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We numerically investigate the decay of initial quantum Fock states and their superpositions for
a mechanical resonator mode coupled to an environment comprising interacting, damped tunneling
two level system (TLS) defects. The cases of one, three, and six near resonant, interacting TLS’s are
considered in turn and it is found that, with even as few as three TLS’s, the resonator’s quantum
decay behavior is indistinguishable from that due to coupling to an Ohmic oscillator bath.
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I. INTRODUCTION

The quest to understand the quantum-to-classical transition has led to the development of macroscopic mechanical
systems in which researchers hope to realize quantum states. In a 2010 landmark experiment,1 a state corresponding
to a single quantum of vibrational energy in a mechanical resonator was created and its subsequent decay dynamics
measured. We anticipate that similar measurements involving higher number quantum Fock states and their super-
positions in a mechanical system will be achieved in the near future. In light of these developments, there is a need
to understand the quantum state decay mechanisms that enforce classicality in these systems.

In the early 70’s, an explanation was provided for the observed anomalous thermal behavior of amorphous materials
at cryogenic temperatures by invoking the existence of tunneling two-level system (TLS) defects that couple via their
elastic dipole moments to phonons.2,3 Subsequent acoustic phonon pulse attenuation, acoustic hole burning, and
acoustic phonon pulse echo experiments provided strong confirming evidence for the existence of interacting TLS’s in
these materials.4–8 More recently, the relevance of TLS defects for micronscale superconducting qubit dynamics was
established, where the TLS’s are thought to reside in the tunnel barrier oxide layer and in the substrate, and couple
via their electric dipole moments to the qubits.9–19

The same amorphous materials are often used in the fabrication of nano-to-micronscale mechanical systems and thus
it is likely that TLS’s will play a significant role in their quantum-to-classical transition at cryogenic temperatures.20–24

In particular, we anticipate that TLS’s will provide one of the main mechanisms for the decay of quantum states in
mechanical resonators (even though such an understanding comes with the lack of a clear microscopic picture of
what actually constitutes a TLS defect). In Ref. [25], we presented an estimate indicating that a given low order
flexural mode of a micronscale mechanical resonator vibrating at radio frequencies may be near resonance with a few
TLS’s, but is unlikely to interact resonantly with large numbers of TLS’s. These TLS’s couple to the motion of the
resonator via its strain, and thus will be part of the environment responsible for the decay of quantum flexural modes.
Reference [25] numerically investigated the damping of initially coherent states and the decoherence dynamics of initial
superpositions of spatially separated coherent states, where the environment consisted of either one or three damped
TLS’s. Clear signatures of resonator amplitude dependence were observed in the damping dynamics, a consequence of
TLS saturation. This behavior is qualitatively different from the amplitude-independent damping of initial coherent
states resulting from the standard, Ohmic oscillator bath model of an environment.

However, it is of interest to explore the damping and decoherence dynamics for other types of initial, quantum
resonator states, such as Fock states and their superpositions. We have in mind experiments involving high frequency
nano-to-micronscale mechanical resonators that are cryogenically cooled to low temperatures, such as for Ref. [1]. In
the aforementioned experiment, mechanical Fock states were prepared and measured by using an electromechanically
coupled, superconducting phase qubit that was controllably tuned into and out of resonance with the mechanical
resonator mode. We would in particular like to establish whether probing Fock state decay can distinguish between
the mechanical resonator flexural mode coupling predominantly to a bath comprising a few near resonant TLS’s and
to a phonon bath describing elastic radiation loss through the resonator supports.26

In this work, we numerically model the low temperature (kBT � ~ω) damping and decoherence dynamics of
a mechanical resonator coupled to between one and six damped TLS’s that are near-resonant with the resonator,
where the latter is initially prepared in either a single Fock state or superposition of Fock states. We find, perhaps
surprisingly, that the damping and decoherence dynamics is practically indistinguishable from that resulting from
coupling to an Ohmic oscillator bath, even with only three near resonant damped TLS’s furnishing the mechanical
resonator environment. In particular, the Fock state decay rate is observed to scale closely as n, where n is the initial
number of resonator quanta (Fock state number), while the decoherence time of a superposition of ground and excited



2

Fock states is found to be close to twice the decay time of the excited state, coinciding with the Ohmic model trends.
A partial understanding of these numerical results can be obtained from a simpler, Born-Markov approximated master
equation model for the resonator subsystem that treats perturbatively the coupling between the resonator and damped
TLS’s to second order (with the latter traced over as the bath) and which facilitates analytical calculations for the
decay times. However, even more surprising is the observation that completely removing the TLS’s damping does
not alter the Ohmic damping/decoherence-like behavior for the resonator subsystem, even though the Born-Markov
master equation model is no longer valid. The latter observation is reminiscent of recent numerical investigations
to establish subsystem thermalization of closed, interacting many-body quantum systems;27 in our case, the single
oscillator mode system itself induces interactions between the many TLS’s.

In the next section we present our model system-environment master equation, with a more detailed derivation given
in Ref. [25]. Sec. III investigates the damping dynamics of Fock states and decoherence dynamics of superpositions
of Fock states for a mechanical resonator coupled to first a single TLS, then three near-resonant TLS’s, and finally
six near-resonant TLS’s, where direct interactions between the TLS’s are neglected. An approximate master equation
model is presented, yielding analytical decay rate expressions that partially explain the numerically observed trends.
In Sec. IV, we begin with deriving the oscillator-TLS Hamiltonian with pairwise interactions between TLS’s mediated
via the resonator’s strain field. The effect of TLS-TLS interactions on the damping of Fock states and decoherence
of Fock state superpositions in a resonator coupled to first three and then six near-resonant, interacting TLS’s is
investigated. Finally, we offer some concluding remarks in Sec. V.

