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The competing ground states of bilayer graphene are studied by applying renormalization group
techniques to a bilayer honeycomb lattice with nearest neighbor hopping. In the absence of interac-
tions, the Fermi surface of this model at half-filling consists of two nodal points with momenta K,
K′, where the conduction band and valence band touch each other, yielding a semi-metal. Since near
these two points the energy dispersion is quadratic with perfect particle-hole symmetry, excitonic in-
stabilities are inevitable if inter-band interactions are present. Using a perturbative renormalization
group analysis up to the one-loop level, we find different competing ordered ground states, includ-
ing ferromagnetism, superconductivity, spin and charge density wave states with ordering vector
Q = K−K′, and excitonic insulator states. In addition, two states with valley symmetry breaking
are found in the excitonic insulating and ferromagnetic phases. This analysis strongly suggests that
the ground state of bilayer graphene should be gapped, and with the exception of superconductivity,
all other possible ground states are insulating.
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FIG. 1. Bilayer graphene with AB-stacking: a1, b1 are the two sublattice sites in the upper layer, a2, b2
are the two sublattice sites in the lower layer. γ0 is the tight-binding hopping constant between a1; b1, γ1
is the hopping between a1 and a2; γ3 is the hopping between b1 and b2. a1 = a
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are the primitive lattice vectors.

I. INTRODUTION

Graphene is a quasi-2D carbon material with a honeycomb lattice structure. Its band structure
is captured by a tight binding model, as illustrated in Fig. 1, with two interpenetrating triangular
sublattices a and b

HA = −γ0
∑

〈i,j〉
a†i bj + h.c.,

where 〈i, j〉 denotes a sum over all nearest neighbor pairs. At the charge neutrality point, this
model yields a semi-metal for which the Fermi surface (FS) contains only two nodal points. Since
the energy dispersion is linear in the vicinity of these Dirac points, the corresponding low-energy
effective Hamiltonian is given by a 2D Dirac model. This unique electronic structure leads to many
interesting phenomena.1

Although interactions between electrons are present in graphene, the one-particle picture works
surprisingly well. In contrast to ordinary metals, the ground state of the electrons in graphene
does not behave like a Landau Fermi liquid, but rather belongs to the universality class of Dirac
liquids.2 One of the differences between these ground states is that short-range interactions between
electrons are irrelevant in Dirac liquids.3 This may explain why the one-particle picture is applicable,
regardless of the perfect particle-hole nesting properties in the FS. However, recent experiments
have shown evidence that the Dirac cone is renormalized,4 suggesting that electron interactions
are important on some level. Recently, the interactions between electrons in graphene have been
modeled by a long-range Coulomb interaction or by using an effective (2+1)D QED model.3,5,6

For bilayer graphene (BLG), tight-binding calculations also show that the non-interacting
ground state is a semi-metal. But in this case, the dispersion near the FS points is quadratic
rather than linear.7 Because of this, all short-range interactions now become relevant perturba-
tions, and recent theories have predicted various possible spontaneous symmetry breaking ground
states.8–16Furthermore, recent experiments17–21 have shown some evidence for FS reconstruction in
BLG. These findings contradict the simple one-particle picture for BLG, based on a tight-binding
model, and rather suggest that interactions between electrons play an important role in breaking
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down the FS.
In this paper, the instabilities in BLG will be addressed by using a perturbative renormalization

group approach. We consider the bilayer honeycomb structure with nearest neighbor hopping as
the low-energy effective model for BLG. Particle-hole symmetry is assumed, and RG arguments are
used to identify the dominant channels and eliminate the irrelevant channels due to the interactions
in the model. Using this setup, an array of possible ordered phases is found, which are competing
with each other. In the following sections, the details of the model and the results and implications
of our calculations will be discussed.

II. BILAYER GRAPHENE AND THE MODEL HAMILTONIAN

The crystal structure of BLG is given by a Bernal AB stacking of two sheets of graphene, shown in
Fig. 1). In the absence of interactions, its band structure is effectively described by a tight-binding
model.1 In momentum space, the one-particle Hamiltonian with γ4 ≃ 0 is given by

HAB =
∑

K,σ

Ψ†
KσHKΨKσ,

where HK is







0 γ0f(K) 0 γ3f
∗(K)

γ0f
∗(K) 0 γ1 0
0 γ1 0 γ0f(K)

γ3f(K) 0 γ0f
∗(K) 0






, (1)

where Ψ†
Kσ =

(

b†1Kσ, a
†
1Kσ, a

†
2Kσ, b

†
2Kσ

)

are the local orbital field operators, f(K) =
∑3

i=1 e
iK·δi ,

and δ1 = a
2 (1,

√
3), δ2 = a

2 (1,−
√
3), δ3 = a(−1, 0) are nearest-neighbor in-plane displacement

vectors (a is the lattice constant). Fig. 2(a) shows the 1st Brillouin zone in momentum space with

reciprocal vectors b1 = 2π
3a (1,

√
3) and b2 = 2π

3a (1,−
√
3).

Since only low energy excitations are of interest here, we expand f(K) near K and K′ (up to a
phase factor eiπ/6),

f(K) ≃ −3a

2
κ at K, f(K) ≃ −3a

2
κ∗ at K′,

where κ = kx + iky, k = (kx, ky) is a small momentum deviation from K, K′, and |k| ≤ Λ ≪
|K|, |K′|.
In the following discussion, the trigonal warping term γ3 will be neglected. (The justification

for this will be discussed in the Sec. VI). As shown in Fig. 2(b), the resulting tight-binding band
structure consists of 4 bands. Two of these bands are gapped by γ1 from the FS, whereas the other
two bands touch each other at the K and K′ Fermi points. This is similar to single-layer graphene,
but for the bi-layer case the energy dispersion is quadratic at the Fermi surface,

ǫc,f(K) ≃ ±v
2
F

γ1
k2 at K,K′. (2)

In the following analysis of instabilities, the gapped bands will be ignored, because they are not
important in the low energy limit. Before writing down the model Hamiltonian, let us introduce
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3
) are the two points, constituting the Fermi surface of the

non-interacting system. Λ is the momentum cutoff of the theory, dΛ is a thin shell contain high energy
modes to be integrated out. (b) ǫc(K) and ǫf (K) are the dispersion energy of the conduction and the
valence band respectively. The other two bands are gapped by γ1.

the creation (annihilation) operators for electrons in bands ǫc(K) and ǫf (K) to be cKσ (c†Kσ) and

fKσ (f †
Kσ) respectively. cKσ and fKσ are linear combinations of the local orbital field operators

(b1Kσ, a1Kσ, a2Kσ, b2Kσ):

cKσ = Cc
K ·ΨKσ, fKσ = C

f
K ·ΨKσ, (3)

where CI
K = (CI

1K , C
I
2K , C

I
3K , C

I
4K). These coefficients near the Fermi surface can be found in

Ref. 22. Note that if the model is written using the local orbital basis, in momentum space these
coefficient CI

K account for the form factors in the interaction terms of the Hamiltonian. Because of
the small k dependence in the form factors, this can complicate the RG analysis. In order to avoid
this problem, it is natural using the Bloch wave basis to build an effective Hamiltonian of BLG.
Then, the non-interacting part of the model Hamiltonian can be represented as

H0 =
∑

K

ǫc(K)c†σKcσK + ǫf (K)f †
σKfσK , (4)

where summing over all σ is implicitly assumed.

