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The debate on whether an organic fluid nanoconfined by mica sheets will undergo a fluid-to-
solid transition as the fluid film thickness is reduced below a critical value has lasted over two
decades. Extensive experimental and simulation investigations have thus far left this question only
partially addressed. In this work we adapt and apply absolute free energy calculations to analyze
the phase behavior of a simple model for nanoconfined fluids, consisting of spherical Lennard-Jones
(LJ) molecules confined between LJ solid walls, which we use in combination with grand canonical

molecular dynamics simulations.

Absolute Helmholtz free energy calculations of the simulated

nanoconfined systems directly support the existence of order-disorder phase transition as a function
of decreasing wall separation, providing results in close agreement with previous experiments and

detailed atomistic simulations.
I. INTRODUCTION

Nanoconfined fluids are important in a wide range of
applications, including adsorption in industrial processes
and the lubrication of computer hard drives and artifi-
cial joints'3. Since the early 1990s, there has been a
debate over whether an organic fluid transitions from a
disordered, liquid state to an ordered solid phase as the
separation between the two confining surfaces, composed
of molecularly smooth mica, drops below a critical value,
typically six or seven molecular diameters. Following the
initial observation of nanoconfinement-induced solidifi-
cation by Israelachvili and coworkers using surface force
apparatus (SFA)?*, surface force balance (SFB) experi-
ments by Klein and coworkers®” on octamethylcyclote-
trasiloxane (OMCTS) nanoconfined between two atom-
ically smooth mica surfaces suggest a first order phase
change when the pore separation is reduced from seven
to six molecular layers. In their experiments, they ob-
serve a non-zero yield stress characteristic of a solid,
along with a several orders magnitude increase in vis-
cosity. However, experiments by Granick and coworkers®
using SFA instead suggest a second-order transition; for
sufficiently slow rates of confinement, they did not ob-
serve a dramatic viscosity increase or evidence of a non-
zero yield stress. Currently, no agreement has been
reached between these two results, in large part due to
the intrinsic difficulties faced in experiment®. Specif-
ically, the confined phase is buried between two solid
mica walls with just a few layers of material contained
in this region, which has thus far made it impossible
to directly observe the structure. Moreover, the discov-
ery of platinum nanoparticles on the mica surfaces in
some experiments'®!'! led to a reexamination of previ-
ously published results, with the conclusion that some
experimental findings were potentially compromised'?.
More recent experiments have provided additional in-
sights into this debate; several studies have found results

consistent with the work of Klein and Kumacheval31%

while others have shown agreement with the conclusions
of Granick'®!7. Atomic force microscopy (AFM), with
a much smaller contact area than SFB and SFA, has
also been applied to study the confinement of organic
fluids'® 20, These AFM studies found that the viscosity
of a confined organic fluid stays bulk-like down to three
molecular layers before exhibiting enhancements in the
viscosity as the last 2 fluid layers are expelled?’; these
results are similar to the work of Granick and coworkers,
although it is important to note that pyrolytic graphite
confining surfaces were used rather than mica. However,
Mugele and coworkers?! have raised questions about the
suitability of AFM for the study of confinement-induced
solidification. Specifically, due to the non-monotonic na-
ture of nanoconfined fluid properties, they found that the
typically assumed relation between molecular diffusivity
and the damping measured by the AFM tip does not hold
for nanoconfined fluids. Over last two decades, despite
significant advances in experimental methods??, there re-
mains no general agreement among major experimental
groups with respect to the existence of a sharp order-
disorder transition as a function of surface separation.

The ability of molecular simulation to resolve the
spatial coordinates of confined particles and eliminate
non-idealities has made it a valuable tool in this de-
bate. Pioneering work, starting in the early 1990s, re-
vealed confinement-induced extra ordering in idealized
systems?3. More comprehensive investigations, focusing
on nanoconfinement-induced solidification, were initiated
in the late 199052425, employing models and conditions
much closer to experimental scenarios. These results fur-
ther support the case of nanoconfinement-induced solid-
ification and reveal dynamics and structural shifts due
to confinement. Seminal work by Radhakrishnan and
Gubbins?%27 examined the behavior of a model system
composed of Lennard-Jones spheres under smooth wall
confinement, providing strong evidence of the existence of



a first order phase transition. In particular, their studies
employed umbrella sampling to calculate the relative free
energy difference between a confined disordered phase
and a confined solid phase, demonstrating that the solid
phase was lower in free energy over a wide range of state
points. They additionally demonstrated that the order-
disorder transition temperature shifts to higher values as
the wall-fluid interaction exceeds the fluid-fluid interac-
tion. However, Jabbarzadeh and co-workers?®2° argued
that a metastable high-friction fluid film forms rather
than a thermodynamically stable solid, supporting the
argument that the transition is second-order.

