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Abstract 
 

 Herein, we compare the thermal vibrations of atoms in select ternary carbides with 

the formula Mn+1AXn (“MAX phases”, M = Ti, Cr; A = Al, Si, Ge; X = C, N) as 

determined from first principles phonon calculations to those obtained from high-

temperature neutron powder diffraction studies. The transition metal carbides TiC, TaC, 

and WC are also studied to test our methodology on simpler carbides. Good qualitative 

and quantitative agreement is found between predicted and experimental values for the 

binary carbides. For all the MAX phases studied – Ti3SiC2, Ti3GeC2, Ti2AlN, Cr2GeC 

and Ti4AlN3 – density functional theory calculations predict that the A element vibrates 

with the highest amplitude and does so anisotropically with a higher amplitude within 

the basal plane, which is in line with earlier results from high-temperature neutron 

diffraction studies. In some cases, there are quantitative differences in the absolute 

values between the theoretical and experimental atomic displacement parameters, such 

as reversal of anisotropy or a systematic offset of temperature-dependent atomic 

displacement parameters.  The mode-dependent Grüneisen parameters are also 

computed to explore the anharmonicity in the system.   
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I. Introduction 

The layered ternary Mn+1AXn ceramics (where M is an early transition metal, A is an A-

group element mostly from IIIA to VIA, X is C or N, and n = 1, 2, or 3, resulting in 211, 312 and 

413 stoichiometries) have received considerable attention recently.1-2 These materials, also known 

as MAX phases, crystallize in the space group P63/mmc and contain nanolaminated layers that 

lead to an unusual combination of properties, including high thermal and electrical 

conductivities, relatively low Vickers hardness values, exceptional damage tolerance and thermal 

shock resistance, thermal stability, high stiffness and excellent damping capabilities.1-2 

The focus of this study is the role of atomic thermal vibrations, or the displacement of 

atoms from their equilibrium positions, as a function of temperature. Atomic motion is central to 

many properties and is especially important in considering high temperature damping and 

transport properties, both electrical and thermal.   This work is a continuation of our work aiming 

to understand the thermal properties of the MAX phases, primarily using high temperature 

neutron diffraction (HTND). Using this technique, we reported on the thermal properties of 

Ti3SiC2,3-4  Ti3GeC2,3 Ti2AlN,5 Cr2GeC, 5 and Ti4AlN3.6    These results showed that the A-group 

elements (Si, Ge, and Al in these cases) vibrate with the highest amplitude, acting as “rattlers” 

due to their weak bonds relative to the stronger M-X bonds. It is this rattling effect that is 

believed to be responsible for the low phonon conductivities of the MAX phases comprised of 

elements heavier than Al, despite their high specific stiffness values and high Debye 

temperatures. 1,7-8 

In a first principles study of the thermal properties of the 312 MAX phases Ti3SiC2, 

Ti3AlC2, and Ti3GeC2 by Togo et al. in 2010, it was found that the unusual low-frequency 

phonon states are likely due to the high-amplitude atomic vibrations of the A elements, Si, Al and 
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Ge respectively.9  It was also found that the corresponding atomic motions for these low-

frequency bands at the K point in the Brillouin zone can be represented as rotations of the A-

group atoms around their average positions. At the M point, the phonon modes can be 

represented as transverse oscillations of the A and Ti atoms parallel to one another within the 

basal planes.  Furthermore, the atomic motion of the A and Ti atoms at these phonon modes were 

shown to be synchronized. The shapes of the localized bands were slightly different among the 

three compounds studied by Togo et al., suggesting slightly different correlated motion behavior. 