II. RESONATOR-TLS SYSTEM EQUATIONS

In this section we present the model for the resonator-TLS system. For the TLS Hamiltonian we have

ĤTLS =
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[
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where α = 1, 2, ..., N labels the TLS, ∆
(α)
0 is the asymmetry of the αth TLS’s potential well and ∆
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b is its tunnel

splitting that depends on the well barrier height and width. Writing out the resonator mode-TLS system Hamiltonian,
we have
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where a† and a are raising and lowering operators for the resonator mode of interest, satisfying the commutation
relation [a, a†] = 1. The resonator mode-TLS coupling λ(α) arises from the mechanical elastic strain dependence
of the TLS asymmetry energy. The elastic strain for a given resonator mode is spatially dependent and hence the
coupling λ(α) depends on the location of the given αth TLS defect within the resonator. A detailed derivation of
the coupling for the example of the fundamental mode of a long, thin elastically isotropic mechanical beam is given
in Ref. [25]. Note that the Hamiltonian (2) neglects interactions between the TLS’s beyond those induced via the
system single oscillator mode; pairwise interactions between the TLS’s induced by the mechanical resonator’s elastic
strain field will be considered below in Sec. IV.

In Ref. [25] we derive the following master equation describing the dissipative dynamics of the coupled resonator-TLS
system:
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where ρS(t) is the resonator-TLS system density matrix, Y = Yzp(a + a†) gives the mechanical resonator mode

displacement, with Yzp the zero-point displacement uncertainty, PY is the resonator mode momentum, and E(α) =√
(∆

(α)
0 )2 + (∆

(α)
b )2 is the αth TLS energy level separation. The parameter γ gives the energy damping rate of
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the oscillator resulting from coupling to a bath of oscillators with Ohmic spectral density (modeling, e.g., clamping
loss). We will restrict ourselves for the most part to effect of the damped TLS’s only on the mechanical resonator,
considering nonzero γ only when comparing with the effect on a mechanical resonator of a pure Ohmic oscillator

bath. The parameter T
(α)
1 gives the αth TLS relaxation time from its excited energy eigenstate in the absence of the

oscillator. We shall use dimensionless time units, t→ ωt, with T1 and γ expressed as ωT1 and γ/ω, respectively, and
λ, ∆i, and temperature T expressed as λ/~ω, ∆i/~ω, and kBT/~ω, respectively.

In the following sections, we solve the master equation (3) numerically using the Quantum Optics Toolbox28 for
up to N = 6 TLS’s and for resonator initial Fock states |n〉 and their superpositions with n ≤ 10. The resonator
state space dimension was truncated at ncutoff = 35, which was found to provide more than adequate convergence for
the quantum dynamics. We shall use somewhat larger than typical material values for the oscillator-TLS coupling
strength λ in order to have manageable numerical integration times.

III. DAMPING AND DECOHERENCE DUE TO NON-INTERACTING TLS’S

A. Single TLS

In this section we investigate the damping of Fock states and the decoherence of Fock state superpositions in a
mechanical resonator interacting with a single damped TLS. As a partial check of our numerical methods, we begin by
evaluating the number state probability Pn = 〈n|ρ|n〉 as a function of time for a resonator mode coupled to an Ohmic
oscillator bath only, where the analytical solution is known. Fig. 1 shows the log of the number state probability for
initial Fock states |n〉, with n = 0 to n = 11, when there is an Ohmic oscillator bath only. (Note that all logarithms
are to base e.) The slope of each successive curve decreases by an increment of 1/T11, where T11 is the lifetime of the
first excited state; as expected, the number state lifetime decays as 1/n.29

0 10 20 30 40 50 60 70 80 90 100
12

10

8

6

4

2

0

t

ln
(P

n)

 

 

0=|0

|1
|2
|3
|4
|5
|6
|7
|8
|9
|10
|11

FIG. 1: (Color online) (Natural) log of number state probability Pn vs ωt for a range initial Fock states for the resonator
coupled to an Ohmic oscillator bath only, where γ = 0.01 and T = 0.09.

Fig. 2 shows the number state probability for the resonator coupled to a single, on-resonance damped TLS. In
this case we see that the Pn curves oscillate, as energy is transferred from the resonator to the TLS and back. As
a partial check of the numerics, the time of the first minimum of each curve for n ≥ 1 corresponds closely to the
Jaynes-Cummings model prediction for the transfer time of a quantum of vibrational energy to a symmetric, on
resonance TLS: ωt = πE/(2λ

√
n), where ~ω = E = ∆b. The left-hand plot shows the number state probability for

four low-n states and the right-hand plot for three high-n states. The high-n states appear to decay at close to the
same rate, as indicated by the black curve, which follows the maxima of the oscillating probabilities; the same black
curve is shown for comparison in the left-hand plot, and in this case the Pn plots clearly fall short of this “maximum”
curve, appearing to signify more rapid decay than the indicated high-n states. These trends are clearly qualitatively
different from the Ohmic oscillator bath case discussed above, where the decay rate increases linearly with n.

Next, we investigate the effect of a damped TLS on number state superpositions. A useful ‘visual’ representation of
the state is its Wigner function, defined in terms of the mechanical resonator mode displacement Y and momentum
PY as:30

W (Y, PY ) =
1

h

∫
dξe−iPY ξ/~〈Y + ξ/2|ρ|Y − ξ/2〉dξ. (4)
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FIG. 2: (Color online) Number state probability Pn vs ωt for various initial Fock states for the resonator coupled to a damped
TLS only. The black curve, indicating the peaks of the curves in the right-hand plot, is the same in both plots. For both plots
∆0 = 0, ∆b = 1, λ = 0.1, T = 0.09, and T1 = 10.

