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We consider a biased molecular junction subjected to external time-dependent electromagnetic
field. We discuss local field formation due to both surface plasmon-polariton excitations in the
contacts and the molecular response. Employing realistic parameters we demonstrate that such
self-consistent treatment is crucial for proper description of the junction transport characteristics.
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I. INTRODUCTION

Research in plasmonics is expanding its domains into
several sub-fields due to significant advances in ex-
perimental techniques.1–6 The unique optical proper-
ties of the surface plasmon-polariton (SPP) resonance,
being the very foundation of plasmonics, find intrigu-
ing applications in optics of nano-materials,7–9 materi-
als with effective negative index of refraction,10–12 di-
rect visualization,13,14 photovoltaics,15–17 single molecule
manipulation,18–20 and biotechnology.21–24 Theoretical
modeling of the optical properties of metal nanos-
tructures is conventionally based on numerical inte-
gration of Maxwell’s equations,25–29 although simula-
tions within time-dependent density functional theory
appeared recently for small atomic clusters.30,31 More-
over, current theoretical models are quickly advanc-
ing toward self-consistent simulations of hybrid materi-
als: metal/semiconductor nanostructures optically cou-
pled to ensembles of quantum emitters.32 This method-
ology, based on numerical integration of corresponding
Maxwell-Bloch equations, brings new insights into nano-
optics as it allows for the capture of collective effects.

The molecular optical response in a close prox-
imity of plasmonic materials is greatly enhanced by
SPP modes leading to the discovery of the single
molecule spectroscopy.33–35 Recently, experiments per-
formed on current carrying molecular junctions started
to appear.36–40 Theoretical modeling of molecule-SPP
systems utilizes the tools of quantum mechanics for the
molecular part. In particular, studies of optical response
of isolated molecules absorbed on metallic nanoparti-
cles utilize Maxwell-Bloch (Maxwell-Schrödinger)32,41–44

equations or near field-time dependent density functional
theory formulations.45,46

Realistic molecular devices are open quantum systems
exchanging energy and electrons with surrounding envi-
ronment (baths). This is especially important in stud-
ies of molecules in current carrying junctions interacting
with external fields.47 Usually in such studies the electro-
magnetic (EM) field is assumed to be an external driving
force.51–62 Recently we utilized the nonequilibrium Green
function technique to study the transport and optical re-

sponse of a molecular junction subjected to external EM
field taking into account near-fields driven by SPP local
modes, specific for a particular junction geometry.48,49

Although the formulation allows us to describe the molec-
ular junction with formation of the local field by SPP
excitations in the contacts taken into account explicitly,
the molecular influence on formation of the local EM field
was disregarded in these studies. Note that such influ-
ence was shown to have measurable effects in plasmonic
spectrum.32,41,44,50

When a molecule located near a metal surface is driven
by a strong EM field, one can expect to observe signifi-
cant changes in the total EM field due to radiation emit-
ted by the molecule. Such radiation although quickly
degrading with the distance from molecular position can
nevertheless noticeably alter the local EM field. Since the
latter is driving the molecule, transport characteristics of
the junction may be significantly modified. This calls for
a self-consistent treatment, where both SPP excitations
and molecular response participate in formation of the
local EM field.
Here we extend our previous considerations by tak-

ing into account complete electrodynamics and molecu-
lar junction response in a self-consistent manner com-
bining Maxwell’s equations with electron transport dy-
namics. The molecule is treated as a pointwise source
in the Ampere law. We demonstrate the importance
of the molecular response in the formation of the local
field for an open molecular system far from equilibrium.
The effect is shown to be important for proper descrip-
tion of the junction transport characteristics. The paper
is organized as follows. Section II presents a transport
model of the molecular junction. Section III describes
the methodology of computing the EM field taking into
account molecular response. The results are presented in
section IV. Section V summarizes our work.