Simulation is not without its own challenges. Most
simulation studies, including aforementioned work, have
made use of simplified models, which may neglect im-
portant characteristics of the experimental systems. The
rigor of these studies has grown with increasing compu-
tational power, such as the recent simulations by Cum-
mings and co-workers®3% where fully atomistic models
of both the mica surfaces and confined molecules were
used. This recent work demonstrated the formation of or-
dered structures at fewer than six layers of fluid, in close
agreement with prior work using simplified models3'.
The surprising conclusion of these atomistically detailed
simulations®3° is that the order-disorder transition in
non-polar linear and cyclic alkanes nanoconfined between
mica sheets is driven by electrostatic interactions between
the confined fluid and the mica surfaces. Similar atom-
istically detailed simulations of water, a polar solvent,
nanoconfined between mica surfaces further emphasize
this, showing that water does not undergo an order-
disorder phase transition until a separation of 1-2 water
layers3?33 in agreement with experimental results3°.
However, despite advances in model detail and computa-
tional resources, the accessible length and timescales in
simulation are still considerably limited compared to ex-
periment. This makes it possible that the observed order-
disorder transitions seen in simulations are not thermo-
dynamically stable over a sufficiently long time or in suf-
ficiently large systems.

In this work, we employ a combined approach to ex-
amine the behavior of Lennard-Jones (LJ) spheres un-
der nanoconfinement, using both grand canonical molec-
ular dynamics simulations®® and absolute free energy
calculations3”38, Calculations of the free energy are car-
ried out using the Einstein crystal method37-38, originally
proposed for bulk solids, which we adapt for nanocon-
fined systems. The absolute free energy calculations pro-
vide a more conclusive determination of the stability of
the simulation results, providing additional insight re-
garding the structure and transitions that occur as a re-
sult of nanoconfinement. In particular, our work focuses
on analysis of the behavior of the “central layers”, i.e.,
those not in contact with the pore walls, highlighting
their importance in determining phase transitions.

II. MODEL AND METHODS

We use a simple, generic model of a nanoconfined sys-
tem, composed of identically sized Lennard-Jones (LJ)
spherical particles (i.e., o = 1), where all parameters are
given in reduced LJ units based on the mobile fluid parti-
cle parameters (T* = kpT/emm, p* = po?). Systems are
composed of two particle species: mobile fluid particles
and static wall particles. The interaction between mobile
fluid particles is fixed at €, = 1.0 for all simulations,
whereas the interaction between the walls and mobile
particles is varied, e.g., ewm = (1.0, 2.0, 4.0). The upper
end of these values provides a reasonable approximation
of the interaction between mica and organic molecules;
previous work has parameterized the interaction strength
of mica-CHy at eym ~ 4.47€mm2°. Walls are constructed
of spheres in a minimum potential energy FCC structure,
corresponding to number density, p* = 1.0. Walls are ori-
ented such that the “ABC” stacking planes are parallel
to the pore interface (i.e., z, the [111] FCC direction, is
normal to the pore wall).

1. GCMD simulations

We perform grand canonical molecular dynam-
ics (GCMD) simulations as pioneered by Gao and
Landman®®. Our GCMD simulations consist of an FCC
slit nanopore embedded within a large, rectilinear bulk
system, allowing for the free exchange of particles be-
tween the pore and the bulk environment (See Figure
1). In the system, most of the total particles exist in
the bulk state with p* = 0.85. As a result, particles
in the bulk are essentially unaffected by changes within
the pore. Here we perform simulations at constant num-
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FIG. 1. Snapshot of a typical GCMD simulation. In this case,
two pores constructed of stationary particles are embedded
within a large bulk fluid, with periodic boundary conditions
in all dimensions

ber of particles N, volume V, and temperature T (i.e.,
NVT); while GCMD simulations are often performed at
constant pressure P (i.e., NPT), the large size of the
bulk fluid makes the use of NPT unnecessary, as we see
negligible changes in system pressure as a function of
time. Here, we perform two different sets of simulations.
The first set of simulations consists of GCMD simula-
tions of 86000 total particles and are used to investi-
gate the order-disorder transition and as input to the
free energy calculations. These are performed with both