Fig. 3 shows two initial oscillator states: an equal mixture of the ground and n = 7 state [Fig. 3(a)], and a superposition
of the same two Fock states [Fig. 3(b)]. In both cases the Wigner function has positive and negative values, because
both the Fock state mixture and the superposition are non-classical states. However, the spoke-like interference fringes
in the superposition plot indicate the presence of non-zero off-diagonal terms of the density matrix, as opposed to
the concentric undulations in the mixture plot. Fig. 4 shows four equally-spaced interval snapshots of the Wigner

(a) (b)

FIG. 3: (Color online) Wigner function for a mixture of number states |0〉 and |7〉 (a) and for a superposition of the same states
(b). The horizontal and vertical axes are dimensionless mechanical resonator position Y/Yzp and momentum PY /(mωYzp),
respectively.

function for a resonator initially in the superposition state shown in Fig. 3(b). The resonator is coupled to an Ohmic
bath that causes the state to decay and the amplitude of the Wigner function to decrease. However, both the ring and
spoke-like structures of the initial state are still visible in the final snapshot. Fig. 5 shows a similar set of snapshots,
this time for a resonator coupled to an on-resonance, damped TLS only. In contrast to the superposition state decay
in the Ohmic bath case, we see that the spoke-like structure disappears first, leaving concentric rings similar to those
seen in Fig. 3(a). The dephasing time Tφ is usually defined in terms of the decay times of the on- and off-diagonal
terms of the resonator’s density matrix as follows:

1

T0n
=

1

2Tnn
+

1

Tφ
, (5)

where T0n is the lifetime of the off-diagonal density matrix element ρ0n, and Tnn is the lifetime of the diagonal matrix
element ρnn. The disappearance of the spokes prior to the rings suggests a finite Tφ, in contrast to an oscillator bath,
where T0n = 2Tnn.
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FIG. 4: (Color online) Evolving Wigner function for the resonator initially in the superposition state shown in Fig. 3(b) coupled
to an Ohmic oscillator bath with γ = 0.01 and T = 0.09.

FIG. 5: (Color online) Evolving Wigner function for the resonator initially in the superposition state shown in Fig. 3(b) coupled
to a damped TLS with λ = 0.1,∆0 = 0,∆b = 1, T = 0.09, and T1 = 10.

B. Three TLS’s

We now increase the number of damped TLS’s to three. The TLS energies ∆
(α)
0 and ∆

(α)
b , α = 1, 2, 3, are

chosen randomly according to the Standard Tunneling Model (STM) distribution.8,25 As our condition for near
resonance, the corresponding TLS energies E(α) are restricted to the range 0.75~ω ≤ E(α) ≤ 1.25~ω, where recall

E(α) =

√
(∆

(α)
0 )2 + (∆

(α)
b )2. We also choose random values for the T

(α)
1 relaxation times of each individual TLS by

first selecting a reference T1 value and then assigning to each TLS a randomly-generated T
(α)
1 within ±50% of the

reference value. Furthermore, each TLS is assigned a random λ(α) coupling that is within ±50% of a reference value
λ = 0.1/6, scaled down from the single TLS coupling considered in the previous section (λ = 0.1) so as to avoid
significant TLS-induced renormalizations of the resonator’s harmonic potential resulting from having more coupled
TLS’s. We choose a temperature T = 0.09 for all plots.

To investigate Fock state decay, we choose an initial state |ψ0〉 = |n〉 and then determine the corresponding number
state probability Pn as a function of time. Fig. 6 shows the decay of Pn for a range of initial Fock states. Note that
there is a small numerical integration error that manifests itself in the ground state |0〉 probability rising slightly above
one over the integration time ωt = 100. However this error is sufficiently small as to have a negligible effect on the
Fock state decay dynamics for n ≥ 1. In contrast to the single-TLS case, the number state probabilities do not show
large oscillations but instead decay relatively smoothly. Furthermore, the nearly-linear curves in the log plot indicate
that Pn decays exponentially and the decay rates can be extracted from a linear fit. We noted in the previous section
that for a resonator damped by an Ohmic bath, the decay time for the nth state goes as Tnn = T11/n, where T11 is
the decay time for the first excited state: the decay rate scales as n. Fig. 7 shows the normalized decay rate T11/Tnn
for Pn as a function of n. For a resonator coupled solely to an Ohmic bath, the curve has a slope equal to one. For
a resonator coupled to three TLS’s, the slope is very close to one; Fock states decay similarly to a resonator that is
Ohmically coupled to a bath of free oscillators.

We now investigate the decay of a superposition of the ground state and the nth excited state, |ψ〉 = 1/
√

2(|0〉+|n〉),
with each TLS initially in a thermal state. We consider the ρnn and ρ0n elements of the density matrix as a function
of time (plots not shown). The curves decay approximately exponentially; we apply a linear fit to the log of the curves
to find the diagonal and off-diagonal decay times, Tnn and T0n, respectively. Fig. 8 shows the log of the decay times
as a function of ln(n) for a range of T1 values. We plot 2Tnn to allow for a comparison to the relation T0n = 2Tnn for
an Ohmic bath. The curves in Fig. 8 all decay uniformly and with a slope ≈ −1. The 2Tnn and T0n curves are very
similar: dephasing is negligible compared to decay.