Experimental evidence for this phenomenon came about later that year in a recent HTND 

study of Ti3SiC2 and Ti3GeC2,3 in which anomalous mean bond lengths determined from 

Rietveld analysis of the time-of-flight data were observed in Ti3GeC2 during heating. This 

anomalous bond length behavior was reminiscent of that observed in quartz by Tucker et al. in 

2001,10-11 where the apparent decrease in bond lengths with increasing temperatures was 

attributed to a difference between the instantaneous and average atomic positions due to rigid 

unit modes (RUMs).12 While it is not believed that these RUMs exist in the MAX phases – since 

typically they occur when tetrahedra are corner-sharing while in the MAX phases the octahedra 

are edge-sharing – it was postulated that other high-temperature phenomena may have caused a 

difference between the instantaneous and average bond lengths.  Using the experimental 

anisotropic atomic displacement parameters (ADPs) to estimate the atom positions during 

thermal motion - and from those the instantaneous interatomic distances between atoms during 

their presumed synchronized motion - it was shown that the correlated atomic motion modeled 

by Togo et al, 9 discussed above, could explain the results. While Ti3SiC2 did not show 

anomalous bond expansions, it was also shown that the correlated motion indicated by the 
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anisotropic ADPs, which were different than those in Ti3GeC2 in amplitude and direction, would 

not lead to differences between instantaneous and space-averaged interatomic distances.  

Another clue may come from results from resonant ultrasound spectroscopy (RUS) 

experiments, which showed that ultrasonic attenuation (damping) increases dramatically at a 

characteristic temperature in some MAX phases when they are heated.13 For Ti3SiC2 and most of 

the other MAX phases studied, the temperature at which this occurred was close to their brittle-

to-plastic transition temperature; for Ti3GeC2, which was the only exception, this temperature 

was significantly lower. No explanation for this effect is currently available, but defects such as 

Ge vacancies or a 2-D “melting” of the Ge layers were suggested and may be related to the 

aforementioned differences indicated by the HTND study.3  

By now it is clear that there is a phenomenon – most likely related to correlated thermal 

motion – occurring in bulk Ti3GeC2 at high temperatures. The increased ultrasonic attenuation at 

unusually low temperatures from the RUS experiments,13 as well as the abnormal bond lengths 

observed by Rietveld analysis of HTND data3 have provided the first indications, along with the 

theoretical studies through first principles phonon calculations.9 Any combination of effects 

including vacancies, microstructure, secondary phases, preferred orientation, and/or other defects 

may also play a role. These comments notwithstanding, the reasons for the differences between 

Ti3GeC2 and Ti3SiC2 are still unclear. Further experimental and theoretical work is needed to 

fully understand the nature and consequences of the proposed correlated atomic motion in the 

MAX phases.  As far as theoretical work, this phenomenon is heavily dependent on the phonon 

spectrum and therefore first principles phonon calculations serve as a useful tool in investigating 

the nature of these vibrations.  While the phonon spectrum has been used to investigate the 

thermal expansion and heat capacities of Ti3GeC2, Ti3AlC2 and Ti3GeC2 in Ref. 9, no relationship 
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to the actual atomic displacements was shown.  Previously, first principles phonon calculations 

have been used to predict the thermal atomic displacements in other systems including SiO2,14-15 

MgB2,16
 skutterdites,17-18 CoO,19 NaAlH4,

20 and gold nanoparticles.21 To our knowledge, the 

mean-squared atomic displacements have not been calculated from first principles phonon 

calculations for any carbides or nitrides. 

Herein, we show that the mean-squared ADPs can be directly calculated and compared to 

the experimentally determined ones.  We report on the temperature dependence of the ADPs of a 

number of MAX phases based on the phonon spectrum determined from first principles 

calculations based on density functional theory (DFT).  

Titanium carbide, TiC, and tungsten carbide, WC, are also studied with first principles 

calculations and HTND for benchmarking and as validation for our experimental and theoretical 

methodologies.  TiC is chosen for its similarity in chemistry to the MAX phases studied herein 

and WC is studied to test our methodology on a hexagonal system.  WC crystallizes in a 

hexagonal structure with space group P 6 m2. Both TiC and WC were measured on the same 

neutron diffractometer as the MAX phases, with the same data refinement strategy.  Tantalum 

carbide, TaC, is also studied with first principles phonon calculations for comparison with 

another recent HTND paper in which its ADPs were reported in order to evaluate our results 

against neutron diffraction data from another diffractometer.22 

II. Methods 

i. Computational details 

For phonon calculations, 2x2x1 supercells were used, which consisted of 24, 32, and 48 

atoms for the 211, 312, and 413 phases, respectively. For TaC and TiC, 2x2x2 supercells 

consisting of 64 atoms were used; for WC, a 2x2x2 supercell with 8 atoms was used.  The DFT 
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calculations were performed using the projector-augmented wave (PAW) 23 method, as 

implemented in the VASP code. 21-22 The exchange-correlation function used was the Perdew-

Burke-Ernzerhof (PBE) generalized gradient approximation (GGA). 24  The plane-wave cutoff 

was set to 500 eV, and the total energy was converged to 10-8 eV with a Γ-centered k-point grid 

of 6x6x4. 