II. MOLECULAR JUNCTION SUBJECTED TO
EXTERNAL EM FIELD

We consider a junction with a molecular bridge (M)
connecting between two contacts (L and R). The bridge
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FIG. 1: (Color online) A sketch of the junction.

is formed by D two-level systems with the levels repre-
senting ground (g) and excited (x) states of the molecule.
Each of the two level systems is subjected to a classical

local EM field ~E(t) (see section III for details of its cal-
culation). Electron transfer is allowed along the chain of
ground (excited) levels of the bridge. The contacts are
taken in the form of bowtie antennas, and are assumed to
be reservoirs of free electrons each in its own equilibrium
with electrochemical potentials µL and µR, respectively
(see Fig. 1). The Hamiltonian of the system reads (here
and below e = ~ = 1)

Ĥ(t) =ĤM (t) +
∑

K=L,R

(

ĤK + V̂K

)

(1)

ĤM (t) =
∑

s=g,x

[

D
∑

m=1

εsd̂
†
msd̂ms −

D−1
∑

m=1

ts

(

d̂†m+1sd̂ms +H.c.
)

]

−

D
∑

m=1

(

~µmg,mxd̂
†
mg d̂mx +H.c.

)

~Em(t) (2)

ĤK =
∑

k∈K

εkĉ
†
k ĉk (3)

V̂K =
∑

k∈K

∑

s=g,x

(

Vk,mKsĉ
†
kd̂mKs +H.c

)

(4)

where ĤM (t) and ĤK are Hamiltonians of the molecu-

lar bridge (M) and the contacts (K = L,R), and V̂K is

coupling between them. In Eqs. (2)-(4) d̂†ms (d̂ms) and

ĉ†k (ĉk) are creation (annihilation) operators for an elec-
tron on the level s of the molecular bridge site m and

state k of the contact, respectively. ~Em(t) is the local
time-dependent field at bridge site m, and ~µms,ms′ =

〈ms|~̂µ|ms′〉 is the matrix element of the transition molec-
ular (vector) dipole operator between states |ms〉 and
|ms′〉. For simplicity below we assume that the transi-
tion dipole moment is the same for all bridge sites and has
only one non-zero component, µmg,mx ≡ µgx for any m.
ts (s = g, x) and Vk,mKs are matrix elements for electron
transfer in the molecular bridge and between molecule
and contacts, respectively, and mK = 1 (D) for K = L
(R). Note that treating the external field classically al-
lows us to account for arbitrary time dependence exactly
(i.e. beyond perturbation theory).49

We follow the formulation of Ref. 49. Time-dependent

current at interface K (L or R) is63

IK(t) = −ImTr

[

Γ
K

(

G
<(t, t) +

∫

dǫ

π
fK(ǫ)Gr(t, ǫ)

)]

(5)
where Tr[. . .] is a trace over the molecular subspace,

fK(ǫ) ≡
[

e(ǫ−µK)/T + 1
]−1

is the Fermi-Dirac distribu-

tion in contact K, ΓK is the molecular dissipation matrix
due to coupling to contact K

ΓK
m1s1,m2s2(ǫ) ≡ 2π

∑

k∈K

Vm1s1,kVk,m2s2δ(ǫ− εk), (6)

and G
<(r) is a matrix in the molecular basis of the lesser

(retarded) projection of the single particle Green func-
tion, defined on the Keldysh contour as64

Gm1s1,m2s2(τ1, τ2) ≡ −i〈Tc d̂m1s1(τ1) d̂
†
m2s2(τ2)〉 (7)

Here Tc is the contour ordering operator and τ1,2 are the
contour variables. In Eq.(5) Gr(t, ǫ) is the right Fourier
transform of the retarded projection of the Green func-
tion (7)

G
r(t, ǫ) ≡

∫

dt′ eiǫ(t−t′)
G

r(t, t′) (8)

Note that in Eq.(5) and below we assume the wide band
limit65 in the metallic contacts.
The Green functions in (5) satisfy the following set of

equations of motions48,66

i
∂

∂t
G

r(t, ǫ) = I−

(

ǫI−HM (t) +
i

2
Γ

)

G
r(t, ǫ) (9)

i
d

dt
G

<(t, t) =
[

HM (t);G<(t, t)
]

−
i

2

{

Γ;G<(t, t)
}

+ i
∑

K=L,R

∫

dǫ

2π
fK(ǫ)

(

Γ
K
G

a(ǫ, t)−G
r(t, ǫ)ΓK

)

(10)

where I is the unity matrix, HM (t) is a representation of
the operator (2) in the molecular basis, Γ ≡

∑

K=L,R Γ
K ,

[. . . ; . . .] and {. . . ; . . .} are the commutator and anti-
commutator, and G

a(ǫ, t) ≡ [Gr(t, ǫ)]†. The first or-
der differential equations (9) and (10) are solved starting
from the initial condition of the biased junction steady-
state in the absence of the optical pulse, E(t = 0) = 0

G
r
0(ǫ) ≡G

r(t = 0, ǫ) =

[

ǫI−HM (t = 0) +
i

2
Γ

]−1

(11)

G
<
0 ≡G

<(t = 0, t = 0)

=i
∑

K=L,R

∫

dǫ

2π
G

r
0(ǫ)Γ

KfK(ǫ)Ga
0(ǫ) (12)

where G
a
0(ǫ) ≡ [Gr

0(ǫ)]
†
.