The curves in Fig. 8 show a surprising dependence on T1. As a reminder, T
(α)
1 is the decay time of the αth TLS
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FIG. 6: (Color online) Left: Pn vs ωt for a resonator coupled to three non-interacting TLS’s. Right: ln(Pn) vs ωt. For all
curves T1 = 10.
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FIG. 7: (Color online) Normalized decay rate vs n for single Fock states. The resonator is coupled to three non-interacting
TLS’s (solid) and to an Ohmic bath without any TLS’s present (dot-dash). For both curves T1 = 10.

from its excited to ground state. Because T1 determines the strength of the coupling between a TLS and its bath, with
smaller T1 corresponding to stronger coupling, we would expect Tnn and T0n to decrease as T1 decreases; stronger
coupling would result in shorter resonator Fock state decay times. However, Fig. 8 shows that the opposite is true.
The curve with T1 = 1 shows longer decay times than the curve with T1 = 100. The lowest (solid green) curve is for a
resonator coupled to three undamped TLS’s, and thus a T1 for this curve is not given. This curve shows the shortest
decay times, and appears to be the large-T1 limit of the curves for the damped TLS’s.

To further investigate the T1 dependence of the decay times, in Fig. 9 we plot T0n and 2Tnn as a function of T1 for
the n = 4 superposition state. The plot shows a strong dependence on T1, particularly for T1 < 10, and suggests that
reducing the TLS-bath coupling causes superposition states to decay more quickly. This surprising dependence on T1

will be discussed in further detail below in Sec. III D. Finally, in Fig. 10 we plot 2Tnn and T0n vs n for three different
realizations of the randomized TLS parameters. While the curves indicate the same qualitative linear dependence
Tnn = T11/n, there is some scatter in the T11 values, as indicated by the different intercepts. This is to be expected
given that we have only a small statistical sample of three randomly selected TLS’s coupled to the resonator.
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FIG. 8: (Color online) T0n and 2Tnn for the initial superposition state |ψ0〉 = 1/
√

2(|0〉 + |n〉) with a range of T1 values shown
in the legend. In particular, T1 ranges from 1 to 100, while “no bath” denotes that the TLS’s are undamped. The observed
trend for a given n is decreasing decay time with increasing T1. For all curves the resonator is coupled to three non-interacting
TLS’s.
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FIG. 9: 2Tnn and T0n vs T1 for the n = 4 superposition state. The resonator is coupled to three non-interacting TLS’s.

C. Six TLS’s

We now consider a resonator coupled to six non-interacting TLS’s. We assign random values to the TLS energies

∆
(α)
0 and ∆

(α)
b according to the STM distribution, as well as random values to resonator-TLS coupling term λ(α) and

the TLS T
(α)
1 times, selected as in the previous section. The temperature T = 0.09 for all plots. We first consider the

decay of a Fock state as a function of time for a resonator coupled to six damped spins. From the log plot in Fig. 11,
we see that the log of the number state probability Pn decays approximately linearly with time. The oscillations at
long times for the higher energy states are numerical artifacts arising from the exponentially small Pn values. We
can apply a linear fit to the log plot to determine the n-dependence of the decay rate. As for the resonator coupled
to three TLS’s, we find that the resonator’s normalized decay rate scales with initial Fock state number similarly to
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FIG. 10: (Color online) 2Tnn and T0n vs n for three different groups of the TLS parameters. For all curves T1 = 10.
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FIG. 11: (Color online) Left: Pn vs ωt for a resonator coupled to six non-interacting TLS’s. Right: ln(P )n vs ωt. For all curves
T1 = 10.

that of an Ohmic bath, i.e. with slope ≈ −1 (see Fig. 22).
Next, we study the decay of a superposition of the ground state and the nth excited state. Fig. 12 shows the log of

T0n and 2Tnn vs the log of the initial n characterizing the superposition state, for seven different values of the average
TLS T1 time. We note that all of the curves have a slope ≈ −1. Similar to Fig. 8 for three TLS’s, Fig. 12 shows little
difference between T0n and 2Tnn for the different values of T1; dephasing is negligible.

In Fig. 13 we show the T1 dependence of the on- and off-diagonal decay times for the n = 4 superposition state.
The plot shows the same strong dependence on T1 as for the case of three TLS’s (Fig. 9). As a reminder, T1 is the
time it takes for a TLS in its excited state to decay to its ground state. Thus, we would expect that as we decreased
T1 the resonator states would damp more quickly, resulting in a shorter decay time. For six TLS’s, however, we find
that as we decrease T1, the diagonal and off-diagonal terms of the density matrix decay more slowly. This unexpected
behavior suggests that the coupling between the TLS’s and their individual baths is somehow obstructing a more
efficient means of dissipation. This is supported by the lowest curve in Fig. 12, which is for a resonator coupled to
six TLS’s that are not coupled to their individual baths, and yet indicates the shortest oscillator Fock state decay
time. In Sec. III D, we show through an analytical approximation that this behavior can be partially explained by
considering the TLS bath Lorentzian line width dependencies on T1 .

Finally, as we did for three non-interacting TLS’s, we now plot the decay of Tnn and T0n for three different
realizations of the TLS parameters. Fig. 14 shows that the groups of six TLS’s exhibit a higher degree of agreement
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FIG. 12: (Color online) T0n and 2Tnn for the initial superposition state |ψ0〉 = 1/
√

2(|0〉+ |n〉) with a range of T1 values shown
in the legend. In particular, T1 ranges from 1 to 1000, while “no bath” denotes that the TLS’s are undamped. The observed
trend for a given n is decreasing decay time with increasing T1. For all curves the resonator is coupled to six non-interacting
TLS’s.

0 10 20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

200

T1

D
ec

ay
 ti

m
e

 

 
T0n
2*Tnn

FIG. 13: 2Tnn and T0n vs T1 for the n = 4 superposition state.

than the three-TLS groups did (Fig. 10), with uniform slopes ≈ −1. This is a good indication that we have moved to
a regime more akin to a dense TLS spectrum, with variations in the parameters of individual TLS’s having less of an
impact on the resonator.

