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Morphology mediates the interplay between the structure and electronic transport in atomically
thin nanoribbons such as graphene as the relaxation of edge stresses occurs preferentially via out-
of-plane deflections. In the case of end-supported suspended nanoribbons that we study here, past
experiments and computations have identified a range of equilibrium morphologies, in particular
for graphene flakes, yet a unified understanding of their relative stability remains elusive. Here, we
employ atomic-scale simulations and a composite framework based on isotropic elastic plate theory
to chart out the morphological stability space of suspended nanoribbons with respect to intrinsic
(ribbon elasticity) and engineered (ribbon geometry) parameters, and the combination of edge and
body actuation. The computations highlight a rich morphological shape space that can be naturally
classified into two competing shapes, bending-like and twist-like, depending on the distribution of
ripples across the interacting edges. The linearized elastic framework yields exact solutions for
these rippled shapes. For compressive edge stresses, the body strain emerges as a key variable that
controls their relative stability and in extreme cases stabilizes co-existing transverse ripples. Tensile
edge stresses lead to dimples within the ribbon core that decay into the edges, a feature of obvious
significance for stretchable nanoelectronics. The interplay between geometry and mechanics that
we report should serve as a key input for quantifying the transport along these ribbons.

PACS numbers: 68.65.Pq, 62.23.Kn, 62.20.mq, 62.25.-g

I. INTRODUCTION

The performance of nanoelectronic devices based on
atomically thin films such as graphene depends critically
on the interplay between geometry, structure and me-
chanics. This is especially true in the case of nanorib-
bons where the edge structure can fundamentally alter
the overall response. As a classic example, the band gap
in graphene nanoribbons (GNRs) is sensitive to edge type
and ribbon width and in extreme cases determines the
nature of the electronic transport, metallic or semicon-
ducting1–6. The ribbon morphology serves as a crucial in-
gredient in quantifying these structure-property relations
as it determines the nature and extent of edge function-
alization7,8 and also controls the overall mechanics9,10.
Past studies on these ultra-thin ribbons have revealed

several interesting morphologies. In instances where the
edge stress is compressive, the edges warp out of plane;
Shenoy and coworkers used a combination of atomic-
scale computations and scaling arguments to calculate
the wavelength, amplitude and penetration width of such
undulations in semi-infinite edges11. Independent com-
putations by Bets and Yakobson show that the rippling
wavelength scales with the ratio of the edge stress to the
flexural rigidity τe/D

12. Below a critical width, the rip-
ples transition into a spontaneous twist. The rippling
behavior was also observed in atomic-scale simulations
of GNRs, although the edge compression was addition-
ally driven by thermal gradients during post-growth cool-
ing cycle13. A core-edge framework based on classical
plate theory was developed to explore shape transitions
in freestanding NRs. The study highlights the impor-
tance of edge-edge elastic interactions in stabilizing the
flat phase in ultra-narrow ribbons, and also their bifur-

cation to twisted and bent shapes at critical widths that
vary inversely with edge stress14. The similar approach
was employed to study the spontaneous twisting of GNRs
with compressive edge stresses15. The situation is expect-
edly different for tensile edge stresses, recently observed
in reconstructed edges in graphene and possibly intrinsic
to bilayer (and multi-layer) ribbons that reconstruct into
partial edge tubules16,17. Here, the out-of-plane displace-
ment occurs preferentially away from the edge such that
the ribbon midsection curls as it ripples16.