Below we calculate the charge pumped through the
junction by the optical pulse

Q(t) ≡

∫ t

0

dt′
IL(t

′)− IR(t
′)

2
− I0 t (13)
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where IL,R(t) are defined in Eq.(5), and I0 is the steady-
state current

I0 ≡

∫

dǫ

2π
Tr

[

Γ
L
G

r
0(ǫ)Γ

R
G

a
0(ǫ)

](

fL(ǫ)−fR(ǫ)
)

(14)

III. SELF-CONSISTENT ELECTRODYNAMICS

The time evolution of electric, ~E, and magnetic, ~H,
fields is considered according to the set of Maxwell’s
equations (written here in SI units)

µ0
∂ ~H(~r, t)

∂t
= −~∇× ~E(~r, t), (15a)

ǫ0
∂ ~E(~r, t)

∂t
= ~∇× ~H(~r, t)− ~J(~r, t), (15b)

where µ0 and ǫ0 are the magnetic permiability and di-
electric permittivity of the free space, respectively, and
~J(t) is the electric current density. Note that magneti-
zation is disregarded in Eqs. (15a) and (15b), since we
assume both molecule and contacts to be non-magnetic.
A molecule located at site m ( ≡ ~rm) and driven

by local electric field ~E(~rm, t), yields time-dependent re-
sponse, which enters Ampere’s law as a polarization cur-
rent density

~J(~rm, t) =
∂ ~Pm(t)

∂t
δ(~rm), (16)

where δ is the Dirac delta-function. The polarization
depends on molecular characteristics through the molec-
ular density matrix, which in turn is affected by the local
field. In our model two-level systems of the molecular
bridge (2) are assumed to occupy sites of the FDTD grid.
Molecules contribute to the polarization at their site ac-
cording to

~Pm(t) = 2 Im
[

~µmx,mg G
<
mg,mx(t, t)

]

(17)

The resulting system of coupled differential equations,
Eqs (15)-(15b), is solved simultaneously with EOMs for
the Green functions of the quantum system, Eqs. (9)-
(10). The Maxwell’s equations are discretized in time
and space and propagated using the finite-difference
time-domain approach (FDTD).67 We employ three-
dimensional FDTD calculations utilizing home-build par-
allel FORTRAN-MPI codes on a local multi-processor
cluster.68 In spatial regions occupied by a plasmonic
nanostructure (a bowtie antenna in our case) we employ
the auxiliary differential equation method to account for
materials dispersion. The dielectric response of the metal
is modeled using a standard Drude formulation with the
set of parameters describing silver.48,49 The Green func-
tions EOMs are propagated with the fourth order Runge-
Kutta scheme.
Within described self-consistent model the local elec-

tric field ~Em(t) ≡ ~E(~rm, t) in Eq.(2) driving a molecular
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FIG. 2: (Color online) Map of the instantaneous electric field

strength, [E2
x(~r, t)+E2

y(~r, t)+E2
z(~r, t)]

1/2, at a distance of 10
nm from the molecule (the plane is parallel to xy) calculated
(a) without and (b) with the molecular response. The dis-
tribution is shown for t = 77.8 fs and 81.7 fs for (a) and (b)
respectively. See text for parameters.

junction is thus defined by both SPP excitations in the
contacts and the local molecular response. In the next
section we show that the molecular contribution changes
the junction transport characteristics drastically, and in
general can not be ignored.
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IV. NUMERICAL RESULTS