D. Analytical Approximation to Fock State Damping

In this section we present an analysis of Fock state damping due to TLS’s. We assume that the coupling between
the mechanical resonator and the N TLS’s is sufficiently weak that we can make a self-consistent Born approximation,
where we expand perturbatively to second order in the resonator-TLS couplings and trace over the TLS’s to obtain
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FIG. 14: (Color online) 2Tnn and T0n vs n for three different realizations of the TLS parameters. For all curves T1 = 10.

the following resonator master equation:

ρ̇m(t) = − i
~

[Hm, ρm(t)]

− 1

~2

∫ t

0

dt′
{

1

2
〈{B(t), B(t′)}〉 [Y, [Y (t′ − t), ρm(t)]]

+
1

2
〈[B(t), B(t′)]〉 [Y, {Y (t′ − t), ρm(t)}]

}
, (6)

where ρm and Hm are the mechanical resonator density matrix and Hamiltonian, respectively, and

B(t) =

N∑
α=1

λ(α)σ(α)
z (t), (7)

with λ(α) the coupling between the oscillator and the αth TLS. Solving for the TLS-environment dynamics in the
absence of the resonator, one can find the symmetric 〈{B(t), B(t′)}〉 and antisymmetric 〈[B(t), B(t′)]〉 correlation
functions of the TLS bath. Thus, in the above Born approximation, we neglect the influence of the resonator on the
TLS dynamics. More specifically, the approximation does not account for possible nonlinear, resonator amplitude-
dependent saturation effects, or the possibility of coherent energy exchange between the resonator and the TLS’s.
The importance of these effects depends on the relative coupling strengths between the mechanical resonator and the
TLS’s, and between the TLS’s and their respective baths. Following the analysis in Ref. [11], we have for the TLS
bath correlation functions:

1

2
〈{B(t), B(t′)}〉 =

N∑
α=1

(
λ(α)

)2 [
cos2 θ(α)

(
1− 〈σ(α)

z 〉2
)
e−Γ

(α)
1 (t−t′)

+ sin2 θ(α) cos
[
E(α)(t− t′)/~

]
e−Γ

(α)
2 (t−t′)

]
(8)

and

1

2
〈[B(t), B(t′)]〉 = −i

N∑
α=1

(
λ(α)

)2

sin2 θ(α)〈σ(α)
z 〉 sin

[
E(α)(t− t′)/~

]
e−Γ

(α)
2 (t−t′), (9)

where 〈σ(α)
z 〉 = tanh

(
E(α)/(kBT )

)
, sin θ(α) = ∆

(α)
b /E(α), and cos θ(α) = ∆

(α)
0 /E(α). The TLS dephasing rate is given

in terms of the relaxation rate as

Γ
(α)
2 =

1

2
+

(
∆

(α)
0

∆
(α)
b

)2
Γ

(α)
1 , (10)
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where Γ
(α)
1 = T

(α)−1
1 . We now substitute Eqs. (8) and (9) into the mechanical resonator master equation (6), and

insert the free resonator (oscillator) dynamics solution

Y (t′ − t) = Yzp

(
ae−iωm(t′−t) + a†eiωm(t′−t)

)
. (11)

We then make a rotating wave and a Markov approximation, and assume temperatures kBT � E(α) such that 〈σ(α)
z 〉 ≈

1 and the longitudinal contribution depending on cos θ(α) is suppressed, leaving only the transverse contributions
depending on sin θ(α). We thus obtain the probability that the mechanical resonator is in the nth Fock state,
Pn = 〈n|ρm|n〉:

dPn(t)

dt
= −γFock [nPn(t)− (n+ 1)Pn+1(t)] , (12)

where γFock(≡ T−1
11 ) gives the decay rate for an initial n = 1 Fock state:

γFock = − 1

~2

N∑
α=1

(
λ(α)

)2

sin2 θ(α) 2Γ
(α)
2(

Γ
(α)
2

)2

+
(
E(α)/~− ωm

)2 . (13)

Eq. (12) shows that the decay rate for an initial n Fock state scales with n, as we saw in the numerical simulations.

The dependence of the probability decay rate on T1 comes from the TLS dephasing rate Γ
(α)
2 dependence of the

Lorentzian term. From Eq. (10), we see that Γ
(α)
2 scales as Γ

(α)
1 . We now consider the form of the given Lorentzian,

subject to the rescaling εT1:

2Γ2/ε

(Γ2/ε)
2

+ (E/~− ωm)
2 . (14)

Fig. 15 shows the Lorentzian factor as a function of ωm for three different ε values. As we increase ε (i.e., increase the
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FIG. 15: (Color online) Lorentzian function vs ωm for three different ε values. TLS parameters are ∆0 = 0.6281, ∆b = 0.7592,
and T1 = 0.6396.

TLS damping time, T1), the Lorentzian factor correspondingly increases, as long as |E/~−ωm| < Γ2/ε, i.e., within the
Lorentzian linewidth. Physically, Eq. (13) indicates that for a mechanical resonator that is approximately resonant
with a TLS, the longer the TLS decay time, the more rapidly it absorbs energy from the mechanical resonator, and
hence the shorter the Fock state probability decay time. However, as ε continues to increase, we eventually have that
|E/~ − ωm| > Γ2/ε. The TLS is no longer approximately resonant with the oscillator, and so the Lorentzian factor
and thus the decay rate decreases. Fig. 16 shows the dependence of the decay time on ε that follows from one of the



12

0 10 20 30 40 50 60 70 80 90 100
60

80

100

120

140

160

180

200

220

240

260

D
ec

ay
 ti

m
e

FIG. 16: Fock state decay time vs TLS T1 scaling factor ε for the n = 1 Fock state.

distributions of TLS-oscillator coupling and parameter values used in the numerical simulations. The intermediate
dip is due to some of the TLS’s going out of resonance. While the plot does not show quite the same monotonically
decreasing decay time with increasing ε as found in the numerical simulation, it does give approximately the same
overall decreasing trend. Differences are due to the breakdown of the Born-Markov approximation for treating the
TLS subsystem as a bath.