Although several shapes have been identified, they rep-
resent a subset of the morphologies typically seen in
computations. More importantly, little is known regard-
ing their relative stability for several reasons. One, the
edge stress-induced morphologies reported in past stud-
ies have been analyzed primarily to understand post-
buckled shapes, via atomic-scale computations or scal-
ing analyses with attendant simplifications11,16. How-
ever, a detailed understanding of the pre-buckled shapes
is necessary since post-buckling is extremely sensitive to
the initial morphology, even more so for confined sys-
tems such as end-supported nanoribbons. These become
tractable only in the (linear) small amplitude limit and a
naive approach would discount their utility as the post-
buckling in these atomically thin sheets is expected to
take place primarily through bending - the stretching is
prohibitively expensive18–21. This is in stark contrast
to recent computations on edge morphologies of semi-
infinite graphene sheets that show that stretching plays
crucial, if not decisive role11. Then, the stability of
the precursory small amplitude deformations, where both
stretching and bending can influence the stability, is the
key to understanding the post-buckled shapes. Two, the
end-supports as well as the edge-edge interactions limit
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the possible morphologies as they force to ribbon to be
on average flat. More specifically, global buckling modes
such as (developable) twist or saddle shapes become un-
tenable and edge stress accommodation takes place pri-
marily through periodic ripples that also interact across
the edges. Three, the magnitude of edge stresses itself
varies considerably, depending on the system and also
on the nature of the edge terminations. In GNRs, for
example, the variation is more than an order of magni-
tude, from ≈ 26 eV/nm in pristine edges to ≈ 1 eV/nm
in OH- and H-terminated edges. A quantitative under-
standing of these variations requires a systematic explo-
ration of the large parameter space through stability di-
agrams. Four, reconciliation of the shapes observed in
experiments (for e.g. Fig. 1(b)-(c)) or atomic-scale sim-
ulations with elastic theories must factor in thermal ef-
fects that naturally manifest as shape fluctuations. Sta-
tistical theories of polymerized elastic membranes can be
invoked to account for these effects via renormalized rib-
bon elasticity22,23. While we do not address this spe-
cific issue here, it must be noted that the highly strain-
sensitive bonding that stabilizes these flakes also results
in strongly size-dependent and non-classical effects which
can become significant at these scales24. Lastly, the end-
conditions more often than not play a decisive role yet
they have been ignored in the scaling results presented
in prior studies.
Our focus here is on end-supported suspended nanorib-

bons shown schematically in Fig. 1(a). Unlike freestand-
ing nanoribbons, this architectural motif is a natural
building block for next-generation nanoelectronic devices
and NEMS devices as it allows controlled yet scalable de-
vice integration while minimizing deleterious substrate
effects1,4,5,25–27. The ribbons can be trimmed to shape
before or after clamping them onto the end-supports
(electrodes)28–35, and the two scenarios result in differing
mechanical constraints on the ribbons, as detailed later in
this article. We use stability analyses and computations
to explore the morphological stability space of nanorib-
bons as a function of both intrinsic and engineered pa-
rameters, i.e. ribbon geometry (width w and length l),
material parameters (sheet and edge stiffness S and Se,
and τe) and deformation along the ribbon (x-)axis (uniax-
ial strain ǫxx). Atomic-scale simulations of ribbons serve
as inputs for identifying the possible equilibrium shapes.
Although the computations focus exclusively on GNRs,
we demonstrate the generality of these results via rigor-
ous stability analyses based on isotropic elastic plate the-
ory, which in turn allow us to develop stability diagrams
for a combination of geometric, material and processing
parameters.

II. PAST EXPERIMENTS AND

COMPUTATIONS

Fig. 1 showcases the periodic ripples that have been
observed in suspended nanoribbons. The experimen-

tal images (Fig. 1(b) and Fig. 1(c)) show two differ-
ing morphologies, bending-like rippling in multi-layered
graphene ribbons36 and edge rippling in hollow BN rib-
bons37. The results of our atomic-scale simulations on
GNRs, summarized in Fig. 1(d)-(e), reveal a consider-
ably richer morphological space. Comparison with ex-
periments shows similarities in the rippling behavior. For
example, the rippling behavior observed in Fig. 1(b) is
similar to the symmetric morphology observed for τe < 0
at small widths (k∗w = 0.7) while well-defined edge rip-
ples evident in BN ribbon (Fig. 1(c)) are similar to those
observed for τe < 0 at large widths (k∗w = 5). The
rippling amplitudes are much larger in the experiments
and the morphologies are not as uniform, likely due to
additional constraints and/or extrinsic effects that can
arise during synthesis/transfer. To facilitate direct com-
parison with past computational studies, we have per-
formed these computations using a reactive bond order
(AIREBO) potential38 as implemented in the software
package LAMMPS39 (see Appendix). For each combi-
nation of parameters, the characteristics associated with
the rippling are extracted from the relaxed shapes in the
computations. The ratio of the width to wavelength λ
associated with the rippled shape is indicated in the fig-
ure, expressed as a dimensionless wavenumber kw, where
k = 2π/λ. While we do not discuss the effect of rib-
bon length l in detail in the remainder of the article, its
main effect is to act as a constraint on the permissible
wavenumbers in instances where π/l ≥ k.