Here we present results of numerical simulations
demonstrating the importance of a self-consistent treat-
ment of the local EM field dynamics. Previ-
ous studies considered the influence of an isolated
molecule on plasmon transfer,41,42,45 molecular features
in absorption32,50,69,70 and Raman29,31,46 spectra of
molecules attached to nanoparticles. Below we discuss
how molecular junctions and electron transport are in-
fluenced by a local EM field and vice versa in a self-
consistent manner.
Unless otherwise specified parameters of the calcula-

tions are T = 300 K, εx = −εg = 1 eV, tx = tg =
0.05 eV, µgx = 32 D, ΓL

1g,1g = ΓR
Dx,Dx = 0.1 eV and

ΓL
1x,1x = ΓR

Dg,Dg = 0.01 eV (other elements of the dis-

sipation matrix are zero). The choice of parameters
for the model was discussed in details in our previous
considerations.48,49 We note that according to the struc-
ture of the dissipation matrix, Eq.(6), and the character-
istic HOMO-LUMO separation of∼ 2−3 eV, off-diagonal
elements of the dissipation matrix (T2 dissipation) are
much smaller than its diagonal elements (T1 dissipation),
and thus can be ignored. Note also that the T2 type of
dephasing is present in the model through the molecular
coupling to the external field. Asymmetry in the molec-
ular coupling to the contacts represents a molecule with
a strong charge-transfer transition (see Refs 59,61 for de-
tails). Such molecules are the primary candidates for
construction of optically driven molecular charge pumps.
The Fermi energy is taken at the origin, EF = 0, and the
bias is applied symmetrically, µL = −µR = Vsd/2.
Following Ref. 48, the incoming incident field is taken

in the form of a chirped pulse

Einc(t) = Re

[

E0 exp

(

−
(δ2 − iµ̄2)t2

2
− iω0t

)]

(18)

where E0 is the incident peak amplitude, ω0 is the in-

cident frequency, and δ2 ≡ 2τ20 /(τ
4
0 + 4Φ′′2(ω0)) and

µ̄ ≡ −4Φ′′(ω0)/(τ
4
0 + 4Φ′′2(ω0)) are parameters describ-

ing the incident chirped pulse (τ0 is the characteristic
time related to the pulse duration). In the calculations
below we use E0 = 107 V/m, ω0 = 2 eV, τ0 = 11 fs, and
Φ′′(ω0) = 3000 fs2.
Figure 2 shows instantaneous electric field strength dis-

tributions in a plane shifted by z = 10 nm parallel to
xy plane. The distribution is calculated for a junction
formed by bowtie antennas with single molecule (D = 1)
placed in the center of the gap. Here εx − εg = 1.75 eV,
ΓL
1g,1g = ΓR

Dx,Dx = 0.01 eV, ΓL
1x,1x = ΓR

Dg,Dg = 0.001 eV,
and Vsd = 0. Fig. 2a presents simulations without molec-
ular response. Fig. 2b shows the results of a calculation
where both SPP excitations in the contacts and molecu-
lar response are taken into account. One can clearly see
that even a single molecule drastically changes the local
electric field distribution.
Sensitivity of the pulse temporal behavior to the molec-
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FIG. 3: (Color online) Local EM field at the molecular po-
sition. (a) Pulse calculated without (dotted line, black) and
with (εx−εg > ω0 - solid line, red; εx−εg < ω0 - dashed line,
blue) molecular response. (b) Maximum local field during the
pulse vs. molecular excitation energy calculated without (tri-
angles, black) and with (circles, red) molecular response. See
text for parameters.

ular response is presented in Figure 3a. Here a local field
affected by only SPP modes (dotted line) is compared to
pulses calculated when the molecular response is taken
into account. The latter may result in both enhance-
ment (dashed line) or quenching (solid line) of the local
field depending on the ratio of the pulse frequency, ω0,
to the molecular excitation energy, εx−εg. In particular,
quenching is observed for the laser frequency being below
the threshold (ω0 < εx − εg = 2.25 eV), while frequency
above the threshold (ω0 > εx−εg = 1.75 eV) leads to en-
hancement of the field. To understand this behavior we
perform a simple analysis treating coupling to the driv-
ing field as a perturbation, and neglecting the chirped
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FIG. 4: (Color online) Charge pumped through the junction.