IV. TLS-TLS INTERACTIONS

A. Derivation of Hamiltonian

Experiments have shown that interactions between TLS’s play an important role in dissipation and decoherence.4,6,7

In this section we derive the TLS-TLS interaction Hamiltonian. We begin with the Hamiltonian for an elastic wave
system interacting with TLS defects. The Lagrangian for an elastic wave system is31

Lwave =
1

2

∫
V

d3r[ρu̇i(~r, t)u̇i(~r, t)− cijkl∂iuj(~r, t)∂kul(~r, t)], (15)

where V is the system volume, ρ is the mass density, ui(~r, t), i = 1, 2, 3 is the ith component of the displacement
vector field, and cijkl is the elastic modulus tensor. We use the Einstein summation convention. The Hamiltonian is
by definition

Hwave = u̇i
∂Lwave

∂u̇i
− Lwave, (16)

which, with Eq. 15, gives

Hwave =

∫
V

d3r

[
ρ

2
u̇iu̇i +

1

2
cijkl∂iuj∂kul

]
. (17)

In addition to the non-interacting TLS Hamiltonian (1), we have the TLS-wave system interaction Hamiltonian

Hint = −
N∑
α=1

[
ν

(α)
ij ε

(α)
ij σ

(α)
z

]
, (18)

where ν
(α)
ij is the deformation potential tensor at the α TLS location ~r(α) and

ε
(α)
ij =

1

2
[∂iuj(~r

(α), t) + ∂jui(~r
(α), t)] (19)
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is the strain tensor at ~r(α). Since ν
(α)
ij = ν

(α)
ji , we can rewrite the interaction Hamiltonian as

Hint = −
N∑
α=1

[
ν

(α)
ij ∂iuj(~r

(α), t)σ(α)
z

]
. (20)

The full Hamiltonian is now

H =

∫
V

d3r

[
ρ

2
u̇iu̇i +

1

2
cijkl∂iuj∂kul

]
+

N∑
α=1

[
1

2
∆

(α)
0 σ(α)

z +
1

2
∆

(α)
b σ(α)

x

]
−

N∑
α=1

[
ν

(α)
ij ∂iuj(~r

(α), t)σ(α)
z

]
. (21)

For weak TLS-wave system interactions we can in principle start with this Hamiltonian and derive a master equation
for the observed flexural wave mode of interest that interacts with the N TLS’s. The rest of the elastic wave normal
modes then form the TLS bath, as well as mediate the interactions between the TLS’s. Instead, we will adopt a
less rigorous approach to derive the approximate form of the elastic wave-induced interaction between any pair of
TLS’s. We assume that the timescale for the phonon mediated interaction between two TLS’s is much shorter than
their internal dynamics timescale; the two TLS’s are therefore approximated as ‘frozen’, with each in a given spin
state. We take as our starting point the following Hamiltonian for the interaction between two TLS’s without the
non-interacting TLS part:

Happrox2TLS =

∫
V

d3r

[
ρ

2
u̇iu̇i +

1

2
cijkl∂iuj∂kul −

2∑
α=1

ν
(α)
ij ∂iuj(~r

(α), t)σ(α)
z δ(~r − ~r(α))

]
. (22)

Next, we express this approximate Hamiltonian operator at t = 0 in terms of the normal mode, phonon creation and
annihilation operators. We define

ui(~r, 0) =
∑
β

√
~

2ρωβ
[aβuβ,i(~r) + a†βu

∗
β,i(~r)] (23)

and

u̇i(~r, 0) = −i
∑
β

√
~ωβ
2ρ

[aβuβ,i(~r)− a†βu
∗
β,i(~r)], (24)

where [aβ , a
†
β′ ] = δβ,β′ , with β labeling the normal mode. The normal modes are solutions to

cijkl∂j∂kuβ,l = −ρω2
βuβ,i. (25)

Substituting Eqs. (23) and (24) into Eq. (22) and using Eq. (25) and the orthonormality and completeness relations∫
V

d3ruβ,i(~r)u
∗
β′,i(~r) = δβ,β′ (26)

and ∑
β

uβ,i(~r)u
∗
β,j(~r

′) = δijδ(~r − ~r′), (27)

respectively, we obtain

Happrox2TLS =
∑
β

[
~ωβ

2
(aβa

†
β + a†βaβ) + fβaβ + f†βa

†
β

]
, (28)

where fβ is defined as

fβ =

√
~

2ρωβ

∫
V

d3ruβ,i(~r)νij [∂jδ(~r − ~r(1))σ(1)
z + ∂jδ(~r − ~r(2))σ(2)

z ]. (29)
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Making the substitution aβ = bβ + cβ , we obtain

Happrox2TLS =
∑
β

[
~ωβ

2
(bβb

†
β + b†βbβ) + ~ωβ(c†βbβ + cβb

†
β)

+fβbβ + f†βb
†
β + cβfβ + c†βf

†
β + ~ωβcβc†β

]
. (30)

Defining cβ = −f†β/~ω and c†β = −fβ/~ω, we see that the mixed operator terms in Eq. (30) cancel out and we have

Happrox2TLS =
∑
β

[
~ωβ

2
(bβb

†
β + b†βbβ)−

fβf
†
β

~ω

]
. (31)