Real-space force constants in the supercells were calculated using density functional 

perturbation theory (DFPT) 25 implemented in the VASP code. The frequencies were calculated 

from the force constants using the phonopy code. 26-27  

The displacements of atoms from their equilibrium positions, ( )u tτ , are written in terms 

of annihilation and creation operators as: 

( )†

,

1( , ) exp( ( )) ( , ) ( ) exp( ( ) ) ( ) exp( ( ) )
2 ( )p p p p p

q p pj

u l t iq r l e q a q i q t a q i q t
qm N

α ατ τ τ ω ω
ω

= ⋅ − + −∑

 

(1) 

where τ and l indices refer to the summation over the atoms and unit cells in the periodic crystal, 

respectively, and r(τl) is the atomic position of atom τ in the lth unit cell.  α is the Cartesian 

component, t is time, q is the wave vector, p is the band index, and ( )pe qα are the eigenvectors of 

the dynamical matrix. Using the completeness and commutations relations for creation and 

annihilation operators, for any given atom τ we obtain the average displacement as an 

expectation value,  

 ( )2

,

1| | ( ) ( ) 1 2 ( ) .
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(2)  

Here ωp(q) is the phonon frequency, and  np(q) is the phonon population of mode (q,p):  
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| |uα  estimates the mean-squared displacement from its equilibrium position in a given 

direction. Experimentally the mean-squared displacements are represented as i j
ijU u uτ τ=  

(i,j=1,2,3) and U11, U22 and U33 are the ADPs in the x, y and z directions, respectively. Note that 

given hexagonal symmetry, U11 = U22. 

To explore the effect of vacancies on thermal motion, the ADPs are also calculated for a 

2x2x1 Ti3GeC2 supercell with one vacant Ge site, representing a material with 12.5% ordered 

vacancies. The break in symmetry results in 35 single displacements and the frozen phonon 

method was used to compute the forces induced by finite displacement through the Hellmann-

Feynman theorem. The frequencies are calculated from the force constants using the phonopy 

code, and the temperature-dependent uij values are calculated from Eqs. 1-3.  

 The mode-dependent Grüneisen parameters are also calculated from first principles 

phonon calculations at three different volumes to explore anharmonic contributions.  For each 

phonon (wave vector q and band p), the Grüneisen parameter, γ - which expresses the volume 

dependence of mode frequency - is calculated by computing the phonon frequencies at three 

different volumes and then using the following approximation: 

 2

( ) ( )( ) ( ) ( )
( ) 2( ( ))

p
p p p

p p

d qV V D qq e q e q
q dV q V

ω
γ

ω ω
Δ= − −

Δ
 

(4) 

where V is the cell volume and ωp(q) is the phonon frequency of the mode. 

ii. Experimental Details 
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The HTND experiments for TiC, WC, Ti2AlN, Cr2GeC, Ti3GeC2 and Ti3SiC2 were conducted 

on the High-Pressure Preferred Orientation neutron diffractometer (HIPPO)23-24 at the Lujan 

Neutron Scattering Center, Los Alamos National Laboratory. Information about the experiments 

and samples can be found in Ref. 3for Ti3SiC2 and Ti3GeC2 and in Ref. 6 for Ti2AlN and Cr2GeC.  

In contrast to the bulk MAX phase samples used, commercially obtained powders were used 

for TiC (Sigma Aldrich, ≤ 4 μm powder, ≥ 95% purity) and WC (Alfa Aesar, 99% purity, -

100+270 mesh powder).   Powder samples were placed in a 9 mm diameter, 0.15 mm wall 

thickness vanadium, V, holder, mounted in an ILL-type high-temperature vacuum furnace with a 

V-setup, and heated at a rate of 20 oC/minute. Time-of-flight data were collected at room 

temperature and then every 100 oC starting at 100 oC upon heating up to 1000 oC, and every 200 

oC upon cooling. At each temperature, neutrons were detected with 42 detector panels of 3He 

detector tubes arranged on three rings with nominal diffraction angles of 60, 90 120, and 144 

degrees.  For TiC, the sample was measured at rotation angles of 0, 45, and 90 degrees around 

the vertical axis to allow for a full texture analysis at each temperature.  