Some of the shapes we observe are similar to those
reported in past studies, both at zero and finite tem-
perature11,12,16,40. A key feature is that we observe two
dominant morphological classes for each given set of pa-
rameters: in-phase or symmetrical ripples (S), and out-
of-phase or asymmetrical (AS) ripples, where the phase
refers to the relative displacements of the edges. The spe-
cific form of ripples is controlled by the sign of the edge
stress and the aspect ratio. For compressive stresses and
sufficiently large widths, the edges do not interact and
the ribbon exhibits classical edge ripples (not shown).
As the width is reduced, the edge-edge interactions be-
come important such that the ripples penetrate through
the width and ribbon buckles either in- or out-of-phase40.
At much smaller widths, the entire ribbon buckles with
bending-like or twist-like undulations. Applied longitu-
dinal strains ǫxx modify the midline-line morphology, as
shown in the figure for symmetrically rippled ribbons.
Tensile edge stresses force the midline to curl out-of-
plane. However, since end-conditions require the midline
to be flat, we observe dimples at and around the mid-
line which decay into the edges. The dimples can also
split asymmetrically at large widths, although the mode
is relatively rare. At small widths, though, the ribbon
morphology is either flat or symmetrically rippled.

The symmetric ripples in ribbons with compressed
edges (e.g. filament-like buckling at small widths) are
also observed in naturally occurring ribbons such as
straight-edged long leaves19,41,42. While there are paral-
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FIG. 1: (Color online): (a) Schematic illustration of a suspended nanoribbon, simply supported or clamped depending on
the end-supports. Experimental observations of (b) rippling in multilayer graphene ribbons36 and (c) edge rippling in hollow
BN nanoribbons37. The images are reproduced with the authors’ permissions. (d, e) Similar shapes observed in atomic-scale
computations on l ≈ 20 − 25 nm long, armchair-terminated graphene nanoribbons (AGNRs) with (d) compressive and (e)
tensile edge stresses. The critical wavenumber k∗w is the ratio of the ribbon width to ripple wavelength. In all cases, both
bending-like (symmetric, S) and twist-like (antisymmetric, AS) shapes are observed. The atoms are colored based on the scaled
magnitude of their out-of-plane displacements. The additional effect of applied compressive and tensile strains for τe < 0 is
shown in bottom two plots in (d). The insets show details of the bent morphology at and around the ribbon mid-line.

lels with the rippled shapes analyzed here, the shapes in
the materially homogeneous natural systems are driven
by inelastic and distributed growth strains unlike the
highly localized and elastically stressed edges in the
nanoribbons considered here. Coupled with the differing
end-conditions that arise in suspended nanoribbons, the
stability of the expected shapes is qualitatively different.

III. STABILITY ANALYSIS OF PERIODIC

RIPPLES

The diverse morphologies observed in the computa-
tions are systematically analyzed using classical elastic
plate theory. Consider a nanoribbon of thickness h and
width w (h ≪ w) clamped to supports spaced apart
by a length l. We assume that the ribbon is a lin-
ear, isotropic elastic thin plate with elastic modulus E,
Possion’s ratio ν, and bending and stretching stiffnesses
D = Eh3/12(1−ν2) and S = Eh, respectively. The edge
stress τe in these atomically thin nanoribbons arises due
to structural changes or reconstructions localized at the
edges. In continuum limit, then, the edge can be approx-
imated as an elastically stressed bounding spring with
negligible bending stiffness43. Since this study is limited

to small amplitude rippling we further simplify the edge
as a spring with constant stress. This composite approxi-
mation is similar in principle to the core-shell framework
often invoked to describe elastic behavior of nanowires
and thin films44–46. For a system so structured strain
compatibility and force equilibrium require that the elas-
tic Hamiltonian that maps the initially flat ribbon to its
deformed state, R ≡ (x, y, 0) → R′ ≡ (x+ ux, y+ uy, ζ),
satisfies the generalized Föppl-von Kármán (F-vK) equa-
tions43. The stability of the periodic ripples can be an-
alyzed by assuming a sinusoidal variation in the out-of-
plane deflection,

ζ(x, y) = f(y) sinkx. (1)

The shape satisfies the boundary conditions along the
simply supported sides of the graphene nanoribbon since
ζ = 0 and ζ,xx + νζ,yy = 0 for x = 0 and x = l. In
the limit of negligible transverse and shear stresses, the
classical F-vK equations simplify to a boundary value
problem for the out-of-plane deflection (see Appendix),

f,yyyy − 2k2f,yy +

(

k4 + k2ǫxx
S

D

)

f = 0, (2)

where ǫxx = ǫ0xx + ǫaxx is a general uniaxial strain, ex-
pressed as the sum of an intrinsic strain ǫ0xx, if present,
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and applied uniaxial strain ǫaxx. Together with the
boundary conditions,