(a) Difference, ∆Q ≡ Q(sc)
− Q(nosc), between results calcu-

lated with, Q(sc), and without, Q(nosc), molecular response
vs. time for εx − εg > ω0 (solid line, red) and εx − εg < ω0

(dotted line, blue). (b) Total charge pumped during the pulse
vs. molecular excitation energy calculated without (triangles,
black) and with (circles, red) molecular response. See text for
parameters.

character of the pulse. This leads to (see Appendix A)

P1(t) ≈− E0 cos(ω0t) |µgx|
2

∫

dǫ

2π
(19)

(

Im
[

G<
1g,1g(ǫ)

] ǫ− (εx − ω0)

[ǫ− (εx − ω0)]2 + [Γ1x,1x/2]2

+ Im
[

G<
1x,1x(ǫ)

] ǫ − (εg + ω0)

[ǫ − (εg + ω0)]2 + [Γ1g,1g/2]2

)

where G
< is the lesser projection of the Green func-

tion (7). Taking into account that in the absence of the
chirp Einc(t) = E0 cos(ω0t), the first term in the right
side of Eq.(19) suggests that for populated ground state,
G<

1g,1g(ǫ) ≈ 1, the molecular polarization oscillates in
phase with the field for ω0 < εx−εg, and in anti-phase for
ω0 > εx − εg. Thus according to Eqs. (15b) and (17) the
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L − I
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L ,

between results calculated with I
(sc)
L , and without, I

(nosc)
L ,

molecular response. The calculations are performed for Vsd =
1.5 V (dashed line, blue) and 2 V (solid line, red). Inset shows
corresponding difference in charge pumped through the junc-
tion. See text for parameters.

molecular response quenches the field in the former case,
and enhances it in the latter. Fig. 3b illustrates this find-
ing within the exact calculation showing the maximum
of the total field for different molecular excitation ener-
gies (circles) compared to the maximum of the EM field
obtained without molecular response (triangles). Note
that the contribution of the second term in the right side
of Eq.(19) is exactly the opposite that of the first term;
however, since the calculations presented in Fig. 3 are
performed at zero bias, the molecular excited state is ini-
tially empty, G<

1x,1x(t = 0) ≈ 0.

While the local EM field cannot be measured di-
rectly, it is related to junction characteristics (in par-
ticular, its transport properties) detectable in experi-
ments. Fig. 4a demonstrates the difference in the tempo-
ral buildup of the charge pumped through the junction,
when the molecule is considered to be driven by the field
obtained within the self-consistent model vs. model with
only SPP excitations taken into account. The initial dip
in the charge buildup (see dotted line) is related to a time
delay of the molecule induced pulse for εx−εg < ω0 (com-
pare solid and dashed lines to the dotted line in Fig. 3a).
The delay is caused by the chirped nature of the incom-
ing pulse, with initial pulse frequency being lower than
the molecular excitation energy, which results in suppres-
sion of the local field at the start of the pulse. Even-
tually however the incoming frequency becomes higher
than the molecular transition energy. The correspond-
ing enhancement of the local field leads to increase in
the charge pumped through the junction. Note that for
εx − εg > ω0 no delay is observed, and the local field is
quenched throughout the pulse. Correspondingly effec-
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tiveness of the charge pump is lower in this case (see solid
line in Fig. 4a).

Figure 4b shows the total charge pumped through the
junction during the pulse at different molecular excita-
tion energies. Clearly, the most effective EM field ob-
tained without the molecular response taken into account
corresponds to the resonance situation, ω0 = εx − εg =
2 eV. When molecular response is included in the model
the situation is less straightforward. Since local field en-
hancement is expected for low molecular excitation ener-
gies, ω0 > εx − εg (see Fig. 3b), the peak in the pumped
charge distribution is shifted to the left. Note that the
lower height of the shifted peak is related to the fact that,
for a lower molecular gap, part of optical scattering chan-
nels is blocked due to partial population of the broadened
excited and ground states of the molecule (see Ref. 49 for
detailed discussion).

Note that the importance of the molecular response
depends also on bias across the junction. Indeed, since
high bias, Vsd > εx− εg, may inject holes into the molec-
ular ground state and electrons into the excited state,
and since populating these states has opposite conse-
quences for the local field enhancement (see Eq. (19)
and the discussion following it), it is natural to expect
that the molecular response is more important at low bi-
ases, Vsd < εx − εg. Figure 5 illustrates this conclusion
with results of our calculations within the self-consistent
model. Here ΓL

1x,1x = ΓR
1g,1g = 0.05 eV. We observe that

both difference in optically induced current and charge
pumped through the junction (see inset) is almost negli-
gible at high biases. Similar reasoning indicates that the
molecular response at strong incoming fields will be less
important also due to population of the excited molecular
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FIG. 7: (Color online) Effect of the self-consistent treatment
on local field and level population in a 3-sites molecular bridge
(D = 3) as functions of time. Shown are (a)-(c) local field
calculated without (dotted line, black) and with (εx−εg > ω0