Turning to the interaction part of the Hamiltonian, we follow the approach outlined in Ref.23
(for more details see Appendix A), and require particle-hole symmetry of exchanging the valence
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and conduction bands. Then the electron-electron interaction term can be written as

Hint =
1

2

∑

K1,K2,
K3,K4

{ U0(K3K4K2K1)c
†
K3σ

c†K4σ′cK2σ′cK1σ

+ U1(K3K4K2K1)c
†
K3σ

c†K4σ′fK2σ′fK1σ

+ U2(K3K4K2K1)c
†
K3σ

f †
K4σ′fK2σ′cK1σ

+ U3(K3K4K2K1)f
†
K3σ

c†K4σ′fK2σ′cK1σ}
+ {exchange (c ↔ f)},

(5)

where momentum conservation is implicitly contained in U (see Appendix A). Here, the coupling
constant U0 denotes the intra-band interaction, whereas U1, U2 and U3 are inter-band interactions.
So far, no explicit advantages are obvious by using the Bloch wave basis. In addition, the momen-

tum dependence in the coupling constants complicates the study too. However, this complication
will be removed due to the trivial topology of the FS.

III. RENORMALIZATION GROUP ANALYSIS OF THE BLG MODEL

Here, we apply the pertubative renormalization group (RG) method to explore the low-energy
physics of the BLG model in the presence of interactions, following the standard procedure outlined
in Ref. 24.
From a tree level analysis (see Appendix B), we find that only a finite set of coupling constants

are marginal. In the low energy limit, only the interacting channels which depend on K, K′ are
not renormalized to zero. The corresponding bare coupling constants are listed and classified into
Table I.

U0 U1 U2 U3

U(K,K,K,K) h0 g0 u0 v0

U(K,K′,K′,K) h1 g1 u1 v1

U(K′,K,K′,K) h2 g2 u2 v2

TABLE I. Bare coupling parameters that marginal at tree level.

Here, the subscripts 0, 1, 2 of the coupling constants indicate the various scattering processes
between valleys. The difference between processes with 0, 1 versus 2 is that after scattering processes
with 0, 1 do not exchange valley indices between two particles, but processes with 2 do. Therefore,
the scattering processes with subscript 2 always involve large momentum transfers.
Since these coupling constants are marginal, performing one-loop corrections to the RG flow

equations is necessary. Since the interaction is quartic, i.e. involving only two-body scattering,
there are only three distinct channels to transfer momentum. Following the terminology of Ref. 24,
these processes are named ZS, ZS’, and BCS.
The corresponding Feynman diagrams are schematically shown in Fig. 3. All modes in the loop

are high energy and need to be integrated out. After rescaling back to the original phase space
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FIG. 3. Feynman Diagrams: 1, 2, 3, 4 represent the low energy modes with momentum K1,2,3,4, band index
I , valley index α, and spin σ. The momentum inside the loop, K, must lie within the shell dΛ, and
Q = K3 −K1, Q

′ = K4 −K1, P = K1 +K2. Note that the interaction lines are suppressed.

volume, the coupling constants are modified, i.e. they are flowing in a 12 dimensional space of
couplings.

In order to have non-vanishing one-loop corrections, in the ZS and ZS’ diagrams the two prop-
agators in the loop must pair up with a different band. For BCS, both propagators must pair up
within the same band. Those graphs that do not satisfy the above criteria contain double poles
in the frequency ω contour integration. With this, many contributions of these diagram can be
eliminated, thus greatly simplifying the calculation.

In this work, we consider flow equations for the coupling constants up to the one-loop level.
Cumulant expansion and Wick’s contraction are used in the calculation. This method is convenient
to keep track of the prefactor for each different diagram.

The loop momentum integration (bubble diagram) can be evaluated,

∫ 2π

0

∫ Λ

Λ−dΛ

dθkdk

(2π)2
1

2|ǫI(K)| =
dt

4πν0
, (6)

where ν0 = v2F /γ1, and dt =
dΛ
Λ is the RG running parameter. Therefore, the RG flow rate equations

under one-loop correction are given by,

d

dt







h0
h1
h2






=

1

4πν0







−h20 − g20
−h22 − h21 − g22 − g21
−2h1h2 − 2g1g2






;

d

dt







u0
u1
u2






=

1

4πν0







u20 + u22 + g20 + g22
u21 + g21

2u0u2 + 2g0g2







d

dt







g0
g1
g2






=

1

4πν0







−2g0h0 − 2g0v0 + 2g2v1 − 4g1v1 + 2g0u0 + 2g2u2 + 2u2g1
−2g2h2 − 2g1h1 − 2g0v1 − 4g1v0 + 2g2v0 + 2g1u0 + 2g0u2 + 2g1u1

−2g1h2 − 2g2h1 − 4g2v2 + 2g1v2 + 2g0u2 + 2g2u0 + 2g2u1







d

dt







v0
v1
v2






=

1

4πν0







2(u0 − v0)v0 + 2(u2 − v1)v1 + 2(g2 − g1)g1
2u2v0 + 2(u0 − 2v0)v1 + 2(g2 − g1)g0

2(u1 − v2)v2 + 2(g1 − g2)g2






(7)

If g0 = g1 = g2 = 0, these RG flow rate equation can be solved exactly, and decoupled into a
simple result,
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d

dt







h0
h1 + h2
h1 − h2






=

1

4πν0







−h20
−(h1 + h2)

2

−(h1 − h2)
2






;

d

dt







u0 + u2
u1

u0 − u2






=

1

4πν0







(u0 + u2)
2

u21
(u0 − u2)

2







d

dt







(u0 − 2v0) + (u2 − 2v1)

