameter. We have also generalized the popular excluded volume model of 

percolation, which was originally formulated for soft-core, infinite-L/D, monodisperse 

rod networks, to account for finite-L/D and polydisperse rod sizes. Finally, we adapted 

Otten and van der Schoot’s analytical model for polydisperse rods in the slender-rod 
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limit,14, 15 successfully extending its applicability to polydisperse networks of soft-core 

rods with modest L/D. For arbitrary distributions in L and D of cylindrical rods, we 

obtain a weight average dependence of φc on the filler dimensions, an intuitive result 

since higher L/D rods are more critical in network expansion.  Following from the good 

agreement between our monodisperse simulation predictions and experimental thresholds 

from silver nanowire-polystyrene composites11 [Fig. 2], coupled with the demonstrated 

inaccuracy of popular slender-rod limit analytical models for fillers with L/D as high as 

500,5 our simulation results and  generalized excluded volume model for polydisperse 

rods of finite L/D [Eq. (7)] provide experimentalists with a robust and convenient toolkit 

for designing and evaluating composites with finite-sized cylindrical nanofillers. In future 

work, we plan to extend our simulation method and generalized excluded volume model 

to address oriented networks of polydisperse rods. 
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FIGURES 
 

 
  
FIG. 1. ln (s) vs. ln (L/R) fit gives an empirical expression for s as a function of L/R, Eq. 
(6).  
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FIG. 2.  φc of monodisperse, isotropic, soft-core, cylindrical rod networks as a function of 
aspect ratio. Results from simulations (black circles and red diamonds), experimental 
silver-nanowire/polystyrene nanocomposites11 (green squares), excluded volume theory 
in the slender rod limit, Eq. 3 (solid line), and our finite-L/D excluded volume solution 
[Eq. (5) and (6)] (dotted line).  

 
FIG. 3. Simulation data (points) with corresponding generalized excluded volume 
predictions [Eq. (7), lines] for φc in networks where rods have a Gaussian distribution in 
length (green squares), diameter (black triangles), or both (red circles). The width of the 
respective distributions is given by the standard deviation, σL or σD, which is expressed 
as a percentage of Lmode  (0.04 units) or Dmode (0.00057143 units), and   Lmode / Dmode = 70.  
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(a) 

 
 
(b) 

 
 
 
FIG. 4. (a) Simulation (points) and generalized excluded model predictions [Eq. (7), 
lines) for φc of bidisperse rod networks versus the relative volume fraction of longer rods 
in the system (FLong) for rod length ratios rL = 2, 4 and 8, where LRef = 0.04 units and D = 
0.004 units (constant). (b) Simulation (points) and corresponding φc predictions from 
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Otten and van der Schoot’s analytical model as published Eq. (8) (dashed lines) and 
calibrated Eq. (9) (solid lines) φc predictions a function  of FLong for rL = 2, 4 and 8.  