the HOOMD-Blue??4? and LAMMPS*! simulation pack-
ages using the Nose-Hoover thermostat with timestep =
0.001 in LJ units; HOOMD-Blue is used for calculations
performed on clusters equipped with graphical process-
ing units (GPU) whereas LAMMPS was used for paral-
lel simulations on traditional distributed CPU-systems.
Both packages produced indistinguishable results. Sim-
ulations use the XPLOR style shifting, leaving the well
depth unchanged as a result of potential truncation and
shifting. The cutoff of the interaction between mobile
particles is set to 30, where XPLOR shifting starts at
2.750. The wall-mobile particle interaction cutoff is set to
5.00, with XPLOR shifting starting at 4.750. Since the
wall-mobile particle interaction energy will, in general,
exceed the interaction between mobile-particles, a larger
cutoff is required to minimize artifacts associated with
truncation. This longer cutoff and XPLOR shifting is
also used to ensure better continuity with free energy cal-
culations. The second set of simulations consists of large-
scale GCMD simulations with 960,000 and 6,220,000 to-
tal particles used to investigate the effects of surface con-
tact area on ordering. These simulations are carried out
using a hybrid GPU-CPU version of LAMMPS*!, capa-
ble of efficiently scaling to millions of particles. These
simulations also use the Nose-Hoover thermostat with
timestep 0.005 and XPLOR shifting.

2. Free energy calculations

Absolute Helmholtz free energy (A) calculations for
confined solid states are performed using the Ein-
stein crystal method originally introduced by Frenkel
and Ladd®’ and revisited in detail by Vega and
coworkers*?43. This method allows us to compute the
free energy of a given solid structure by creating an in-
tegration path linking it to an Einstein crystal with the
same structure. The Einstein crystal method was orig-
inally proposed for the calculation of bulk solid crys-
tals and therefore modifications are required to properly
adapt this free energy method to nanoconfined systems.
Even though our model system is composed of identi-
cally sized LJ spheres, the strongly differing interaction
strengths makes the system heterogeneous. As such, us-
ing a standard tail correction in the nanoconfined sys-
tem would result in systematic errors, making it difficult
to explicitly compare with, e.g., bulk phases or different
pore heights. To account for this, a modified tail correc-

tion is proposed (shown graphically in Fig. 2):
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FIG. 2. Schematic representation of modified tail correction.

where S is the surface area of spherical shell (including
the surface area of the partial sphere in nanoconfined
phase and that in solid wall), r. is the cutoff distance
used in potential calculation, h is the separation, and
the subscripts m and w represent mobile fluid particles
and static wall particles, respectively. A detailed step-
by-step derivation and validation is included in the sup-
plemental material®®. The requirement for this formula
is that the cutoff distance should be equal to or larger
than the separation of the pore. For simplicity, we as-
sume that particles in the solid walls are static; this is
reasonable given the fact that strongly interacting crys-
talline wall particles will be much more tightly bound to
their lattice positions than mobile fluid particles. This as-
sumption has been used in prior work by Dominguez and
coworkers** who also used the Einstein crystal method
to calculate the free energy of nanoconfined phases, how-
ever, they focused on systems with weak wall-mobile par-
ticle interactions (i.e., €wm < €mm) and did not make use
of our modified tail correction to avoid systematic er-
rors. Additionally, while we use Monte Carlo(MC) sim-
ulations in the first stage to calculate the free energy
difference between a system of interacting particles and
non-interacting particles both attached to lattice points,
we use Nose-Hoover MD simulations within LAMMPS#!
to sample the various statepoints in the second stage
(i.e. removing the harmonic potential), rather than a
more standard MC-based approach. MD allows for the



efficient use of multiple CPUs reducing the computation
time for this calculation. We find that the use of MD has
a negligible impact on the accuracy of the method, e.g.,
A = 2.618NEkgT verses 2.601NkgT*?, as calculated via
MD and MC, respectively, for a bulk FCC LJ solid at
p* =1.28 and T* = 2.0 (note, N is number of particles,
kp is Boltzmann constant and 7' is temperature).

ITI. RESULTS AND DISCUSSION
A. Ideal Systems

We begin by revisiting the impact of the wall-mobile
fluid interaction strength on the order-disorder transi-
tion (ODT) of nanoconfined fluids. This allows us to
establish boundaries for the specific model and parame-
ters we use here, as well as to test the adapted free energy
method. Previous simulation work predicts that as the
interaction strength between walls and mobile fluid parti-
cles (ewm) is increased to values exceeding the fluid-fluid
interaction (€mm), the order-disorder transition (ODT)
will shift to higher temperatures than an equivalent bulk
system?73!. To examine this, we perform GCMD simu-
lations starting from a high temperature disordered state
at T* = 4.0, cooling by increments of AT* = 0.1 until a
low temperature solid is achieved. The ODT is estimated
via visual inspection and examination of a layer-by-layer
global 2D hexagonal order parameter (OP) of particles
within the pore, constructed by taking the Fourier trans-
form with frequency ¢ = 6 of the super-position of the
in-plane first neighbor shell surrounding atoms within a
given layer®>46; a perfectly ordered layer will result in an
OP value of unity. For reference, T§U ~ 0.9 for a bulk
system at p* =1 (note, p* = 1 is the density of an ideal
minimal potential energy FCC crystal). Table I sum-
marizes the ODT for ideal pore separations (i.e., integer
multiples of the FCC layer spacing, 2(}/6) mg), for
various €y, values. We observe that as ey, is increased,
so too does TSHE in agreement with previous work?™47.
The ODT is also shifted to higher temperatures as the
pore separation is reduced. This is likely a consequence
of the fact that larger pores have a smaller fraction of
the total number of confined particles in contact with
the walls. Also, we observe that even when interactions
are symmetric (€ym = €mm = 1), small pores demon-
strate a slight increase in TS as compared to the bulk