The neutron data were analyzed with the Rietveld method using the General Structure 

Analysis System (GSAS).26  The script-controlled refinement strategy, implemented by the 

gsaslanguage refinement script language,27 insured that identical refinement strategies were used 

on all samples measured on the HIPPO diffractometer.  The instrument alignment (DIFC 

parameter in GSAS) was calibrated for the highest-resolution detector bank (backscattering at 

144 degrees) for the lowest temperature runs and fixed for the subsequent runs.  Refined 

parameters were 16 background parameters of GSAS background function #1, lattice parameters 

of all phases, instrument calibration (only for the first run), peak width, absorption, and thermal 
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motion parameters.  For the MAX phases studied in Refs. 6 and 3, phase fractions and lattice 

parameters of secondary phases and symmetry-constrained atomic positions were also refined. 

For Ti4AlN3, HTND experiments were conducted on the High Flux Isotope Reactor 

(HFIR) at the HB-4, high-resolution neutron powder diffractometer. Experimental details and 

sample synthesis information can be found elsewhere.6 Note that actual chemistry of the Ti4AlN3 

sample was Ti4AlN2.9. 

III. Results and Discussion 

We begin our study on the relatively simple systems, TiC and TaC, which have cubic 

NaCl-type structures (space group Fm-3m). For TiC, we compare the temperature dependence of 

the mean-squared displacements calculated from first principles phonon calculations with those 

obtained from HTND. For cubic structures, the thermal motion is represented as an isotropic 

ADP, Uiso, which is the mean-square of the displacement of an atom in all directions. Figure 1a 

shows that the calculated temperature dependencies of Uiso (lines) are close to the experimental 

values determined from the HTND carried out herein (symbols), lending credibility to our 

methodology for this cubic binary system. Both prediction and experiment show nearly the same 

ADPs for both atoms.  

For TaC, we compare the calculated mean-squared displacements with a recent HTND 

study by Nakamura and Yashima,22 where the isotropic ADPs were estimated from Rietveld 

refinement of HTND data on single phase TaC.  Since the error bars for Uiso were large in that 

study, the final refinement assumed UTa = UC. Herein the atomic isotropic thermal displacement 

values are predicted individually for Ta and C, shown in Fig. 1b by the blue solid line and black 

dashed line, respectively.  The predicted ADPs for Ta and C are averaged to yield average 

isotropic ADPs, also shown in Fig. 1b (gray dotted line), which are compared with the average 



10 

Uiso values determined from the study in Ref. 22 (gray circles).  Note that the y-axis limits are 

chosen to be identical for Figs. 1-7, where all ADP plots are shown from 0 to 0.05 Å2 for 

comparison.    

Also noteworthy is the fact that the error bars are largely related to the neutron coherent 

scattering cross-sections, σc, which are similar for Ta (σc= 6) and C (σc= 5.5);28 therefore it is 

appropriate to estimate Uiso with an averaged value for the Ta-C system. This comment 

notwithstanding, the fact that the experimental and calculated ADPs for Ti and C in TiC (Fig. 1a) 

are also similar, despite the fact that their cross-sections are quite different, implies that the 

symmetry of the crystal is as important.  

The predicted and experimental ADP values for TaC are in good agreement, but on this 

instrument (in the experimental study in Ref. 22) the temperature dependence shows a more 

nonlinear behavior at lower temperatures.  The extent by which the experimental parameters 

deviate from the predicted values provide a reference point for the precision of the calculations 

and the errors involved for simple, single-phase system cubic systems.   