(u0 − 2v0)− (u2 − 2v1)

u1 − 2v2






=

1

4πν0







((u0 − 2v0) + (u2 − 2v1))
2

((u0 − 2v0)− (u2 − 2v1))
2

(u1 − 2v2)
2






(8)

Before finishing this section, we need to address the effects of quadratic perturbations. The two
most relevant perturbations are the chemical potenal and trigonal warping, i.e. the γ3 hopping
term. These perturbations are in principle relevant under the tree level, i.e. scaling as s2 and s
respectively. The chemical potential determines the density of the system, and the trigonal warping
splits the original two Fermi points into four.
However, the divergences of the susceptibilities (see next section) emerge at some finite energy

scale, and the RG flow must be stopped at this point. This energy scale determines the ordered state
mean field transition temperature Tc. If Tc is far above the trigonal warping reconstruction energy,
this quadratic perturbation is not significant. This introduces an infrared cut-off to the validity of
the analysis.10–12. In addition, the divergences also imply that the original FS is unstable towards
opening a gap. Although one should follow the procedure in Ref. 24 to fine-tune the chemical
potential to keep the system density fixed, not carrying out this procedure does not affect the
results significantly.
Because of this, we argue that trigonal warping and the chemical potential do not play an essential

role in the analysis at the one-loop level, as long as the energy scale of the instabilities is found to
be far beyond the infrared limit.

IV. SUSCEPTIBILITIES AND POSSIBLE GROUND STATES

To gain further understanding into the physics of BLG, we introduce test vertices into the original
Hamiltonian.25,26 These test vertices correspond to the pairing susceptibilities,

∆j

∑

αk c
†
αs,kτ

µ
αα′ ⊗ σν

ss′fα′s′,k, (9)

∆SC

∑

αk

[

cαs,kτ
x
αα′ ⊗ σy

ss′cα′s′,−k

+fαs,kτ
x
αα′ ⊗ σy

ss′fα′s′,−k

]

(10)

∆SC′

∑

αk

[

cαs,kτ
x
αα′ ⊗ σy

ss′cα′s′,−k

−fαs,kτxαα′ ⊗ σy
ss′fα′s′,−k

]

(11)

where, µ, ν = 0, x, y, z, τ0 = σ0 are 2×2 identity matrices, τx,y,z and σx,y,z are 2×2 Pauli matrices.
τ denotes the valley degree of freedom with basis (K,K′), and σ denotes the spin degree of freedom.
j indicates the different pairings listed in Table II.
Performing an RG analysis at the one-loop level with this additional new perturbed Hamiltonian,

the vertices (∆s) are renormalized, and the new renormalized vertices are of the form

∆Ren
j = ∆j(1 +

1

4πν0
Γj ln s), (12)

where the Γj are listed in Table II.
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j Ordered State τµ ⊗ σν Γj

FM ferromagnetism τ 0 ⊗ σz u0 + g0 + u2 + g2

FM ′ FM without valley symmetry τ z ⊗ σz u0 + g0 − (u2 + g2)

SDW spin density wave τx ⊗ σz u1 + g1

EI excitonic insulator τ 0 ⊗ σ0 (u0 − 2v0) + (u2 − 2v1) + (g0 − (g2 − 2g1))

EI ′ EI without valley symmetry τ z ⊗ σ0 (u0 − 2v0)− (u2 − 2v1) + (g0 + (g2 − 2g1))

CDW charge density wave τx ⊗ σ0 u1 + g1 − 2(v2 + g2)

SC superconductor τx ⊗ σy −(h1 − h2 + (g1 − g2))

SC′ superconductor τx ⊗ σy −(h1 − h2 − (g1 − g2))

TABLE II. LPairing susceptibilities corresponding to the competing ground states in the presence of inter-
actions.

A. Case I: g0 = g1 = g2 = 0

If g0 = g1 = g2 = 0, Eq. (8) decouples the susceptibilities, and one obtains

Γg=0
j (t) =

Γg=0
j (0)

1− 1
4πν0

Γg=0
j (0)t

. (13)

Whether and where the susceptibilities (Γj ln s, where t = ln s) diverge is determined by the bare

coupling constants. Each divergence in Γg=0
j (t) indicates that the system has a tendency toward

the corresponding ordered state, labeled by ’j’. The first instability in a given channel represents
the most dominant ordered state of the system at low energy.
For the case g0 = g1 = g2 = 0, the situation is relatively simple. In order to produce instabilities,

Γj(0) must be positive, such that mean field solutions exist, and the susceptibilities given in (13)
can diverge at some finite t. If only repulsive interactions are considered, the FM and SDW
channels are expected to represent the dominant instabilities, because in the other channels some
level of fine-tuning in the bare parameters is required to ensure Γj(0) > 0. More generally, since the
parameter space spanned by the bare couplings is very large, constraining the search is desirable in
order to make the exploration and analysis of the phase diagram meaningful.
The relative strength between the bare couplings can be estimated. In general, the scattering

processes within the same valley h0, g0, u0, v0 and h1, g1, u1, v1 are expected to be larger than
h2, g2, u2, v2, because intra-valley scattering processes involve only small momentum transfer.27

Applying these constraints, in Fig. 4 we show how these pairing susceptibilities compete with
each other for a representative choice of bare coupling parameters. In this example, the dominant
low-energy divergence occurs in the FM channel, followed by FM ′, SDW , CDW and EI ′.
The instabilities FM , FM ′, and SDW indicate broken spin symmetry, thus leading to magnet-

ically ordered ground states. Since the pairing in (9) is a pairing of different bands cσ, fσ, it does
not have an obvious connection with the spin density operator. However, it can be related to local
magnetization in a more sophisticated manner. To illustrate this, we follow Ref. 28, and define a
local spin operator by

S(r) =
∑

ss′

a†s(r)σss′as(r),

where σ is (σx, σy, σz), and a†s(r) (as(r)) represents local field creation (annihilation) operators with
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FIG. 4. Flow of the susceptibilities: Here, we set h0 = u0 = v0, h1 = u1 = v1 = 0.8h0, h2 = u2 = v2 = 0.1h0,
and g0 = g1 = g2 = 0 (h0 > 0) . The FM instabilities occupy a large region in parameter space, and fine-
tuning is not necessary.

spin s. An explicit expression for these operators is given in Eq. (A2). The local magnetization
can then be expressed in terms of the spin operator,

M(r) = −gµB

V

∑

ss′

〈S(r)〉 (14)

where the average is taken with respect to the dominant ground state obtained from the RG. Here,
g is the g-factor, µB is the Bohr magneton, and V is the volume of the system. If we expand the
local field operator into Bloch waves (A2), we obtain