phase. We note that as we exceed six ideal layers, TS

~ TEZWX | within the accuracy of our ODT calculations
and density variations within the pore.

To unambiguously assess the trends predicted by the
GCMD simulations, we employ the modified Einstein
crystal method to calculate the absolute Helmholtz free
energy for idealized confined FCC systems. In Fig. 3,
we plot A/NkpT of ideal confined FCC structures as a
function of separation, for various €y, values. These cal-
culations are performed at T* = 0.75 as it is below the
bulk ODT and thus all separations should exhibit a sta-

TABLE I. Topr estimated using GCMD simulations with res-
olution AT* = 0.1.

#  separation TSHL TEME, TEE
layers (o) (ewm=1) (€wm=2) (€wm=4)
3 2.75 1.7 2.3 3.0
4 3.67 1.4 1.8 2.3
5 4.58 1.1 1.4 1.7
6 5.50 0.9 1.1 1.2
7 6.42 0.8 0.9 1.0
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FIG. 3. Absolute Helmholtz free energy (A/NkgT') as a func-
tion of pore size at T* = 0.75 of ideal confined FCC crystal
at p*= 1.0. A/NkgT of the bulk LJ FCC crystal is given by
von der Hoefs equation*®

ble solid structure. Not surprisingly, A/NkgT is reduced
as €wm is increased; reducing A/NkpT means the phase
is more stable relative to the bulk, which manifests it-
self in T3, > TEWk . We also observe that A/NkgT
is lower for smaller pores than larger pores, and thus
smaller pores should likewise be expected to have a higher
ODT value than the bulk. These results are fully consis-
tent with previous studies by Gubbins and co-workers®”
and Kaneko and co-workers?”.

B. Non-ideal configurations

Focusing our attention on the €y, = 4 system, as
this strength is roughly characteristic of mica-organic
molecule interactions, we perform GCMD simulations as
a continuous function of separation, not just ideal pore
spacings. Each pore separation is an independent sim-
ulation employing stationary walls and thus we do not
need to consider the effects of pore compression rate®°.
In figure 4a we plot the number density, p*, of the con-
fined region as a function of separation for systems at
T* = 1.0; simulations are generated by slowly cooling
from a high temperature disordered state. At T* = 1.0,
solid structures form within the nanopores over the entire



range sampled in figure 4, while the bulk region of the
GCMD simulation remains in a disordered fluid state. In
figure 4a, we observe oscillations in the density of fluid
in the pore, where peaks occur just prior to the tran-
sition between integer number of layers. Ideal separa-
tions occur roughly midway between the peak on the left
and valley on the right, with p* ~ 1 (i.e., the density of
the energetic minimum FCC crystal). The height of this
transition peak increases as pore separation is reduced.

idfal layers

1.10
(a)
1.05
o 10
0.95 ‘\-\'/'/*1
0.90
0.85°
(b)
| x
RS XX 3
3 SR PEVIEIE
S B Ry S Bk o SR N X .
e —4
Q
2
=5 m”/...”
~
=
_7 X-X bulk, f(p*)
---- bulk
-8 @ confined
[ [
2.5 3.0 3.5 4.0 4.5 5.0 5.5
separation (o)
FIG. 4. (a) number density of particles in the pore as a

function of separation, calculated via GCMD simulation. (b)
A/NkpT of the nanoconfined solid structure as a function of
separation, using structures generated via GCMD simulation
in part (a) as input. Also plotted is A/NkpT of the bulk
fluid at p* = 0.85, corresponding to the density of the bulk
phase in the GCMD simulation. A/NkpgT of a bulk liquid
(calculated at the p* of the confined region) as a function of
the nanopore separation is also plotted. Both plots share the
same scale on the x-axis, with the true separation at bottom,
and the separations that correspond to ideal layers at top and
as solid vertical lines.