To compare the overall amplitudes of vibration of the W and C atoms, the anisotropic 

ADPs, Uij, were converted to equivalent thermal displacement parameters, Ueq, assuming: 

( )11 22 33 121 / 3eqU U U U U= + + − .   (5)   

Figure 1c plots the temperature dependence of the Ueq,’s calculated from first principles 

phonon calculations for W (solid blue line) and C (dashed black line). The experimental values 

are represented by blue squares and open circles for W and C, respectively. The agreement 

between theory and experiment is excellent, with C showing higher amplitudes of vibration in 

both the predicted and measured results.  
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To study the directional amplitudes of vibration, we also calculated the anisotropic ADPs, 

Uij, plotted in Figs. 2a and 2b for W and C, respectively.  Generally, the predicted values agree 

well with the experimentally determined ADPs.  For C (Fig. 2b), the anisotropy is reversed for 

theory and experiment, i.e. U11 > U33 according to predictions, while the opposite is observed 

from the HTND experiments.  However, in general the calculated values show relatively 

isotropic behavior (U11/U33 = 1.1), so this may be an indication of the uncertainty in the degree of 

anisotropy when the differences between U11 and U33 are small.   

From the results in Figs. 1 and 2, it is evident that, for the binary carbides, experimental 

and first principles phonon calculations agree reasonably well. The main focus of this work, 

however, is the MAX phases. Figures 3-7 show the ADPs for the five select MAX phases 

studied herein, including two 211 phases (Figs. 3-4), two 312 phases (Figs. 5-6), and one 413 

phase (Fig. 7). Values determined from first principles phonon calculations (solid lines) are 

shown along with experimental values from Rietveld analysis of neutron time-of-flight data. 6,8-9   

Based on the totality of these results it is reasonable to conclude that for this relatively 

diverse set of MAX phases, qualitative agreement between the calculated and measured ADPs is 

achieved. In all cases, both the DFT predictions and HTND measurements show that the A atom 

vibrates with the highest amplitude, and the greatest degree of anisotropy, vibrating within the 

basal plane, i.e. U11 > U33.  This is in line with the notion of the A-group elements acting as 

“rattlers”, which is consistent with the low phonon conductivity of many MAX phases.1,7-8      

With a few exceptions (see below), when the experiments show that U11 > U33, theory 

shows the same. This is especially true of the cases where there is a large difference between the 

Uij values, i.e. large anisotropy, mostly of the A atoms, such as in Figs. 3b (Al in Ti2AlC), 4b (Ge 

in Cr2GeC), 4c (C in Cr2GeC), 5c (Si in Ti3SiC2), 6c (Ge in Ti3GeC2) and 7c (Al in Ti4AlN3).  
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Most of the discrepancies, on the other hand, occur for atoms with nearly isotropic thermal 

motion, i.e. for which the differences between the Uij values are small such as in Figs. 4a (Cr in 

Cr2GeC), 5a and 5b (Ti in Ti3SiC2), 6a and 6b (Ti in Ti3GeC2), and 7a (Ti in Ti4AlN3). It should 

be noted that Ti and Cr are both relatively weak neutron scatterers (for Ti, σc = 1.485; for Cr, σc= 

1.66)28 and therefore other errors could influence the refined Uij values in the data analysis.  

Relatively weak scattering power of an element translates to fewer constraints of the structural 

parameters of those atoms by the experimental diffraction data, manifesting itself for instance as 

deviations such as larger error bars and more scatter of the values for thermal motion as a 

function of temperature. For all cases where there is qualitative agreement between predicted and 

calculated values, the atoms are relatively good neutron scatterers (σc > 2 for Si, Ge, and C).     

In general, the anisotropy of the calculated average thermal motion agrees with the 

HTND data, at least for the A atoms. Beyond the agreement in the general trends, there are some 

slight differences hinting at phenomena that are not accounted for in the harmonic approximation 

of our Rietveld model. Focusing on the ADPs of A-group elements, since they are the highest, it 

is interesting that both Al-containing phases (Ti2AlN, Fig. 3, and Ti4AlN3, Fig. 7) generally show 

good agreement between theory and experiment, where the anisotropy is well-represented by our 

calculations with a small offset in magnitude for Ti2AlN.  On the other hand, in both Ge-

containing phases (Cr2GeC, Fig. 4, and Ti3GeC2, Fig. 6) U11 is experimentally observed to be 

higher than calculated, while U33 shows excellent agreement with first principles calculations.  