M(r) = −gµB

V

∑

ss′

c,f
∑

A,B

∑

K2K1

u∗A,K2
(r)uB,K1(r)

×e−i(K2−K1)·r‖〈A†
K2,s

σss′BK1,s′〉,

(15)

where the Bloch wave function is ϕA,K(r) = e−iK·r‖uA,K(r), r = r⊥ + r‖, r⊥ is the out-of-plane
vector, r‖ is the in-plane vector, and uA,K(r) is a periodic function with r‖ → r‖+ma1+na2, where
m, n are integers.
Let us also introduce a SDW gap function,

∆sdw
ss′

g1 + u1
=
∑

αα′;k

Sz〈c†αs,kτxαα′ ⊗ σz
ss′fα′s,k〉. (16)

If we confine the system to 2D, and setting uA,K(r) = 1 (some constant), we can reduce (15) to a
simpler form,

M(r) ≃ −2gµBS
z∆sdw

V (g1 + u1)
cos(Q · r‖)δ(r⊥). (17)

Using this formulation, pairing in the SDW channel (c†
Ks(k)σ

z
ss′fK′s′(k)) can be easily identified

by this observable with ordering vector Q. Analogously, the FM and FM ′ pairing channels can be
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identified. Similary, for CDW , we introduce the local charge density operator,

ρ(r) =
1

V

∑

σ

〈a†σ(r)aσ(r)〉. (18)

From the mean field Hamiltonian (see Appendix C), the trial ground state solutions for EI and
EI ′ are equivalent to excitonic insulator given in Ref. 29. In these insulating states, the electrons
from the conduction band and the holes from the valence band form bound states.
Furthermore, FM ′ and EI ′ break valley symmetry, i.e. time reversal symmetry, because in these

ground states, the symmetry exchanging K and K′ is absent. This can lead to non-trivial insulating
states30–32. Since the mean field Hamiltonian in Appendix C does not have a clear ‘inverted’ band
gap, we do not conclude that these are quantum spin Hall or quantum anomalous Hall insulator
states.

B. Case II: g0, g1, g2 6= 0

For non-vanishing values of g0,1,2, much of the discussion is similar to the previous section.
However, since g0,1,2 connect different channels in the flow rate equations, they do not give simple
analytical results that show how the Γj evolve. Instead, in this more general case the flow rate
equations in (7) need to be solved numerically.
Due to the large parameter space spanned by the possible sets of bare couplings, it is impossible

to explore the entire phase diagram. In this section, we only select a region to scan, illustrating
how finite values of g0,1,2 affect the results from the previous section. Using the bare values from
Fig. 4, we scan g0 and g1. When g0,1.2 is small, we obtain results very similar to the g0,1,2 = 0
case, with FM occupying large regions of the phase diagram. However, when g1 becomes large, we
instead obtain the more complicated phase diagram shown in Fig. 5.
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FIG. 5. Phase Diagram for a representative choice of bare couplings h0 = u0 = v0 = 1, h1 = v1 = u1 =
0.8h0, and h2 = u2 = v2 = g2 = 0.1h0. The phase diagram is determined by monitoring which channels
divergence first during the RG flow.

To form an excitonic insulator, EI and EI ′ order intricately compete with other instabilities.
Without the scattering processes g0,1,2 (case I), fine-tuning bare couplings to enhance EI and EI ′

instabilities and suppress the others is inevitable. However, introducing nonzero g0,1,2, the flow
of g0,1,2 significantly affects this result, which can automatically enhance or suppress the orders.
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FIG. 6. The flow of g0 as the bare value of g1 varies. We set g0 = g2 = 0.1h0, and the remaining bare
couplings are same as Fig. 4

For instance, when g1 is small, the g0 starts flowing towards more positive values (see Fig. 6).
Consequently, the FM ordering tendency is enhanced (which enhances the divergence of ΓFM ).
On the other hand, in Fig. 6, when g1 becomes large, g0 flows towards increasingly negative values,
this suppressing FM order. Because of this suppression, EI, EI ′ and SDW emerge in the large g1
region as shown in Fig. 5.
Furthermore, charge density wave order is very unlikely to dominate, since ΓCDW (0) = ΓSDW (0)−

2(v2 + g2), and g2 always grows into the positive regime, as long as only repulsive interactions are
considered. We observe that the divergence of spin density wave order is always stronger than
charge density wave order. For the same reason, ΓFM (0) = ΓFM ′(0) − 2(u2 + g2), and thus FM
order is more favorable than FM ′.
Similarly, superconducting order is not expected to dominate for small bare values h2 and g2. In

order to produce dominant BCS instabilities one needs that h2 + g2 > h1 + g1 or h2 + g1 > h1 + g2
, such that ΓSC(0) or ΓSC′(0) is positive.
To decide which one is the correct ground state for BLG is beyond the analysis of this paper,

because bare coupling constants are in general difficult to obtain. The ultimate answer will require
more experimental input.

V. SUMMARY

Summarizing this work, BLG can been modeled by nearest-neighbor hopping model on a bilayer
honeycomb structure with γ3 ≃ 0. A general form of interactions between electrons can be ac-
counted for without including long-range Coulomb interactions. Due to the trivial topology of the
Fermi surface, the RG tree level analysis eliminates irrelevant channels and greatly simplifies the
interacting terms in this model. The RG flow rate equation can be calculated up to one-loop level
in the weak coupling limit.
Instabilities are inevitable if the inter-band and inter-valley interactions are nonzero. We have

investigated each instability, and related them to ordered ground states. Specifically, we have found
competing ferromagnetic (FM , FM ′) , spin density wave (SDW ), excitonic insulator (EI, EI ′),
charge density wave (CDW ), and superconducting (SC, SC′) ground states in this model. Except
SC and SC′, all the ground states are insulating. Furthermore, valley symmetry breaking is found
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in the FM ′ and EI ′ channels.
Since the free system with quadratic dispersion is not stable, any small perturbation can drive

this point toward divergence. Due to particle-hole symmetry and perfect nesting of the two Fermi
points K, K′, excitonic instabilities are expected to arise, which has been previously pointed out
in Ref. 9 and 33.