(f,yy − νk2f)|±w

2
= 0

{[f,yyy − (2− ν)k2f,y]∓
τe
D
k2f}|±w

2
= 0, (3)

we completely specify the form of the deflection.
The effect of the residual edge stress τe = τ0e + Seǫxx

that enters into the boundary value problem depends
on the synthesis procedure. Here, τ0e is the unrelaxed
edge stress. In cases where the ribbons are very long
or trimmed to shape following synthesis and then trans-
ferred onto the end supports, the edge stresses result in a
residual longitudinal force that must be borne by the rib-
bon core. A simple force balance for the initially flat rib-
bon yields the intrinsic body strain, 2τe+Swǫ0xx = T ≈ 0,
where T is the net longitudinal force. The body strain
acts much like an imposed uniaxial strain over the entire
ribbon core and therefore is analyzed in the context of
extrinsically strained ribbons. An entirely different sce-
nario occurs when the precursor flake is placed on the
end-supports and then trimmed to shape. In this case,
the edge-supports modify the net force balance such that
the ribbon core is unstrained, ǫxx = 0.

IV. COMPRESSIVE EDGE STRESSES

A. Relaxed Ribbons

We first analyze relaxed ribbons characterized by ǫxx =
0 and τe < 0. The boundary conditions (Eq. (3)) yield
the critical point for the onset of buckling, conveniently
expressed as stability diagrams that relate the (dimen-
sionless) edge stress τew/D to the scaled wavenumber
kw. Fig. 2(a) shows these stability diagrams for both
bending-like (S) and twist-like (AS) ripples in a ribbon
with Poisson’s ratio corresponding to that for graphene,
ν = 0.17. At large widths (or equivalently short ribbons),
the critical stress varies linearly for both morphological
classes, τ∗ew/D ≈ −[(1− ν)(3 + ν)](k∗w)/2 for k∗w ≫ 1.
The solution also yields the ribbon shape (Eqs. (S4) and
(S6) in Ref. 48), plotted in Fig. 2(b) as a shape function
f(y)/fmax for several representative wavenumbers. For
small aspect ratios (e.g. k∗w = 50), the ripples are un-
correlated and localized to the edges, as expected. At
the critical point k∗w ≈ 5, we see a bifurcation due to
edge ripples that now begin to interact across the width
via saddle-shapes morphologies with net negative Gaus-
sian curvature, apparent in the schematic illustrations in
Fig. 2(b) and also in the post-buckled shapes observed in
computations (Fig. 1(d), with kw = 2.5).
The asymptotic behavior for the limit kw ≪ 1 sheds

light on the markedly different behavior for the two mor-
phological classes. The bending-like ripples exhibit a
quadratic dependence, τ∗ew/D ≈ −(1 − ν)(1 + ν)(k∗w)2

while the critical edge stress for twist-like ripples is in-
dependent of the wavenumber, τ∗ew/D ≈ −4(1 − ν).

As an example, the almost flat (scaled) profile of a
high aspect ratio ribbon with k∗w = 0.5 is plotted in
Fig. 2(b). The stability curve for the shape also fol-
lows from simple scalings based on elastic energies (cal-
culated per ripple wavelength λ) associated with rib-
bon bending Eb, and ribbon stretching at the core and
edge, Es and Ee

s . The bending energy follows from

the curvature tensor, Eb ∼ Dkw
∫ λ

0
(κ2

xx + κ2
yy) dx and

Eb ∼ Dkw
∫ λ

0
κ2
xy dx for the bending-like and twist-like

ripples, respectively. The stretching energies are related

to longitudinal and edge strains, Es ∼ −Tkw
∫ λ

0
ǫxx dx

and Es ∼ −2τekw
∫ λ

0
ǫxx dx. Ignoring the weak varia-

tion in out-of-plane deflection across the width, f ∼ δx
and f ∼ 2y/wδx for the bending-like and twist-like
ripples, respectively. Then, κxx ∼ −k2δ2x sin kx and
κyy ∼ 0 and the dominant contributions for bending-
like ripples scale as Eb ∼ Dk4 δ2xw and Ee

s ∼ −τek
2δ2x.

Taken together, they yield the quadratic dependence,
−τ∗ew/D∼(k∗w)2. In the case of twist-like ripples, the
stretching energy remains unchanged. The bending en-
ergy is due to κxy ∼ (kδx/w) cos kx and is relatively
larger, Eb ∼ Dk2/w. Equating the two yields the crit-
ical edge stress, −τ∗ew/D∼1.