- solid line, red) molecular response for the three molecular
sites. Panel (d) shows the difference in population of the

ground, ∆n1g ≡ n
(sc)
1g − n

(nosc)
1g (solid line, blue) and excited,

∆n1x ≡ n
(sc)
1x − n

(nosc)
1x (dotted line, red) states for the first

molecular site (m = 1). Panel (e) shows the scaled plot of the
field on the central site (m = 2) for a longer period of time.
The charge pumped through the 3-sites molecular bridge vs.
time is shown in panel (f). See text for parameters.

state induced by external pulse.
Asymmetry in the charge pumping relative to the sign

of the chirp rate was discussed in our recent publica-
tion (see Fig. 4 in Ref. 48). One of the reasons for the
asymmetry is related to the time spent by the local pulse
in the region of frequencies at and just below the res-
onance. This region provides the main contribution to
charge transfer (see discussion of Fig. 3 in ref. 48). Since
time spent in this region by the positively chirped pulse is
smaller than that by the pulse with equal negative chirp
rate (the positively chirped local pulse is shorter), one
expects to observe an asymmetry as represented by the
result of calculations using local EM field influenced only
by SPP modes driving the junction (see curve with tri-
angles in Fig. 6). However as discussed above, it is this
pre-resonance region where molecular response quenches
local field, thus diminishing (or even overturning) the
asymmetry relative to the chirp rate sign (see curve with
circles in Fig. 6).
Finally, we consider a 3-site molecular bridge (D = 3)

to model the spacial nonlocality of molecular polariza-
tion. Calculations are done for εmx − εmg = 2.25 eV,
ω0 = 2 eV, and Vsd = 0. Panels (a)-(c) of Fig. 7 com-
pare the pure plasmonic local field to the field calculated
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when the molecular response is taken into account for
the three sites of the bridge. Molecular polarization de-
creases the local field amplitude on the first site, (a),
and enhances it on the rightmost site, (c). The field at
the middle site, (b), does not change. The effect can
be understood following the discussion similar to that of
Fig. 3. We find that for εx − εg > ω0 increase in pop-
ulation in the ground (decrease in the excited) levels of
the molecular sites quenches the local field. Change in
the populations of the leftmost site, panel (a), resulting
from self-consistent treatment is shown in Fig. 7d. We
see that these changes are in agreement with the cor-
responding change in the local field. Similar consider-
ations also hold for panels (b) and (c) (corresponding
level population are not shown). We note in passing that
several parameters of the model define behavior of the
bridge population during and after the pulse. In partic-
ular, strength and frequency of the external field define
efficiency of charge transfer between ground and excited
states of the molecule: stronger coupling and resonant
frequency usually result in stronger population of the ex-
cited state (at equilibrium the excited state is empty in
the absence of the pulse). Strength of molecule-contacts
coupling defines lifetime of the excess population on the
molecule. After the end of the pulse it takes ∼ 1/Γ for
populations of molecular states to return to their steady-
state values. The latter are defined by the bias.
The self-consistently calculated electric field on a site

in the bridge shows a visible beat at large timescale(see
Fig. 7e). This behavior is related to the Rabi frequency
due to the intersite coupling, ts.
Finally, Fig 7f shows charge transferred through the

3-site junction as function of time. The decrease in the
effectiveness of the pump is related to quenching of the
local field on the first site of the bridge, where strong
coupling to the left contact yields quick resupply of the
ground level population. Decreased efficiency in pumping
the charge between ground and excited levels at this site
is the reason for the overall change in the effectiveness of
the pump.

V. CONCLUSION

We consider a simple model of a molecular junction
driven by external chirped laser pulses. The molecule
is represented by a bridge of D two-level systems. The
contacts geometry is taken in the form of a bowtie an-
tenna. The FDTD technique is used to calculate the
local field in the junction resulting from SPP excitations
in the contacts. Simultaneously we solve time-dependent
nonequilibrum Green functions equations of motion to
take into account the molecular contribution to the local
field formation.
Note that many works on driven transport assume pure

incident field to be a driving force acting on the molecule.
In our recent publications48,49 we considered effects of
local field formation due to SPP excitations in the con-