VI. DISCUSSION

Projecting out the orbital field operators a1Kσ and a2Kσ in (3) and taking the spatial continuum
limit, the non-interacting low energy effective model of BLG can be approximated by a massive chiral
fermion model7. By symmetry arguments, all possible two-body interactions can be obtained.10–12

Under this limit, this model exhibit a very rich and exotic low energy phenomenology because of
the newly emerging valley and pseudospin degree of freedom.
In this paper, we utilize the band representation point of view which are not necessary to impose

continuum limit. Projecting out the gapped bands, BLG is effectively viewed as a conventional
two-band model and all its interactions can be immediately obtained according to the band index.
In this approach, the instabilities of BLG is clearly interpreted as the peculiar nature of the FS and
the low energy physics exhibit rich excitonic orders.
The ground states in this paper have been classified according to their band index, and the

pseudospin index is implicitly contained in (3). Therefore, the pseudospin symmetry breaking is
not made explicit in our model. This leads to a different physical interpretation of the ordered
states. Because of this reason, not all the of the possible competing ground states that are found
in Ref. 10–15 can be obtained by our study, especially the gapless nematic state which emerges
naturally in some of the previous studies.10–15

Furthermore, in Refs. 14 and 15 it is discussed that only nine independent coupling constants
are allowed by symmetry. However, within our model twelve independent coupling constants are
obtained, because the projection procedure is different in our approach, and hence the interaction
terms in our treatment do not preserve all of the symmetry in pseudospin space.
In addition, the ‘which-layer’9 or pseudospin8 symmetry breaking is not obvious in the present

approach. As discussed in section IV, to extract layer order, it would be necessary to know the ap-
propriate Bloch wave function or its Wannier representation. The more complicated representation
of pairing gap functions in real space are a disadvantage of our approach.
A recent functional renormalization group (fRG) study34 has demonstrated the advantage of

retaining all the lattice structure, and integrating out energy modes without ambiguities. Further-
more, their approach takes into account the complication of angular dependence in the interactions.
Their study has shown an interesting “three-sublattice CDW instability”. This instability is quickly
disappears as the on-site interaction becomes dominant. Since their model Hamiltonian (extended
Hubbard model) is different from the one studied in this paper, a direct comparison with their results
is not straightforward. One of the big discrepancies is the predominant FM instability observed
in our approach. This may arise because exchange interactions35 were not explicitly considered in
Ref. 34.
The results in this paper are valid only of the one-loop level. Typically, higher-loop contributions

can be neglected by invoking 1/N arguments.24 However, this type of argument is not very strong
for this model, because the Fermi surface contains just two points, resulting in N = 4 only. Also,
the results presented here only apply for the weak coupling limit. Any strong enough coupling
to break down the perturbative expansion will invalidate the preceding discussion. In the strong
coupling limit, results from the tree level analysis cannot be trusted, and using the same effective
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action as in (B3) will not guarantee correct results. When the order of the tree and loop diagrams
is comparable, new effective models and non-perturbative approaches may be needed.

Furthermore, the instabilities in this paper are driven by perfect particle-hole nesting. The
presence of disorder can destroy this symmetry and thus change the phase diagram. Moreover,
doping away from the charge neutrality point, the FS becomes a line rather than a few points. As
shown in a recent study of doped monolayer graphene,36 and also in Ref. 34, functional RG is a
promising alternative method to study the BLG doping problem. In the doped case, functional
RG may be superior to our approach, since the shape of FS evolves non-trivially upon doping.
In addition, the effects of phonons are not considered in the presence work. Their inclusion may
modify the coupling constants significantly, possibily turning some interactions from repulsive into
attractive.

Another issue which cannot be easily resolved within our framework is due to the lack of knowledge
of the precise values of bare coupling constants at the energy scale γ1/2. Because of this, the
assumption of being in the weak coupling regime needs further justification. As pointed out in
Ref. 15, an intuitive argument can be given as follows. From recent optical experiments,37–40

the high-energy regime of BLG have been found to be well described by a two-band model. This
suggests that the interactions in BLG are not strong enough to break down entirely the quasi-
particle picture, with good momentum quantum numbers. Therefore, the coupling is very likely
to be weak. To compute precise values that include the effects of screening, ab initio calculations
would be required. However, this is beyond the scope of this paper. Since the flow rate equations
are sensitive to the bare values of the coupling constants, working with unknown twelve coupling
constants, pinning down the most stable ground state is a difficult task.

In parameter space, the free part of the action is non-analytic at the point with non-zero trigonal
warping. Due to this reason, perturbative RG may not work properly at that given point. In
particular, the scaling rule of the fermonic field cannot be defined, and one does not know whether
that point is a Gaussian fixed-point or not. Therefore, we enforce using γ3 = 0 as the fixed-point
to define the scaling rule, and always treat the trigonal warping term as a quadratic perturbation.
Another recent treatment has included the effect of trigonal warping.14

The results of our model are consistent with recent current transport spectroscopic experiments.18,21

Specifically, a magnetic field dependent gap is expected in a ground state with excitonic order.41

Therefore, magnetically order ground states are not a necessary condition to exhibit this property.
To make connections with experiments, the physical properties of the ground states discussed in
this paper need to be analyzed, in particular how these ground states respond to external pertur-
bations, especially to currents. Also in the experiments, considering the effects of disorder and
boundaries is important.

We would like to thank Tameem Albash, Rahul Nandkishore, Ronny Thomale, Hubert Saleur,
Vito Scarola, Oscar Vafek, and Lorenzo Campos Venuti for useful discussions, and acknowledge
financial support by the Department of Energy under grant DE-FG02-05ER46240.

Appendix A: Coupling Constants and the Interacting Hamiltonian

In this appendix, we show how the interacting Hamiltonian for the BLG model is constructed.
To accomplish this, we approximate the Bloch wave function by using the πz orbital φ(r) =
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√

ξ5/πze−ξr with ξ = 1.72a−1
0 ,35

ϕIK(r) =

MN
∑

mn;i

CI
iK√
Nuc

eiK·Rmnφ(r−Rmn − ti),
(A1)

where Nuc is the number of unit cells, a0 is the Bohr radius, I = c, f bands, Rmn = ma1 + na2
denote the center of the unit cell, and tm are the basis in the unit cell. K is the in-plane crystal
momentum of BLG in the first Brillouin zone. i = 1 represents the site b2 with t1 = (0, 0,−c),
i = 2 represents the site a2 with t2 = (2a, 0,−c), i = 3 represents the site a1 with t3 = (2a, 0, 0),
and i = 4 represents the site b1 with t4 = (a, 0, 0) (see Fig. 1). a is the lattice spacing 1.57Å, and
c is the layer separation 3.35Å.
Graphene can be considered as a 2D material, but the electrons still live in 3D real space. In order

to obtain correct interaction terms between electrons, we start from the original Hamiltonian42(Born-
Oppenheimer approximation is used), which describes the electrons with Coulomb interaction in
real space representation,

Hfull =

∫

d3ra†σ(r)[
−~

2

2m
∇2 + Vext(r)]aσ(r)+

1

2

∫

d3rd3r′a†σ(r)a
†
σ′ (r

′)Vint(r− r′)aσ′(r′)aσ(r),

where a†σ(r) (aσ(r)) are local field operator which create (annihilate) an electron at r. Vext is the
potential produced by the ions. Vint is the Coulomb potential between electrons at r and r′.
Now we approximate (the gapped bands are neglected) the full operator aσ(r) by expanding it

into Bloch waves from (A1). Then we have

a†σ(r) ≃
∑

K

[ϕ∗
c,K(r)c†σK + ϕ∗

f,K(r)f †
σK ],

aσ(r) ≃
∑

K

[ϕc,K(r)c†σK + ϕf,K(r)f †
σK ].