The stability diagram yields insight into the shapes ob-
served in atomic-scale simulations on GNRs. For unre-
constructed armchair and zigzag terminations, the com-
pressive edge stresses range from τ0e = −10.5 eV/nm to
−20.5 eV/nm while the edge stiffness Se varies from 113
to 147 eV/nm9,10. The low bending stiffness of these
atomically thin sheets (D ≈ 1.5 eV) yields a scaled edge
stress τew/D ∼ 10 for nanometer-wide GNRs. The
critical wavenumber is in the vicinity of the bifurcation
point where both bending- and twist-like undulations
are possible, although the former are energetically fa-
vored. This is corroborated by the computed morpholo-
gies for AGNRs with varying widths, shown in Fig. 1(d)-
(e) and Fig. 3(a) (inset). Both morphological classes
are observed depending on the form of the perturbation.
Fig. 3(a) shows the reduced stability diagram, k vs. w
predicted by our analysis and that extracted from the
computations. The overall trends are in agreement al-
though there are quantitative deviations in the simulated
shapes. They are likely due to the continuum approxi-
mation of an atomic-scale system and the fact that we ig-
nore the relaxation of the edge stress due to out-of-plane
displacements10. Furthermore, a more detailed analysis
of the atomic-configurations reveals that at intermediate
to large widths, the two morphological classes can also
co-exist, albeit with differing ripple wavelengths. This
can be clearly seen in the atomic-configuration for the
w = 1.93nm AGNR shown in Fig. 3(a) (inset). We see
an out-phase component in the symmetric ripples away
from the ribbon ends, indicative of a twist-like buckled
mode with a much longer wavelength that allows the rib-
bon to further relax the residual edge stress. At very
small widths, the co-existing shapes result in a locally flat
morphology quite like the one shown for w = 0.72nm.
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FIG. 2: (Color online) (a) Morphological stability diagram showing the scaled edge stress τew/D as a function of the wave
number kw for relaxed (ǫxx = 0, light shading) and intrinsically strained (ǫ0xx = −2τe/(Sw), dark shading)) nanoribbons with
compressive edge stresses. Here as well as in the following figures the critical curves for bending-like and twist-like buckling
are indicated by black and red lines, respectively. (inset) Magnified plot for small wavenumbers kw that shows the bifurcation
between the two morphological classes for strained ribbons. (b) The ribbon profile obtained from the analytical solution? for
relaxed ribbons plotted as the scaled deflection f(y)/fmax versus scaled width y/w for the three different wavenumbers. For
both classes, the rippling localizes to the edges with increasing wavenumber. Schematic illustrations of the shapes for some of
the profiles are also shown. All plots are based on Poisson’s ratio ν = 0.17 corresponding to that for graphene47.
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FIG. 3: (Color online) (a-b) Comparison of the analytically predicted stability of of bending-like and twist-like shapes and
the buckled shapes observed in atomic-scale simulations for (a) relaxed and (b) intrinsically strained AGNRs, plotted as k vs.
w. The representative atomic-configurations for symmetrically rippled ribbons with widths w = 0.72 nm, w = 1.93 nm and
w = 5.12 nm are also shown (insets).

B. Strained Ribbons

The eigenvalue solution can be written as

Φ(kw, τew/D, ǫxxSw
2/D) = 0, (4)

where ǫxxSw
2/D is the additional (scaled) strain. As

a starting point, we explore the effect of intrinsic body
strains that arise naturally in long nanoribbons, ǫxx =
ǫ0xx. The compressive edge stresses require that ǫxx =
−2τe/S > 0. The modified stability stability diagram,
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also shown in Fig. 2(a), is based on a lengthy analytical
solution which is not shown for brevity48.

It is immediately clear that the flat phase is more sta-
ble as the edge-edge interactions can be absorbed for
relatively wider ribbons due to the mediating strained
core. In effect, the relaxation of the edge ripples shifts to
smaller wavenumbers and larger edge stresses as it now
occurs with respect to an already stretched ribbon core.
The bifurcation into the two morphological classes shifts
accordingly (inset). Of importance is the dramatic ef-
fect of the intrinsic strain on the relative stability of the
bending- and twist-like ripples for small aspect ratio rib-
bons, kw ≪ 1. Although the critical point for bending-
like ripples is still lower (inset), we no longer see the