Using the configurations generated via simulation as
input, we use the modified Einstein crystal method to
calculate A/NkpT as a function of separation, as plot-
ted in Figure 4b. We observe clear peaks and valleys in
the free energy curve, where the valley minimums corre-
spond to ideal separations (i.e., perfect spacing for FCC)
and peaks occur at the transitions between integer num-
ber of layers. For ideal separations, A/NkgT of the
nanoconfined solid is significantly lowered as separation
is reduced, as was seen in figure 3. The difference in the
peak height versus valley depth of the free energy curve
is most significant for small separations, whereas the dif-
ferences are relatively minor for larger separations. That

is, there is a smaller penalty for transitioning between
integer layer numbers as the pore size is increased. Also
plotted in Figure 4b is the free energy of the bulk re-
gion of the GCMD simulation at p* = 0.85, as calculated
using the Johnson equation®®. We see that, over the en-
tire range, A/NkgT of the nanoconfined region is lower
than the bulk phase it is in contact with. As such, there
is a strong thermodynamic driving force associated with
forming a solid phase within the pore. For additional
comparison, we use the density within the pore as input
to the Johnson equation, i.e., we compare to the free en-
ergy of a disordered liquid at the same density as the
solid within the pore. A/NEkpT of a liquid state scales
with density®®, whereas the solid phase demonstrates a
more complex density behavior related to the ability to
accommodate the crystal structure.

C. The role of the central atoms

Our results thus far have only considered comparisons
between bulk phases and nanoconfined solids. The free
energy of a nanoconfined disordered liquid may actually
be lower than the equivalent bulk phase, based on the
contribution of the wall-fluid potential energy (U) to the
total free energy (A = U — T'S). Thus, while we have
clearly shown that nanoconfined solids have lower free
energy than equivalent bulk phases, we have not shown
via direct absolute free energy calculations that nanocon-
fined solids have lower free energy than nanoconfined dis-
ordered liquids. Calculating the absolute free energy of
a nanoconfined fluid directly is challenging, as the simu-
lated systems appear to be strongly driven towards form-
ing ordered solid structures, unless an external bias is
applied. Recall that previous work?” employed umbrella
sampling to investigate the relative free energy differ-
ence between nanoconfined solids and nanoconfined dis-
ordered fluids (note, umbrella sampling includes a biasing
criteria allowing sampling of regions of phase space that
would otherwise be unlikely to be visited during a typical
simulation).
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FIG. 5. Global version of the 2d hexagonal order parameter
as a function of location within a 6 layer pore for ewm = 4.00.
I =1 corresponds to the layer in contact with the wall, [ = 3
corresponds to the 3rd layer, farthest from either wall.

Rather than employing a biasing scheme, we can take



advantage of the heterogeneous nature of nanoconfined
systems to provide further insight into the phase transi-
tion. Specifically, it has been previously observed that
particles that occupy the central most region of the
nanopore strongly dictate the ODT?7. A recent study
of confined hard sphere fluids reveals that the position of
particles perpendicular to the solid wall determines their
diffusive dynamics, where particles near the wall move
much more slowly even in the absence of a strong wall-
fluid interaction®'. Particles in the central region, those
not in contact with the wall, experience the weakest lev-
els of walls-mobile fluid interaction and highest mobility,
tending to lag behind regions closer to the walls in terms
of structural ordering. The entire system cannot be con-
sidered a solid until this central region transitions from
disordered to ordered. In Figure 5, we plot the 2d global
hexagonal OP as a function of T* for different spatial
regions in the pore, for a system that can accommodate
six ideal layers. Particles along the pore walls demon-
strate a high value of the OP, even at high T™, slowly
increasing as T* is reduced. Structural ordering of the
particles in the central most layer lag significantly behind
the wall region and demonstrate a more rapid transition
to an ordered state as T* is reduced. The spatially in-
termediate second layer from the wall has characteristics
more closely matching the central most layer as opposed
to the layer in contact with the wall.

Following this, we make the assumption that, due to
the significantly increased ordering at high T™*, particles
along the walls effectively act as the confining surface
for the central region as it orders, allowing us to treat
the layers in contact with the walls as stationary within
the free energy calculation. Again, since these central
layers dominate in determining when and if the system
undergoes an ODT, comparing the free energy of this
region to the bulk state is more appropriate as it mostly
eliminates the contribution of the strong wall-mobile fluid
potential energy to the total free energy.