(A2)

By using

[
−~

2∇2

2m
+ Vext(r)]ϕc,f ;K(r) = ǫc,f (K)ϕc,f ;K(r)

and substituting the above equation into Hfull, one can easily obtain H0 in (4) and Hint in (5) and
(A4). The coupling constant is determined by

U(K3K4K2K1) =

∫

d3rd3r′Vint(r− r′)

×ϕ∗
I3K3

(r)ϕ∗
I4K4

(r′)ϕI2K2(r
′)ϕI1K1(r).

(A3)

By substituting (A1) into (A3), one can also verify that the valley and particle-hole symmetries still
hold. Note that projectinging out the gapped bands introduces a hard cutoff, further modifying U ,
which should screen the original long-range Coulomb interaction24.
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1. Interactions in the BLG Hamiltonian

From Eqs. (A3) we find ten inequivalent interaction terms, which are not ruled out by symmetry
and conservation laws,23 which are those in (5) and

U4(K3K4K2K1)f
†
σK3

c†σ′K4
cσ′K2cσK1

U4(K3K4K2K1)c
†
σK3

f †
σ′K4

fσ′K2fσK1

U5(K3K4K2K1)c
†
σK3

c†σ′K4
cσ′K2fσK1

U5(K3K4K2K1)f
†
σK3

f †
σ′K4

fσ′K2cσK1 (A4)

Of these, U4 and U5 are irrelevant under RG tree level, because they vanish at the FS. In the
following, we will prove U4(K,K,K,K) = 0, and the proof for different valley combination and U5

is similar.
Using (A3), we have

U4(K,K,K,K) =

∫

d3xd3x′ϕ∗
vK(x)×

ϕ∗
cK(x′)Vint(x− x′)ϕcK(x)ϕcK(x′)

(A5)

Note that Cv
K = 1√

2
(1, 0, 0, 1) and Cc

K = 1√
2
(1, 0, 0,−1) at K = K,K′. We have exploited the gauge

freedom of the Bloch waves to ensure that we work with a Bloch wave basis set that is smooth at
all points in K space, i.e., well localized Wannier function can be obtained43,44(This is also required
to ensure that the expansion in (A11) is well defined). Now we use Eq. (A1) to write out the Bloch
wave function explicitly,

U4(K,K,K,K) = α
∑

m1n1

∑

m′
1n

′
1

∑

m2n2

∑

m′
2n

′
2

∫

d3xd3x′e
iK·(Rm1n1+R

m′
1
n′
1
−Rm2n2−R

m′
2
n′
2
)×

Vint(x− x′)Φv(x−Rm1n1)Φc(x
′ −Rm′

1n
′
1
)Φc(x

′ −Rm′
2n

′
2
)Φc(x−Rm2n2),

(A6)

where Φv(x) =
1√
2
[φ(x−t1)−φ(x−t4)], Φc(x) =

1√
2
[φ(x− t1)+φ(x−t4)], and α is some constant.

Applying changes of variables, x → x + (t1 + t4) and x′ → x′ + (t1 + t4), and focusing on the
Φv(x −Rm1n1)Φc(x−Rm2n2) product term in the integrand.

Φv(x−Rm1n1)Φc(x−Rm2n2)

=
1

2
(φ(x−Rm1n1 − t1)− φ(x−Rm2n2 − t4))(φ(x −Rm1n1 − t1) + φ(x −Rm2n2 − t4))

→ 1

2
(φ(x −Rm1n1 + t4)− φ(x −Rm2n2 + t1))(φ(x −Rm1n1 + t4) + φ(x−Rm2n2 + t1)).

(A7)

Next, we perform changes of variables for m and n, m → M − m and n → N − n. Therefore,
Rmn → RMN −Rmn and this does not affect anything but,

Φv(x−Rm1n1)Φc(x−Rm2n2) →
1

2
(φ(x −RMN +Rm1n1 + t4)− φ(x −RMN +Rm2n2 + t1))

×(φ(x −RMN +Rm1n1 + t4) + φ(x−RMN +Rm2n2 + t1))
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RMN can be removed by performing changes of variables x → −x + RMN and x′ → −x′ +
RMN . Notice that the πz orbital satisfies φ(−x) = −φ(x). Therefore, we obtain exactly the same
expression as in (A6), except a minus sign. This means U4 must be vanish at FS. Similarly, U5 = 0
for the same reason.

From the result of the RG tree level, all couplings with small k dependence are irrelevant. The
first leading non-vanishing term in U4, U5 is O(k). Therefore, the interactions in (A4) are irrelevant.

2. Coupling Constant Expansion

Here we show how to expand the coupling constants aroundK andK′. First we perform a unitary
transformation by changing from Bloch wave to Wannier representation. The Wannier function is
defined as

wI,mn(r) =

B.Z.
∑

K

e−iK·Rmn

√
Nuc

ϕIK(r), (A8)

ϕIK(r) =

M,N
∑

m,n=0

eiK·Rmn

√
Nuc

wI,mn(r), (A9)

where Nuc is the total number of unit cells. Also from (A8) and (A9), we can derive the identity

∑

mn

eiK·Rmn = (2π)2Nucδ̄
2(K) (A10)

Note that, eiK·Rmn = eiK·Rmn+G·Rmn , where G is a reciprocal lattice vector. Therefore δ̄(K) in
(A10) is not exactly the Dirac delta function, but equal to a delta function up to a reciprocal lattice
vector.