quadratic dependence in the critical point for bending-
like ripples. Rather, quite like the twist-like rippling in
relaxed ribbons, both morphological classes result in rip-
pled states determined entirely by the (larger) critical
stresses, τ∗ew/D, that are in turn independent of the
wavenumber. The fact that twist-like ripples compete
effectively is not surprising as they preserve the midline
length and therefore are clearly efficient in accommodat-
ing the tensile strain within the core. In the specific case
of AGNRs, the predicted stability space k(w) as well as
the results of the computations are plotted in Fig. 3(b).
As in the unstrained case, the analytical framework cap-
tures the trends although the quantitative agreement be-
comes noticeably poor at small widths due to effects men-
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tioned earlier.
The interplay between bending-like ripples and intrin-

sic body strains can be understood from the underlying
energetics at these intermediate widths. Approximating
the saddle morphology as f(y) ≈ δx + [1− cos(πy/w)]δy
with a transverse amplitude constant much smaller than
that along the ribbon, |δy| ≪ δx, the bending energy
due to the two curvatures κxx ∼ −k2δ2x sin kx and κyy ∼
δy/w

2 sin kx scales as Eb ∼ Dw(k4δ2x + δ2y/w
4). The

stretching energy has contributions from both the core
and the edge, Es ∼ τek

2δ2x and Ee
s ∼ −τek

2(δx + δy)
2.

Then, the leading order term for the total energy for
stretching is Es + Ee

s ∼ −τek
2δxδy. The relation between

the two amplitude constants follows from the zero net
moment across the ends, which reduces to

−Dwκxx + Tδx sinkx+ 2τe(δx + δy) sin kx ≈ 0, (5)

where the longitudinal force T = −2τe. Simplifying,
we get the ratio δy/δx ∼ −(kw)2/(τew/D) which is
also related to the intrinsic (scaled) strain, δy/δx ∼
(kw)2/(ǫ0xxSw

2/D). Substituting in the balance, Eb =
Es + Ee

s yields the observed dependence, τ∗ew/D ∼ −1.
The stability diagram for extrinsically strained

nanoribbons is shown in Fig. 4(a) and Fig. 4(b) for
bending-like and twist-like rippling, respectively49. The
contours in the plots correspond to critical (scaled) edge
stresses as a function of (scaled) applied strain and
wavenumber. The iso-(edge)stress contour for classical
Euler buckling (τ∗e = 0) and iso-strain plots for intrin-
sically strained nanoribbons (ǫxx = ǫ0xx) are also plot-
ted. For small strains and large kw ≫ 1 character-
ized by non-interacting rippled edges (δy ∼ 0), the crit-
ical strain decreases linearly with wavenumber. Here,
the bending energy due to the rippled edges is con-
strained to a penetration width wl ∼ 1/k11 and there-
fore scales as Eb ∼ Dk4wl δ

2
x ∼ Dk3δ2x. Both the ribbon

core and the edge contribute to the stretching energy,
which scales as Es+Ee

s ∼ −(ǫxxSw+2τe)k
2δ2x. Equating

the two yields the linear dependence, i.e. ǫ∗xxSw
2/D ∼

−(k∗w + τ∗ew/D). At small wavenumbers kw ≪ 1, on
the other hand, the critical applied strain is proportional
to the edge stress and is independent of the wavenum-
ber for both morphological classes. This follows from
the analytical solutions as well as scaling analyses for in-
trinsically strained ribbons where the interplay between
transverse and longitudinal curvatures results in a critical
edge stress τ∗ew/D that is independent of the wavenum-
ber (Fig. 2); the critical strain varies similarly as evident
from the stability diagrams50.
The transition behavior at intermediate wavenumbers

kw ∼ 1 is characterized by peaks in the critical strains for
ribbons subject to tensile and compressive strains. The
peaks are apparent in the plot for bending-like ripples
and appear at strains larger than the range shown in the
plot for twist-like ripples. Fig. 4(c) shows the iso-stress
stability curves for the specific case of w = 10nm wide
AGNRs (edge stress τe = −10.5 eV/nm). The wavenum-
ber is plotted on a log-scale to highlight the relative sta-

bility of the two morphological classes at small wavenum-
bers. At applied strains less than the peak strain we see
a bifurcation into an additional morphology with smaller
wavenumbers. The double-well profiles associated with
this sub-class (k∗w = 7.5) are shown in Fig. 4(d) for AG-
NRs subject to a uniaxial strain ǫxx = 1%. The co-stable
morphology with larger critical wavenumber exhibits rip-
ples localized to the edges (k∗w = 37), as expected. At
much lower strains, we recover the saddle-shapes ana-
lyzed earlier. In the case of AGNRs, the transition occurs
at strains below ≈ 0.3%. As confirmation, the bending-
like rippled morphology for ǫxx = 0.15% and k∗w = 0.5
is shown in Fig. 4(d).
The additional double-well shapes are also observed in