In Figure 6a we plot A/NkgT of the central region
of the nanoconfined system with ey, = 4.0, simulated
at T*=1.0; we also plot A/NkgT of the full nanocon-
fined system (identical to Figure 4b) and A/NkgT of
the bulk disordered fluid at the same density as the pore,
calculated using the Johnson equation. The free energy
of the central region still demonstrates fluctuations in
A/NkgT, where peaks occur for non-ideal separations
and valleys for ideal separations. Interestingly, A/NkgT
of the central most confined region and the equivalent
density bulk fluid appear to oscillate with respect to each
other; the fluid state is lower in free energy for non-ideal
separations whereas the confined solid is lower for ideal
separations. This agrees with calculations by Kaneko
and coworkers that suggest the freezing/melting points
oscillate with separation®”. This trend persists up to ap-
proximately six ideal layers, at which point the values
of A/NkgT converge. This strongly suggests that for
larger separations there is no longer a sufficient driving
force for crystallization in the central region of the pore,
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FIG. 6. (a) A/NEkpT of the central region of the pore (i.e.,
excluding particles along the walls) as compared to the entire
confined region and the bulk value at matching density. (b)
A/NEkpT as function of the central region for ewm = [2,4,6].

consistent with the previous ODT calculations in Table
I, where we saw that T ~ T5uk, for greater than six
layers when €y, = 4.0. The fact that the solid state is
not universally lower in free energy may help to explain
why evidence of a fluid-solid transition is not observed
in all experiments, e.g., if the system is compressed to a

non-ideal spacing for the fluid.

It is important to note that while this comparison
largely factors out the strong wall-fluid interaction, the
free energy of the equivalent bulk state does not take into
account the effects confinement on the entropy. Confine-
ment will reduce entropy®?, resulting in an increase in
total free energy, as compared to a bulk state, and the
free energy should increase as pore size is reduced.

In Figure 6b we compare A/NkgT of the central re-
gion for various values of €. AS €y is reduced to
2, A/NEkpT is shifted upwards, resulting in convergence
with the free energy of an equivalent density bulk phase
at a smaller separation (~5 layers). Similarly, increasing
€wm t0 6, A/NkgT of the central region is lowered, shift-
ing convergence with the equivalent density bulk system
to a separation exceeding six layers. This is consistent
with the trends in ODT in Table I, where systems with
low values of €y, transitioned to bulk-like ODT values
at smaller separations than systems with larger values of
€wm- This trend may also help explain differences in ex-
periments, as variations in the effective value of ey (€.g.,
related to the surface ion concentration in the cleaved
mica) may shift the confinement induced transition.



Furthermore, it is important to note that typical simu-
lations are performed with surface contact areas ~ 107
to 10~*um?, whereas experiments with the surface force
balance (where solid phases are observed) have contact
areas of ~ 102um?% and experiments with the surface
force apparatus (where solid phases are not observed)
have ~ 10*m?2%. The many orders of magnitude dif-
ference in contact area may also play a significant role,
influencing the dynamics and the ability to form the low-
est free energy state. To investigate this, we perform
GCMD simulations for increasing surface contact area,
focusing on ordering with the central most layer; our in-
terest is in whether the final structures are the same as
those seen in the smaller simulations and how the time to
order in these large simulations varies with pore contact
area. Specifically, we simulate two systems with 960,000
and 6,220,000 particles, each that can accommodate six
ideal layers. If we assume that oy, = 3.5 A, roughly the
diameter of the potassium atoms in mica®!, we find that
these systems have surface contact areas of 0.0021um?
(960,000 particles) and 0.014 pum? (6,220,000 particles).
Simulations are performed by first disordering the system
at T*=4.0 and then instantaneously quenching to 7™ =
1.1; we monitor the in-plane 2-d hexagonal OP within the
central most layer (i.e., I = 3 in Figure 5) as a function of
time. T* = 1.1 places us just within the ordered regime
predicted from the smaller system sizes (see Table I). In
figure 7 we plot the OP as a function of time for the two
system sizes. The larger system requires a significantly
longer time, by a factor of ~ 5, to reach the same level
of ordering as the smaller system. The ratio of surface
areas is ~6.6; extrapolating this trend, we would expect
that a two order of magnitude increase in surface contact
area would result in the system requiring a factor of ~75
more time to reach an equivalently ordered state. Previ-
ous work®® has focused on the connection between rate of
compression of the surfaces (i.e., the time at each separa-
tion the system has to relax) and the structure, conjec-
turing that higher-rates form non-equilibrium, jammed
states. Clearly, this may be further exacerbated by sur-
face size effects, where systems with larger contact areas
simply take much longer to reach equilibrium, and the
significant effects that wall interaction strength and pore
separation can have on the absolute free energy of the
confined phase.