The reverse is true for Si in Ti3SiC2 (Fig. 5), where U33 determined experimentally is higher than 

the calculated values, while U11 agrees well with first principles calculations.    

From the phonon partial density of states (Fig. 8), it can be seen that the phonon 

frequencies of the Ge states are lower than those of the Al and Si states since Ge is heavier.  
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Furthermore, the spread of the Si and Al states (Figs. 8a, c and d) indicates more delocalization 

since the eigenvectors of the dynamical matrix indicate that the lower-frequency states consist of 

atomic vibrations within the basal plane, while the higher-frequency states are vibrations 

perpendicular to the basal plane. In Ti3SiC2, the Si atom vibrating within the basal plane, 

represented by the localized peak between 3 and 6 THz, is highly localized. Note that in Ref. 9, 

where a 4x4x1 supercell was used, this band is even narrower.  This localized peak manifests 

itself as a higher degree of anisotropy for Si thermal vibrations than for Ge as determined by first 

principles calculations (compare Figs. 5(c) and 6(c)).  Experimentally this is not observed,6 

which suggests either anharmonic effects, that are not accounted for in our model, discrepancies 

in our force calculations due to assumptions within DFT, or defects in Ti3GeC2 (likely Ge 

vacancies or stacking faults) that may cause the vibrations to shift in amplitude and direction.  

Looking more closely at the two 312 phases studied herein (Ti3SiC2 in Fig. 5 and 

Ti3GeC2 in Fig. 6), the phonon calculations predict that Si exhibits the highest amplitude of 

vibration, while this was not observed from the HTND experiments.  This is apparent from the 

thermal ellipsoid representation of the displacements (Fig. 9). While the calculated 

displacements (right) clearly show that thermal vibrations of the Si atom (top) should be larger 

than the Ge (bottom), the Uijs determined from HTND (left) show that the Ge ellipsoids are more 

“flattened” and have a higher amplitude within the basal plane.   

The reason for this state of affairs is unclear at this time. Sources for the discrepancies 

observed likely come from experimental conditions that are not taken into account in the first 

principles phonon calculations herein such as defects (e.g. vacancies and stacking faults), which 

are most likely in the A layer.  Very recent experimental studies on Ti3GeC2 thin films have 

suggested samples to be Ge deficient,29 which was also postulated to be responsible for the high 
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damping measured through RUS.13    To explore this, the estimated ADPs for Ti3GeC2 with Ge 

vacancies are shown in Fig. 6 as dashed lines. From these results, it is clear that vacancies on the 

A site could lead to a shift in the temperature-dependent ADPs that is more in line with those 

observed experimentally – most notably, an increase in the U11 to U33 ratio for Ge. From the 

HTND experiments, U11/U33 for Ge is 3.2, while the ratio predicted by DFT calculations is 2.7 

for a perfect crystal and 3.1 for one containing 12.5% vacancies.   

The above-mentioned discrepancies may also originate from anharmonicity which is not 

taken into account in our DFT calculations. To explore this, we calculated the frequency 

dispersion of the Grüneisen parameter (Eq. 4), which is shown in Figs 10(a) and (b) for Ti3SiC2 

and Ti3GeC2, respectively, along with their phonon band structures.  The bands and 

corresponding Grüneisen parameter curves are color-coded to distinguish between the bands for 

the Grüneisen parameter dispersions.   

For most of the modes in the spectrum, the Grüneisen parameter has a common value, below 2. 

This gives an average value over the Brillouin zone (1.45 in both cases) that would lead to the 

conclusion that Ti3SiC2 and Ti3GeC2 are harmonic compounds to a good approximation. 