our computations. As an example, transversely rippled
center-line morphology is clearly visible in Fig. 1(d) for
bending-like ripples in ribbons subject to tensile strains,
ǫxx = 1%. It is interesting to note that these profiles
are more susceptible to twist-like rippling as the ribbon
midline is largely unmodified compared to bending-like
ripples. In fact, for a range of applied strains (0.1%-
0.3% for the AGNRs), the double-well shaped rippling
can only occur in a twist-like fashion (Fig. 4(c)). Similar
peaks also occur in critical strains for ribbons with tensile
edge stresses and subject to compressive applied strains.
The behavior is consistent with classical Euler buckling
of ribbons appropriately modified due to the edge stress;
the more general morphology of ribbons subject to tensile
edge stresses is discussed in the next section.

V. STRAINED RIBBONS WITH TENSILE

EDGE STRESS

Tensile edge stresses are usually driven by reconstruc-
tions and therefore can vary significantly. Recent calcu-
lations indicate that this is indeed the case in graphene
nanoribbons. AGNRs with 5 − 6 reconstructions re-
sult in large stresses, τe = 24 eV/nm while those in
the 5 − 7 reconstructed z-GNRs are almost negligible,
τe = 0.02 eV/nm.
The periodic ripples in the suspended nanoribbons can

again be categorized broadly into bending-like and twist-
like and both classes have been observed in simulations
(Fig. 1(e)). The solutions for the rippled shapes in the
small amplitude limit follow directly from Eq. (1)-(3) and
are again detailed in (Eq. (S7) in Ref. 48).
We restrict our analysis to compressively strained rib-

bons as the morphology of unstrained or stretched rib-
bons is trivial: they are always flat since the edge stress
is completely absorbed by the relevant end conditions.
The reasoning is consistent with our analysis in that the
critical contours for rippling shown in Fig. 4(a)-(b) al-
ways lie below the ǫxx = 0 line; the rippling requires
a compressive stress. For intrinsically strained nanorib-
bons, the iso-strain contour line for bending-like ripples
is plotted in Fig. 4(a) (solid white line below τe < 0)
while the detailed stability diagram τew/D vs. kw and
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the associated ribbon profiles are plotted in Fig. 5. At
large wavenumbers the edges do not interact and past the
critical point the core develops dimples around the mid-
line (positive Gaussian curvature) to accommodate the
compressive strain. The limit corresponds to Euler buck-
ling of the ribbon core with a scaled critical edge stress
that varies quadratically with the critical wavenumber, as
expected. The edge interaction at smaller wavenumbers
enhances the relative extent of the dimples, i.e. the trans-
verse curvature increases. In the limiting case kw ≪ 1,
the critical wavenumber is independent of the edge stress.
The trend is qualitatively similar to that in ribbons with
compressive edge stress (Fig. 2(a)) for the simple rea-
son that in both cases the bending energy is modified by
transverse curvatures, albeit opposite in sign.
The twist-like rippling in these ribbons consists of

dimples that alternate across the ribbon midline, cor-
responding to an axial-torsional buckling mode of the
ribbon core. At small wavenumbers (width), the criti-
cal edge stress is expectedly larger due to the significant
transverse bending (Gaussian) energy associated with the
morphology. Increasing the wavenumber reduces this en-
ergy and the critical stress decreases quadratically. In the
large wavenumber limit, the edges no longer interact and
the critical curve is identical to that for bending-like rip-
ples, i.e. the critical stress increases quadratically with
wavenumber. At intermediate wavenumbers, therefore,
we see a minimum in the critical edge stress. Note the
ribbon profiles are relatively insensitive to the wavenum-
ber. The scaled edge stress for nanometer wide AGNRs
fall within the proximity of the minimum. Although the
bending-like ripples are favored, the energetic difference
is small in that we see twist-like ripples in some of the
computed morphologies (Fig. 1(e)). Finally, the stabil-
ity with respect to extrinsic compressive strains is shown
in Fig. 4(a-b). Larger compressive strains always favor
bending like ripples since the rippled mid-line is more
efficient in absorbing the imposed strain. Of note is a
peak critical strain for bending-like ripples that reflects
the transition into a higher order Euler buckling mode (in
this case, an S-shaped profile) at larger wavenumbers. In
fact, there are several such peaks that emerge at larger
compressive strains and wavenumbers as the higher buck-
ling modes become viable. In general, the lowest Euler
mode is preferred wherein entire ribbon arches out-of-
plane. These are beyond the scope of the present anal-
ysis as the large amplitudes necessitate a post-buckling
analysis.