Now, using (A10) and (A3), we obtain

U(K3K4K2K1) =
1

N2
uc

∑

n3m3

∑

n4m4

∑

n2m2

∑

n1m1

e−iK3·Rm3n3 e−iK4·Rm4n4 eiK2·Rm2n2 eiK1·Rm1n1

∫

d3xd3x′w∗
I3,m3n3

(x)w∗
I4 ,m4n4

(x′)Vint(x− x′)wI2,m2n2(x
′)wI1,m1n1(x)

U(K3K4K2K1) =
1

N2
uc

∑

n3m3

∑

n4m4

∑

n2m2

∑

n1m1

e−i(K4+K3−K2−K1)·Rm4n4×

e−iK3·(Rm3n3−Rm4n4)eiK2·(Rm2n2−Rm4n4 )eiK1·(Rm1n1−Rm4n4)×
∫

d3xd3x′w∗
I3,m3n3

(x)w∗
I4 ,m4n4

(x′)Vint(x− x′)wI2,m2n2(x
′)wI1,m1n1(x)
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by changes of variables x → x+Rm4n4 , x
′ → x′ +Rm4n4 and using (A10),

U(K4K3K2K1) =
(2π)2

Nuc
δ̄2(K4 +K3 −K2 −K1)

∑

n′
3m

′
3

∑

n′
2m

′
2

∑

n′
1m

′
1

e
−iK3·Rm′

3
n′
3 e

iK2·Rm′
2
n′
2 e

iK1·Rm′
1
n′
1×

∫

d3xd3x′w∗
I3,m′

3n
′
3
(x)w∗

I4,00(x
′)Vint(x− x′)wI2,m′

2n
′
2
(x′)wI1,m′

1n
′
1
(x)

(A11)

The coupling constant expansion can be achieved by expanding e
−iK3·Rm′

3n′
3 , e

iK2·Rm′
2n′

2 ,

e
iK1·Rm′

1n′
1 in Eq. (A11). δ̄(K4 + K3 − K2 − K1) means that momentum is conserved up to

a reciprocal lattice vector. This allows Umklapp processes. Momentum conservation emerges
because of the in-plane lattice translational invariance in the system.

Appendix B: Renormalization Group and Tree Level Analysis

This section summarizes the details needed for the perturbative renormalization group analysis.

1. Action of the Model Hamiltonian

The RG transformation is performed using the path integral formalism. Therefore, the model
Hamiltonian from Section 2 should be rewritten into action form. S =

∫

dτL = S0 + Sint, where
S0 is the free action and Sint contains the interaction terms. The derivation is tedious, and one
needs to introduce coherent states of the creation and annihilation field operators24. However, the
result is simple, which can be achieved by replacing the field creation and annihilation operator by
Grassmann fields. Namely, c†σ → ψ̄σ, cσ → ψσ and f †

σ → χ̄σ, f → χσ. Therefore, the S0 and Sint

can be written as

S0 =

∫ ∞

−∞

dω

2π

∫

|K−K|≤Λ
|K−K

′|≤Λ

d2K

(2π)2
ψ̄σ(K,ω)(iω − ǫc(K))ψσ(K,ω) + χ̄σ(K,ω)(iω − ǫv(K))χσ(K,ω)

Sint =
1

2

[

4
∏

i=1

∫ ∞

−∞

dωi

2π

∫

|Ki−K|≤Λ
|Ki−K

′|≤Λ

d2Ki

(2π)2
]

2πδ(ω1 + ω2 − ω3 − ω4)×

{

U0(K3K2K2K1)ψ̄σ(K3, ω3)ψ̄σ′(K4, ω4)ψσ′(K2, ω2)ψσ(K1, ω1)

+ U1(K3K4K2K1)ψ̄σ(K3, ω3)ψ̄σ′(K4, ω4)χσ′(K2, ω2)χσ(K1, ω1)

+ U2(K3K4K2K1)ψ̄σ(K3, ω3)χ̄σ′(K4, ω4)χσ′(K2, ω2)ψσ(K1, ω1)

+ U3(K3K4K2K1)χ̄σ(K3, ω3)ψ̄σ′(K4, ω4)χσ′(K2, ω2)ψσ(K1, ω1)
}

+ [exchange (ψ ↔ χ)]

(B1)

Now we can perform the RG analysis. First, S0 is chosen to be the fixed point in the theory. This
choice will determine the scaling properties of ω and ψ, which will be discussed in the following
section.
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2. Scaling Properties and Effective Action at the Tree Level

Since we interested in low energy limit, only the energy modes in the vicinity of Fermi points are
considered (see Fig. 2(a)). Expanding ǫc,f(K) around K and K′, and combining with the results
from (2),

S0 =
∑

α=K,K′

∫ ∞

−∞

dω

2π

∫

|k|≤Λ

d2k

(2π)2
×

[

ψ̄ασ(k, ω)(iω − v2
F

γ1
k2)ψασ(k, ω)

+χ̄ασ(k, ω)(iω +
v2
F

γ1
k2)χασ(k, ω)

]

.

(B2)

We introduce a short hand notation ψ̄ασ(k, ω) = ψ̄σ(α + k, ω), ψασ(k, ω) = ψσ(α + k, ω),
χ̄ασ(k, ω) = χ̄σ(α + k, ω), χασ(k, ω) = χσ(α + k, ω), and α = K,K′ is known as the ‘valley’
degree of freedom.Valley index is similar to L (left) and R (right) index in the one dimensional
case.24

The RG transformation is simply integrating out the high energy modes of ψ̄ασ(k, ω), ψασ(k, ω)
and χ̄ασ(k, ω), χασ(k, ω) which lie within the thin shell, dΛ, in Figure 2(a), and considering how
these modes affect the low energy theory. After integrating out, only those mode with |k′| ≤
Λ−dΛ = Λ/s remain in the theory. In order to evaluate what has changed from the original theory,
k′ must be rescaled (k′ = sk) back to the original available phase space such that |k| ≤ Λ. Since
S0 is the fixed point, this requires that ω, ψα,σ(k, ω) and χα,σ(k, ω) must be rescaled,

ω′ = s2ω,

ψ′
ασ(k

′, ω′) = s−3ψασ(k
′/s, ω),

χ′
ασ(k

′, ω′) = s−3χασ(k
′/s, ω).

With this scaling relation, one can now ask how the coupling constants U0, U1, U2, U3, U4 and
U5 scale under the RG transformation. Again, we use Eq. (A11) to expand couplings around K

and K′. By enforcing momentum conservation, only the constant term in the expansion do not
renormalize to zero (marginal under tree level).