IV. CONCLUSION

In this work, we have combined GCMD simulations
with absolute free energy measurements in studies of
nanoconfined fluid phase behavior. We demonstrated
that the free energy of nanoconfined system in the solid
state decreases and the melting point for the nanocon-
fined fluid shifts to higher temperature as the wall-fluid
interaction increases. We also showed that particles in
contact with the pore walls demonstrate markedly differ-
ent behavior than those in the central most region, where
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FIG. 7. In-plane 2-d hexagonal order parameter within the
central most layers (I=3) of a system that can accommodate
6 ideal layers as a function of time for small (960k particles)
and large(6,220k particles).

atoms in the central most region ultimately dictate the
solidification. Using this, we calculated the Helmholtz
free energy of the central region alone, factoring out the
effects of the strong wall interactions. We found that the
free energy of this central most region eventually con-
verges to that of an equivalent density bulk liquid as the
wall separation is increased; this convergence is a func-
tion of interaction strength, shifting to larger separations
as wall-fluid strength increases. For systems with inter-
action strengths closely matching mica-organic molecule
parameters, we find this transition occurs at roughly 6
layers, in good agreement with previous simulations and
experiments. We also demonstrated the significant role
that surface contact area plays in the ordering process;
the additional time needed to order scales roughly with
the ratio of surface contact area. These results provide
additional evidence in support of the fluid-to-solid tran-
sition at ~ 6 molecule layers for nanoconfined non-polar
organic fluids.

It is important to note that our simulations and free en-
ergy calculations only explore the behavior of fluid/wall
systems with commensurate fluid and wall molecular
sizes. This is by design to simplify the analysis and
enable comparison with bulk crystalline structures. In-
commensurability of sizes may play an important role,
shifting the free energy due to a competition between or-
dering dictated by the wall roughness and the preferred
crystallinity and spacing of the fluid. Specifically, it has
been observed that the relative orientation of herring-
bone structures observed for nanoconfined alkanes de-
pend strongly on the structure of the walls®3%:%%; how-
ever, the accumulation of simulation results to date sug-
gests that incommensurability does not lead to the elim-
ination of the ODT. Nevertheless, comprehensively ex-
ploring the free energy landscape as a function of the
ratio of wall to fluid particle size is of considerable and
will be considered in future work.

We gratefully acknowledge financial support from
the National Science Foundation by grant NSF CHE-
0626259. T. D. Nguyen acknowledges the support from
the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-000R22725 . Comput-



ing resources are provided by National Energy Research
Scientific Computing Center (supported by the Office of
Science of the U.S. Department of Energy under Con-
tract No. DE-AC02-05CH11231), Oak Ridge Leadership
Computing Facility at the Oak Ridge National Labo-
ratory (supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-ACO05-
000R22725), and the National Institute for Computa-
tional Sciences, Project-ID UT-TNEDU014 making use
of the Keeneland cluster>®.



10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

J. F. Xu, J. D. Kiely, Y. T. Hsia, and F. E.
Talke, Microsystem Technologies-Micro-and Nanosystems-
Information Storage and Processing Systems 15, 687
(2009).

M. Chen, W. H. Briscoe, S. P. Armes, and J. Klein, Science
323, 1698 (2009).

P. T. Cummings, H. Docherty, C. R. Iacovella, and J. K.
Singh, AIChE Journal 56, 842 (2010).

M. L. Gee, P. M. McGuiggan, J. N. Israelachvili, and
A. M. Homola, The Journal of Chemical Physics 93, 1895
(1990).

J. Klein and E. Kumacheva, Science 269, 816 (1995).

J. Klein and E. Kumacheva, The Journal of Chemical
Physics 108, 6996 (1998).

E. Kumacheva and J. Klein, The Journal of Chemical
Physics 108, 7010 (1998).

A. L. Demirel and S. Granick, Physical Review Letters 77,
2261 (1996).

S. Granick, Science 253, 1374 (1991).

S. Ohnishi, M. Hato, K. Tamada, and H. K. Christenson,
Langmuir 15, 3312 (1999).

M. M. Kohonen, F. C. Meldrum, and H. K. Christenson,
Langmuir 19, 975 (2003).

Y. Zhu and S. Granick, Langmuir 19, 8148 (2003).

M. Sliwinska-Bartkowiak, G. Dudziak, R. Sikorski,
R. Gras, K. E. Gubbins, R. Radhakrishnan, and
K. Kaneko, Polish Journal of Chemistry 75, 547 (2001).
J. Czwartos, B. Coasne, K. E. Gubbins, F. R. Hung, and
M. Sliwinska-Bartkowiak, Molecular Physics 103, 3103
(2005).

S. Ohnishi, D. Kaneko, J. P. Gong, Y. Osada, A. M. Stew-
art, and V. V. Yaminsky, Langmuir 23, 7032 (2007).

T. Becker and F. Mugele, Phys. Rev. Lett. 91, 166104
(2003).

L. Bureau, Phys. Rev. Lett. 104, 218302 (2010).

A. Maali, T. Cohen-Bouhacina, G. Couturier, and J.-P.
Aimé, Phys. Rev. Lett. 96, 086105 (2006).
G. B. Kaggwa, J. I. Kilpatrick, J. E. Sader, and S. P.

Jarvis, Applied Physics Letters 93, 011909 (2008).