VI. CONCLUDING REMARKS

The final ribbon morphology has ramifications for elec-
tronic properties that are strongly coupled to the ripples
and the associated strain distribution, ranging from con-
ductance fluctuations to band gaps. Clearly, the inter-
play between ribbon structure, geometry and externally
applied strains results in a morphological stability space
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FIG. 5: (Color online) (a) Stability diagram and (b) ribbon
profiles as in Fig. 2, but for intrinsically strained nanoribbons
with tensile edge stresses. For clarity, the dimpled morpholo-
gies predicted by our analysis for k∗w = 5 and k∗w = 50 are
shown schematically.

that is considerably richer than the classical edge rip-
ples that are normally associated with these crystalline
nanoribbons. For example, tensile edge stresses tend to
destabilize the ribbon core while forcing the edges to be
flat, and the dimpled morphology affects both equilib-
rium and transport properties. We note that the excel-
lent agreement in the trends observed in the predicted
morphologies and those observed in atomic-scale simula-
tions in graphene nanoribbons. Experimental validation
is challenging as it requires detailed characterization of
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the surfaces of ribbons with well defined edge states and
at low temperatures; the latter is crucial as we have ig-
nored the effect of thermal fluctuations. The phonon
fluctuations that couple the in-plane and out-of-plane
displacements can renormalize the ribbon stiffnesses such
they become inherently size dependent. The stability dia-
grams extracted here are still applicable in that the dom-
inant effect of these fluctuations is to change the scaled
edge stresses and strains. In the case of nanoribbons,
though, there is an inherent anisotropy due large differ-
ences in the thermal fluctuations along the transverse
and longitudinal directions. As an interesting example,
in systems where the base bending rigidity increases, the
twist-like dimples can stabilize at high enough tempera-
tures as the rigidity is enhanced preferentially along the
ribbon, Dx > Dy. In that case, a statistical understand-
ing of the effect of the resultant shape fluctuations on the
ribbon properties becomes necessary.
Acknowledgements: This work was supported by
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VII. APPENDIX

A. Atomistic Simulations

The computations are performed on graphene nanorib-
bons with a fixed length, l = 21nm. For extrinsically
strained ribbons, the strain was applied to the fixed ends
of the ribbons. The width was systematically varied in
the range w = 1.2 − 10 nm. The effect of compressive
and tensile edge stresses was studied using pristing and
reconstructed graphene edges, for armchair and zig-zag
edge structures. In each case, the nanoribbons were per-
turbed by a combination of random and sinusoidal dis-
placements and then relaxed to their equilibrium shape
using a conjugate gradient algorithm with an energy tol-
erance of 10−10 eV.

B. Composite elastic framework

The nanoribbon is approximated as an isotropic elas-
tic thin plate with thickness h, width w, and length l

(h ≪ w ≪ l). Our composite framework consists of edge,
modeled as a stretched or compressed elastic string that
is glued to the ribbon. The edge stress τe is the main
material parameter associated with the string, it has no
bending stiffness. Additionally, the edge is assumed to
be sharp such that that the width of the ribbon is in fact
that of the ribbon core.

1. Governing Equations

The governing equations follow from standard Fv-K
equations in the small deflection limit,

D∇4ζ = Φ,yyζ,xx ∇4Φ = −S(ζ,xxζ,yy − ζ2,xy). (6)

Here Φ is the Airy function associated with the in-plane
stresses and the operator ∇4A = A,xxxx + 2A,xxyy +
A,yyyy. For long ribbons, end effects can be safely ig-
nored; the ribbon has negligible transverse and shear
stresses, and the governing equation simplifies to

D(ζ,xxxx + 2ζ,xxyy + ζ,yyyy) = Tζ,xx

where T = Sǫxx is the net longitudinal force. Setting
our origin on the midline, the force balance modified by
the edge stresses and free torques specify the boundary
conditions,

{ζ,yy + νζ,xx}|±w

2
= 0,

{

ζ,yyy + (2− ν)ζ,yxx ±
τe
D
ζ,xx

}

|±w

2
= 0.

Substituting the sinusoidal deflection ζ(x, y) =
f(y) sinkx in the equations yields the eigenvalue
problem for the ribbon shape in terms of the ribbon
strain ǫxx, Eqs. (2) and (3).

2. Analytical Solutions

The parameter sets considered here yield fully analyt-
ical solutions for the ribbon morphology. In particular,
the form of the solutions differs for relaxed and strained
ribbons, as detailed in Ref. 48.
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