However for the low frequency modes involving the A and M atoms (in red and green in Fig. 8) 

the Grüneisen parametera are larger. This in turn suggests that the interatomic potential V 

between A and M atoms is anharmonic because the Grüneisen parameter is proportional to 

V’’’/V’’. This anharmonicity could contribute to the differences observed. In fact even if usually 

anharmonicity is evidenced experimentally by a quadratic dependence in the averaged squared 

displacement, it also modifies the coefficient of the linear term through renormalization of the 

frequencies. Therefore we have shown that both anharmonicity and the presence of vacancies 

could play a role on, and have to be considered in, the study of atomic motion.  
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More work is however needed to understand which one is dominant and to lead to better 

agreement between theory and experiment.  Progress can also be made on the experimental side 

because there are likely phenomena that cannot be described by the average structure derived 

from Rietveld analysis of the real-space diffraction patterns, but might be accessible by 

maximum-entropy methods as described by Izumi et al.30 

 
IV. Summary and Conclusions 

Herein, we have developed a method for calculating the anisotropic mean-squared atomic 

thermal displacements through first principles phonon calculations and applied it to select MX 

and MAX phases. Good qualitative agreement is found between our predictions and HTND 

experimental results.  The frequency dispersions of the Grüneisen parameters for Ti3SiC2 and 

Ti3GeC2 suggest anharmonic interactions between the M and A atoms.  The reasons for the 

quantitative discrepancies between predicted and measured parameters are not totally clear at this 

time but are most likely related to point defects and/or anharmonic effects.    
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Figure Captions: 

Fig. 1: Temperature dependence of mean-squared displacement parameters in select binary 
carbides showing values calculated from first principles calculations (lines) and experimental 
values from HTND (markers): (a) Uiso for Ti and C atoms in TiC, (b) Uiso  for Ta and C in TaC, 
where the markers show the average Uiso for Ta and C from Ref. 22 and, (c) Ueq for W and C 
atoms in WC. Insets show the crystal structures for each phase.  The full scale in these figures is 
plotted to coincide with those of all other figures in this paper.  
 
Fig. 2: Temperature evolution of anisotropic ADPs U11 (blue) and U33 (red) of, (a) W and, (b) C 
in WC.  Solid lines show DFT predictions; markers show experimental values determined from 
HTND.   
 
Fig. 3: Temperature evolution of anisotropic ADPs. U11 (blue) and U33 (red) of (a) Ti, (b) Al, and, 
(c) N atoms in Ti2AlN.  Solid lines show DFT predictions; markers show experimental values 
determined from HTND in Ref. 8.   
 
Fig. 4: Temperature evolution of anisotropic ADPs U11 (blue) and U33 (red) of (a) Cr, (b) Ge and, 
(c) C atoms in Cr2GeC. Solid lines show DFT predictions; markers show experimental values 
determined from HTND in Ref. 8.   
 
Fig. 5: Temperature evolution of anisotropic ADPs U11 (blue) and U33 (red) of (a) TiI, (b) TiII, (c) 
Si and, (d) C atoms in Ti3SiC2. Solid lines show DFT predictions; markers show experimental 
values determined from HTND in Ref. 6.   
 
Fig. 6: Temperature evolution of anisotropic ADPs U11 (blue) and U33 (red) of (a) TiI, (b) TiII, (c) 
Ge and, (d) C atoms in Ti3GeC2.  Solid lines show first principles predictions for a perfect 
crystal; dashed lines show DFT predictions for a supercell with 12.5% ordered Ge vacancies; 
markers show experimental values determined from HTND in Ref. 6.    
 
Fig. 7: Temperature evolution of anisotropic ADPs U11 (blue) and U33 (red) of (a) TiI, (b) TiII, (c) 
Al, (d) NI and, (e) NII atoms in Ti4AlN3. Solid lines show DFT predictions; markers show 
experimental values determined from HTND in Ref. 6.   
 
Fig. 8: Partial phonon density of states of (a) Ti3SiC2, (b) Ti3GeC2, (c) Ti2AlN,  (d) Cr2GeC, and 
(e) Ti4AlN3.  
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Fig. 9: Comparison of 99% probability thermal ellipsoids of atoms in Ti3SiC2 at 1373 K 
representing (a) experimental and, (b) predicted ADPs;  (c) and (d) represent the experimental 
and predicted thermal atomic displacements, respectively, for Ti3GeC2 at 1273 K.  
 
Fig. 10: The band structure (bottom) and the mode-dependent Grüneisen parameters (top) for (a) 
Ti3SiC2 and (b) Ti3GeC2.  The colors in the plots of the Grüneisen parameters correspond to the 
color scheme of the phonon bands. 
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