Note that Sint remains unchanged when K4 ↔ K3 and K2 ↔ K1 simultaneously. In addition,
using time reversal symmetry (valley symmetry) in the model, hence exchanging K ↔ K′ in (Table
I) will not produce another set of independent coupling constants. Thus we obtain Sint at the tree
level,
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Sint =
1

2

[

4
∏

i=1

∫ ∞

−∞

dωi

2π

∫

|ki|≤Λ

d2ki
(2π)2

]

(2π)2δ̄2(k1 + k2 − k3 − k4)2πδ(ω1 + ω2 − ω3 − ω4)×
{







h0ψ̄Kσ(k3, ω3)ψ̄Kσ′ (k4, ω4)ψKσ′ (k2, ω2)ψKσ(k1, ω1)

+h1ψ̄Kσ(k3, ω3)ψ̄K′σ′(k4, ω4)ψK′σ′(k2, ω2)ψKσ(k1, ω1) +exchange (K ↔ K′)

+h2ψ̄K′σ(k3, ω3)ψ̄Kσ′ (k4, ω4)ψK′σ′(k2, ω2)ψKσ(k1, ω1)







+







g0ψ̄Kσ(k3, ω3)ψ̄Kσ′ (k4, ω4)χKσ′ (k2, ω2)χKσ(k1, ω1)

+g1ψ̄Kσ(k3, ω3)ψ̄K′σ′ (k4, ω4)χK′σ′(k2, ω2)χKσ(k1, ω1) +exchange (K ↔ K′)

+g2ψ̄K′σ(k3, ω3)ψ̄Kσ′ (k4, ω4)χK′σ′(k2, ω2)χKσ(k1, ω1)







+







u0ψ̄Kσ(k3, ω3)χ̄Kσ′ (k4, ω4)χKσ′(k2, ω2)ψKσ(k1, ω1)

+u1ψ̄Kσ(k3, ω3)χ̄K′σ′(k4, ω4)χK′σ′(k2, ω2)ψKσ(k1, ω1) +exchange (K ↔ K′)

+u2ψ̄K′σ(k3, ω3)χ̄Kσ′(k4, ω4)χK′σ′(k2, ω2)ψKσ(k1, ω1)







+







v0χ̄Kσ(k3, ω3)ψ̄Kσ′ (k4, ω4)χKσ′ (k2, ω2)ψKσ(k1, ω1)

+v1χ̄Kσ(k3, ω3)ψ̄K′σ′(k4, ω4)χK′σ′(k2, ω2)ψKσ(k1, ω1) +exchange (K ↔ K′)

+v2χ̄K′σ(k3, ω3)ψ̄Kσ′ (k4, ω4)χK′σ′(k2, ω2)ψKσ(k1, ω1)







+ [exchange (ψ ↔ χ)]
}

.

(B3)

Appendix C: Mean Field Analysis of the Ground States

In this section, we summarize the mean field analysis for the ground states FM , FM ′, SDW ,
EI, EI ′, and CDW . The idea of the mean field approximation45 is to guess a trial ground state
which can minimize the total energy of the many-body system. With a given trial ground state, the
original Hamiltonian can be approximated by an effective quadratic mean field Hamiltonian which
can be solved by self-consistent diagonalizing.

The procedure will be briefly shown in the following. First, let the mean field Hamiltonian be

HMF = H0 +Hpair

H0 is the free Hamiltonian given in Eq. (4), and

Hpair =
∑

αα′;kk′

∆αα′;σσ′ (k, k′)c†ασ,kfα′σ′,k′ + h.c.

For simplicity, since the coupling constants are independent of k and k′, we are able to assume

∆σσ′ (k, k′) ≃ ∆
(0)
αα′;σσ′δ2(k− k′). Therefore, the pairing gap function ∆

(0)
αα′;σσ′ (order parameter) is
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given by

∆fm
αα′;ss′

Gfm
=
∑

k

〈c†αs,kδαα′ ⊗ σz
ss′fα′s′,k〉

∆fm′

αα′;ss′

Gfm′

=
∑

k

〈c†αs,kτzαα′ ⊗ σz
ss′fα′s′,k〉

∆sdw
αα′;ss′

Gsdw
=
∑

k

〈c†αs,kτxαα′ ⊗ σz
ss′fα′s′,k〉

∆ei
αα′;ss′

Gei
=
∑

k

〈c†αs,kδαα′ ⊗ δss′fα′s′,k〉

∆ei′

αα′;ss′

Gei′
=
∑

k

〈c†αs,kτzαα′ ⊗ δss′fα′s′,k〉

∆cdw
αα′;ss′

Gcdw
=
∑

k

〈c†αs,kτxαα′ ⊗ δss′fα′s′,k〉

where Gj = Γj(0) is a linear combination of the bare coupling constants listed in Table II. To find
the trial ground state, a new quasi-particle (mixture of c, v bands) is introduced which diagonalizes
the mean field Hamiltonian,

ηασ,k = vαα
′;σσ′

k cασ,k − uαα
′;σσ′

k fα′σ,k

λασ,k = uαα
′;σσ′

k cασ,k + vαα
′;σσ′

k fα′σ,k

Where |u(k)|2 + |v(k)|2 = 1.

{ηασ(k), η†α′σ′(k
′)} = δαα′δσσ′δ2(k − k′)

{λασ(k), λ†α′σ′(k
′)} = δαα′δσσ′δ2(k − k′)

The other commutation relation are zero. Then, the diagonalized Hamiltonian can be written as

HMF =
∑

σ,k

E(k)[η†ασ(k)ηασ(k)− λ†ασ(k)λασ(k) ]

where,

E(k) =
√

|ǫ(k)|2 + |∆(0)|2,

and

uαα
′;σσ′

k =
1√
2
(δαα′δσσ′ )

(

1 +
ǫ(k)

E(k)

)
1
2

,

vαα
′;σσ′

k =
1√
2

(

∆
(0)
αα′;σσ′

|∆(0)
αα′;σσ′ |

)

(

1− ǫ(k)

E(k)

)
1
2

,
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ǫ(k) = |ǫ±(k)| is given by Eq. (2)
Therefore, using a Hartree-Fock state as the trial ground state for the quasi-particles, we have

∏

α,k λ
†
ασ(k)|0〉 = |Ψ∆(0)〉, where |0〉 is the state with no particles (vacuum). To calculate ∆(0), one

can apply |Ψ∆(0)〉 to calculate the order parameter and obtain the gap equations,

∆
(0)
αα′;σσ′ =

∑

k

G∆
(0)
αα′;σσ′

√

|ǫ(k)|2 + |∆(0)
αα′;σσ′ |2

which are then solved self-consistently. Note that the mean field method yields only qualitative
results for low-dimensional systems.
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