The TLS-TLS interaction term we are seeking is contained within the quadratic f -term in Eq. (31). Substituting in
Eq. (29) and simplifying, we obtain for the TLS-TLS interaction:

HTLS−TLS = −σ(1)
z σ(2)

z νikνjl
1

ρ

∑
β

1

ω2
β

∂kuβ,i(~r
(1))∂lu

∗
β,j(~r

(2)), (32)

where we have neglected TLS self-interaction terms.
The strength of the interaction between the two TLS’s will depend on the nature of the elastic medium in which

the TLS’s are embedded, as expressed by the mode sum in Eq. (32). Let us now try to come up with a simple
semiquantitative approximation to the mode sum part in the interaction term (32) using dimensional analysis. From
the completeness relation (27), the displacement mode function uβ,i has the dimensions L−3/2 in terms of some to-be-
determined length scale L. The mode frequency depends on the speed of sound v, and so scales as ωβ ∼ v/L. Thus,
the overall length dimension for the mode sum in Eq. (32) is L−3. The relevant length scale, however, depends on the
geometry of the embedding elastic medium. For a bulk, three-dimensional (3D) medium where the two TLS’s are far
from any of the medium boundaries, the appropriate length scale must be the separation r12 between the two TLS’s.
Thus, for a 3D medium we have

H3D
2TLS ∼ σ(1)

z σ(2)
z

ν2

ρv2

1

r3
12

, (33)

where we have neglected the anisotropy of the deformation potential. For a membrane-like elastic medium, where the
separation between the two TLS’s is large compared to the membrane thickness d, we must lose one of the r12 factors
in (33), to be replaced by d. Thus, for an effectively 2D medium, we have

H2D
2TLS ∼ σ(1)

z σ(2)
z

ν2

ρv2d

1

r2
12

. (34)

Finally, for a wire-like elastic medium where the separation between the two TLS’s is large compared to the wire’s
crossectional dimensions d and w, we must lose two of the r12 factors in (33). Thus, for an effectively 1D medium,
we have:

H1D
2TLS ∼ σ(1)

z σ(2)
z

ν2

ρv2dw

1

r12
. (35)

Note that, as the dimensions of the elastic structure are reduced, the TLS-TLS interaction becomes longer ranged.
In particular, for a wire-like structure, the reduced volume and hence reduced number of TLS’s will in part be
compensated by a longer ranged interaction.

B. Three Interacting TLS’s

We now include TLS-TLS interactions. We group all variables in Eq. (32) except the sigma operators into a single
variable, ζ(αβ), simplifying the TLS-TLS interaction Hamiltonian to

HTLS−TLS = −σ(α)
z σ(β)

z ζ(αβ). (36)

For the plots in this section and the next, we choose a value for ζ and then generate a random ζ(αβ) within ±50% of
this value for each pair of TLS’s. Unless otherwise specified, the values are centered around ζ = 0.1/6. This interaction
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strength is somewhat larger than estimates based on Eq. (35), chosen to be comparable to the resonator-TLS coupling
strength λ so as to resolve the effects of including the TLS-TLS interactions. We plot Pn vs ωt for a resonator coupled
to three interacting TLS’s.

Fig. 17 shows that Pn decays exponentially as a function of time, and we again apply a linear fit to the log plot to
extract a decay rate. In Fig. 18 we plot the normalized decay rate for a resonator coupled to three non-interacting
TLS’s (solid), to three interacting TLS’s (dash), and to an Ohmic bath (dot-dash). The dot-dashed and dashed
curves are practically indistinguishable, suggesting that the addition of TLS-TLS interactions allows the three TLS’s
to absorb energy like an Ohmic bath, even for higher-n Fock states.
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FIG. 17: (Color online) Left: Pn vs ωt for a resonator coupled to three interacting TLS’s. Right: ln(Pn) vs ωt. For all curves
T1 = 10.
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FIG. 18: (Color online) Normalized decay rate vs n for single Fock states. The resonator is coupled to three non-interacting
TLS’s (solid), three interacting TLS’s (dash), and to an Ohmic bath (dot-dash). For all curves T1 = 10.

We now investigate the decay of a superposition state. Fig. 19 shows the on- and off-diagonal decay times T0n and
2Tnn as a function of n for a range of TLS T1 values. As in the case of three non-interacting TLS’s, the curves have
slopes ≈ −1 and also T0n ≈ 2Tnn; dephasing is negligible.

Fig. 20 shows the T1 dependence of the on- and off-diagonal decay times for a resonator coupled to three non-
interacting (black) and three interacting (gray) TLS’s. The decay times are reduced for the resonator coupled to
interacting TLS’s, with the same unexpected T1 dependence as noted in the previous section.
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FIG. 19: (Color online) T0n and Tnn for the initial superposition state |ψ0〉 = 1/
√

2(|0〉 + |n〉) with a range of T1 values shown
in the legend. In particular, T1 ranges from 1 to 100, while “no bath” denotes that the TLS’s are undamped. The observed
trend for a given n is decreasing decay time with increasing T1. For all curves, the resonator is coupled to three interacting
TLS’s.
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FIG. 20: Tnn and T0n vs T1 for the n = 4 superposition state. The resonator is coupled to three non-interacting (black) and
three interacting (gray) TLS’s.

C. Six Interacting TLS’s

We now couple the resonator to six interacting TLS’s. Fig. 21 shows the number state probability as a function
of time for a resonator coupled to six damped, interacting TLS’s. The shape of the curves is similar to that for six
non-interacting TLS’s, with the log plot appearing approximately linear. Again, the oscillations appearing in the
larger n curves at long times are numerical artifacts due to the exponentially small decay probabilities. In Fig. 22 we
plot the decay rate as a function of n for six TLS’s with (dash) and without (solid) TLS-TLS interactions, and for a
resonator coupled only to an Ohmic bath (dot-dash). We note that the decay is similar for the two cases with slope
close to one.