tacts on junction characteristics under external optical
pumping. Here we make one more step by taking into
account also the molecular response in the driving local
field dynamics. Within a reasonable range of parame-
ters we demonstrate that the latter is crucial for proper
description of the junction transport. We compare our
results with previously published predictions, and show
that the molecular contribution may lead to measurable
differences (both quantitative and qualitative) in charac-
teristics of junctions. This contribution is especially im-
portant at low biases and relatively weak external fields
in the presence of a strong molecular transition dipole.
In particular, we show that for laser frequencies shorter
(higher) than the molecular excitation energy the local
SPP field is usually quenched (enhanced) by molecular
response.
Extension of the approach to realistic ab initio calcula-

tions, taking into account time-dependent bias, and for-
mulating a methodology for calculations in the language
of molecular states are the goals for future research.
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Appendix A: Derivation of Eq.(19)

To understand trends observed in the exact calcula-
tions based on Eqs. (9)-(10) and (15a)-(15b), here we
employ a simple consideration and derive an approximate
expression for the molecular polarization, Eq.(17), given
in Eq.(19). For simplicity we assume that only one pro-
jection of the molecular dipole is non-zero, and consider
a single molecule bridge (D = 1). Then the molecular
polarization is

P1(t) = −2Im
[

µxg G
<
1g,1x(t, t)

]

(A1)

Assuming the dissipation matrix, Eq.(6), is diagonal the
lesser projection of the Green function in Eq.(A1) is given
by the Keldysh equation of the form

G<
1g,1x(t, t) =

∑

s=g,x

∫ t

−∞

dt1

∫ t

−∞

dt2 G
r
1g,1s(t, t1) (A2)

× Σ<
1s,1s(t1 − t2)G

a
1s,1x(t2, t)

where

Σ<
1s,1s(t1 − t2) = i

∑

K=L,R

∫

dǫ

2π
fK(ǫ)ΓK

1s,1se
−iǫ(t1−t2)

(A3)
is the lesser self-energy due to coupling to the contacts.
We start by neglecting a chirp of the incoming field

Einc(t) = E0 cos(ω0t) (A4)
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and treat interaction between molecule and incoming
field

Vss′ (t) ≡ −δs′,s̄ µss̄ Einc(t) (A5)

within the first order of perturbation theory. Here s̄ in-
dicates the state opposite to s, i.e. for s = g s̄ = x.
Within the approximations the retarded Green func-

tion in Eq.(A2) can be expressed as (similar expression
can be written for the advanced projection)

Gr
1s,1s′(t, t

′) ≈ δs,s′G
(0)r
1s,1s(t− t′) (A6)

+
∑

m,n=g,x

∫ +∞

−∞

dt′′ G
(0)r
1s,1s(t− t′′)Vss′(t

′′)G
(0)r
1s′,1s′(t

′′ − t′)

Here G
(0)r is the retarded projection of the Green func-

tions (7) in the absence of external field

G
(0)r
1s,1s(t− t′) = −iθ(t− t′)e−i(εs−iΓ1s,1s/2)(t−t′) (A7)

and θ(. . .) is the Heaviside step function.

Utilizing (A4)-(A7) in (A1)-(A3) leads to

P1(t) ≈ −E0 |µgx|
2

∫

dǫ

2π

(

Im
[

G
(0)<
1g,1g(ǫ)

] [ǫ− (εx − ω0)] cos(ω0t)− [Γ1x,1x/2] sin(ω0t)

[ǫ − (εx − ω0)]2 + [Γ1x,1x/2]2
(A8)

+ Im
[

G
(0)<
1x,1x(ǫ)

] [ǫ− (εg + ω0)] cos(ω0t) + [Γ1g,1g/2] sin(ω0t)

[ǫ− (εg + ω0)]2 + [Γ1g,1g/2]2

)

where we have used the Keldysh equation for the steady
state situation

G
(0)<
1s,1s(ǫ) =

∑

K=L,R ifK(ǫ)ΓK
1s,1s

[ǫ− εs]2 + [Γ1s,1s/2]2
(A9)

Assuming that detuning is much bigger than levels broad-

enings, |ω0 − (εx − εg)| ≫ Γ1s,1s (s = g, x), the term
with sin(ω0t) in (A8) can be ignored. Finally, dress-
ing the Green functions in Eq. (A8), i.e. taking into
account diagrams related to population redistribution in
the molecule due to presence of the driving field, leads to
Eq.(19).
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