S. de Beer, D. van den Ende, and F. Mugele, Nanotech-
nology 21, 325703 (2010).

S. de Beer, W. K. den Otter, D. van den Ende, W. J.
Briels, and F. Mugele, EPL (Europhysics Letters) 97,
46001 (2012).

J. Israelachvili, Y. Min, M. Akbulut, A. Alig, G. Carver,
W. Greene, K. Kristiansen, E. Meyer, N. Pesika, K. Rosen-
berg, and H. Zeng, Reports on Progress in Physics 73,
036601 (2010).

P. A. Thompson and M. O. Robbins, Science 250, 792
(1990).

J. P. Gao, W. D. Luedtke, and U. Landman, Physical
Review Letters 79, 705 (1997).

S. T. Cui, P. T. Cummings, and H. D. Cochran, Journal
of Chemical Physics 111, 1273 (1999).

L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and
M. Sliwinska-Bartkowiak, Reports on Progress in Physics
62, 1573 (1999).

R. Radhakrishnan, K. E. Gubbins, and M. Sliwinska-
Bartkowiak, The Journal of Chemical Physics 112, 11048
(2000).

28

29

30

31

32

33

34

35
36

37

38

39

40
41

42

43

44

45

46

47

48

49
50

52

53

55

56

A. Jabbarzadeh, P. Harrowell, and R. I. Tanner, Macro-
molecules 36, 5020 (2003).

A. Jabbarzadeh, P. Harrowell, and R. I. Tanner, Physical
Review Letters 94, 126103 (2005).

H. Docherty and P. T. Cummings, Soft Matter 6, 1640
(2010).

S. T. Cui, P. T. Cummings, and H. D. Cochran, The
Journal of Chemical Physics 114, 7189 (2001).

Y. S. Leng and P. T. Cummings, Physical Review Letters
94, 026101 (2005).

Y. S. Leng and P. T. Cummings, Journal of Chemical
Physics 124, 074711 (2006).

U. Raviv, S. Giasson, J. Frey, and J. Klein, Journal of
Physics-Condensed Matter 14, 9275 (2002).

U. Raviv and J. Klein, Science 297, 1540 (2002).

J. P. Gao, W. D. Luedtke, and U. Landman, Physical
Review Letters 79, 705 (1997).

D. Frenkel and A. J. C. Ladd, The Journal of Chemical
Physics 81, 3188 (1984).

J. M. Polson, E. Trizac, S. Pronk, and D. Frenkel, The
Journal of Chemical Physics 112, 5339 (2000).

J. A. Anderson, C. D. Lorenz, and A. Travesset, Journal
of Computational Physics 227, 5342 (2008).
“http://codeblue.umich.edu/hoomd-blue,”.

S. Plimpton, Journal of Computational Physics 117, 1
(1995).

C. Vega and E. G. Noya, The Journal of Chemical Physics
127, 154113 (2007).

C. Vega, E. Sanz, J. L. F. Abascal, and E. G. Noya, Jour-
nal of Physics: Condensed Matter 20, 153101 (2008).

H. Dominguez, M. P. Allen, and R. Evans, Molecular
Physics 96 (1999).

A. S. Keys, C. R. Tacovella, and S. C. Glotzer, Annual
Review of Condensed Matter Physics 2, 263 (2011).

A. S. Keys, C. R. Tacovella, and S. C. Glotzer, Journal of
Computational Physics 230, 6438 (2011).

T. Kaneko, T. Mima, and K. Yasuoka, Chemical Physics
Letters 490, 165 (2010).

M. A. van der Hoef, The Journal of Chemical Physics 113,
8142 (2000).

L. Bureau, Physical Review Letters 99, 225503 (2007).

J. Johnson, J. Zollweg, and K. Gubbins, Molecular Physics
78, 591 (1993).

J. Mittal, T. M. Truskett, J. R. Errington, and G. Hum-
mer, Phys. Rev. Lett. 100, 145901 (2008).

Y. Wu, G. Cheng, K. Katsov, S. W. Sides, J. Wang,
J. Tang, G. H. Fredrickson, M. Moskovits, and G. D.
Stucky, Nature Materials 3, 816 (2004).

J. VanAlsten and S. Granick, Physical Review Letters 61,
2570 (1988).

S. T. Cui, P. T. Cummings, and H. D. Cochran, The
Journal of Chemical Physics 114, 7189 (2001).

J. Vetter, R. Glassbrook, J. Dongarra, K. Schwan,
B. Loftis, S. McNally, J. Meredith, J. Rogers, P. Roth,
K. Spafford, and S. Yalamanchili, Computing in Science
Engineering 13, 90 (2011).

See Supplemental Material at [URL will be inserted by
publisher| for a detailed derivation and validation of the
modified tail correction .