Next we study the T1 dependence of the on- and off-diagonal terms of the density matrix for a superposition of
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FIG. 21: (Color online) Left: Pn vs ωt for a resonator coupled to six interacting TLS’s. Right: ln(P )n vs ωt. For all curves
T1 = 10.

Fock states, as we did in Fig. 20. Fig. 23 shows Tnn and T0n as a function of T1 for the n = 4 superposition state for
a resonator coupled to six non-interacting (black) and six interacting (gray) TLS’s. The plot shows that in both cases
a reduction of T1 causes an increase in the decay time of the on- and off-diagonal terms. As for the three interacting
TLS case, the addition of TLS-TLS interactions decreases the decay times.
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FIG. 22: (Color online) Normalized decay rate vs n for a single Fock state. The resonator is coupled to six non-interacting
TLS’s (solid), six interacting TLS’s (dash), and to an Ohmic bath (dot-dash). For all curves T1 = 10.

Lastly, we plot Tnn and T0n as a function of the TLS-TLS coupling parameter ζ. Fig. 24 shows the ζ dependence
of the decay times for two different sets of random ζ(αβ). In both cases the decay time of the diagonal terms, Tnn,
shows a linear dependence on the strength of the TLS-TLS coupling, with a slight variation in the slope for the two
realizations. The off-diagonal terms, particularly for the second group of random ζ(αβ) values, decay less uniformly
with respect to ζ, but the overall behavior shows a clear dependence on ζ, with stronger TLS-TLS coupling leading
to faster decay of both the diagonal and off-diagonal terms of the density matrix.

V. CONCLUSION

In this work, we have explored the effects of near-resonant TLS’s on the decay of initial Fock states and their
superpositions for a mechanical oscillator at low temperatures. We began our investigation with an oscillator coupled
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FIG. 23: Tnn and T0n vs T1 for the n = 4 superposition state. The resonator is coupled to six non-interacting (black) and six
interacting (gray) TLS’s.
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FIG. 24: Tnn and T0n vs the TLS-TLS interaction strength ζ for two different realizations of the random ζ(ij) values. The
resonator is initially in the n = 4 superposition state. For all curves T1 = 10.

to a single TLS, and then increased the number to three, and then six TLS’s. For initial Fock states |n〉 of an oscillator
coupled to a single, damped TLS, we observed oscillatory decay with a rate that appeared to decrease with increasing
n. In contrast, for an oscillator coupled to three TLS’s, we found that Fock states and Fock state superpositions
decayed monotonically, similar to that due to an Ohmic oscillator bath. In particular, the decay rate T−1

nn of the
initial Fock state |n〉 scaled closely as n, while the interference terms of the Fock state superposition |0〉+ |n〉 decayed
close to twice as slowly, T0n ≈ 2Tnn, approximately coinciding with the Fock state decay behavior of an oscillator
system coupled to a bath of free oscillators with Ohmic spectral density. We noted that there was some variation
in the Fock state decay times for different realizations of the random TLS variables, reflecting the fact that we were
intermediate between a single TLS and a dense spectrum of TLS’s. For an oscillator coupled to six TLS’s, we continued
to find an Ohmic-like decay dependence, while the variation in the decay for different random TLS realizations was
less than for the three TLS case.
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The mechanical resonator Fock state decay rates showed an unexpected dependence on the TLS relaxation time
T1, in particular increasing with increasing T1. The analysis based on the Born approximation in the resonator-TLS
coupling in Sec. III D suggested a possible explanation in terms of the T1 dependences of the TLS decay line widths.
However, the Born approximation breaks down in the limiting case T1 → ∞, and hence cannot explain how the
effectively Ohmic oscillator bath decay behavior is maintained even when the mechanical resonator is coupled to
as few as three, undamped TLS’s. As stated in the Introduction, the latter behavior is reminiscent of subsystem
thermalization of closed, interacting many-body systems.27 We shall explore this connection further in a future
publication.

Including strain-mediated pair interactions between the TLS’s serves to enhance the Fock state decay rates while
maintaining the Ohmic-like decay behavior. We noted that the strain-mediated pair interactions are longer ranged
in reduced dimensional systems. Thus, while there will be fewer TLS’s near resonance in a vibrating nanowire as
compared with a bulk mechanical resonator of the same material, we might expect that the longer-ranged TLS-TLS
interactions in the former system will partly compensate in limiting the Fock state lifetimes.

This work highlights the need for analytical approximations in order to understand the numerical results. One
possible starting point is to assume the rotating wave approximation for the oscillator-TLS Hamiltonian (2), giving
the Tavis-Cummings Hamiltonian with randomly distributed TLS energies and couplings. We can then apply a
polaron-like unitary transformation to decouple the oscillator from the TLS’s.32 Evidentally, the numerical simulations
presented here can serve as a useful check for the validity of possible analytical approximations. Given the established
validity of an approximation method, one can then go beyond the small TLS number limitation of computational
methods to account also for lower energy TLS defects in the mechanical resonator. Such far-from-resonant TLS’s
are responsible for 1/f noise, resulting in shorter off-diagonal T0n < 2Tnn decay times [through the longitudinal
cos θα contribution in the Born approximated Eq. (8)].11 Much work remains to be done to understand the quantum-
classical correspondence for nanomechanical resonators interacting with tunneling TLS defects at low temperatures,
particularly now that experiments demonstrating such systems in the quantum limit are becoming a reality.
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