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Topological insulators in three spatial dimensions are known to possess a precise bulk/boundary
correspondence, in that there is a one-to-one correspondence between the 5 classes characterized by
bulk topological invariants and Dirac hamiltonians on the boundary with symmetry protected zero
modes. This holographic characterization of topological insulators is studied in two dimensions.
Dirac hamiltonians on the one dimensional edge are classified according to the discrete symmetries
of time-reversal, particle-hole, and chirality, extending a previous classification in two dimensions.
We find 17 inequivalent classes, of which 11 have protected zero modes. Although bulk topological
invariants are thus far known for only 5 of these classes, we conjecture that the additional 6 describe
edge states of new classes of topological insulators. The effects of interactions in two dimensions are
also studied. We show that all interactions that preserve the symmetry are exactly marginal, i.e.
preserve the gaplessness. This leads to a description of the distinct variations of Luttinger liquids

that can be realized on the edge.

I. INTRODUCTION

Topological insulators are characterized by bulk wave-
functions in d spatial dimensions with special topolog-
ical properties characterized by certain topological in-
variants, such as the Chern number' 8. These physical
systems possess a kind of holography, or bulk/boundary
correspondence, in that they necessarily have protected
gapless excitations on the d = d — 1 dimensional sur-
face. These surface modes are typically described by
Dirac hamiltonians. For example in the integer quan-
tum Hall effect (QHE) in d = 2, the Chern number is the
same integer as in the quantized Hall conductivity, and
the edge states are chiral Dirac fermions.

Schnyder et al.?, Ryu et al.'® and Kitaev!! classi-
fied topological insulators in any dimension according to
the discrete symmetries of time reversal T, particle-hole
symmetry C and chirality P and found 5 classes of topo-
logical insulators in any dimension. See also'?. These
classifications relied on generic properties in any dimen-
sion, namely the homotopy groups of replica sigma mod-
els for Anderson localization®!?, or the 8-fold periodicity
property of spinor representations of so(n) based on their
Clifford algebras, which is a mild form of Bott-periodicity
in K-theory!!.

The bulk/boundary correspondence was described ex-
plicitly in® for d = 3 spatial dimensions: using the clas-
sification of d = 2 dimensional Dirac hamiltonians in'3,
it was found that precisely 5 of the 13 Dirac classes had
protected surface states with the predicted discrete sym-
metries. In that analysis, it was crucial that the classifi-
cation in'? contained 3 additional classes beyond the 10
Altland-Zirnbauer (AZ) classes!®, since it was precisely
these additional classes that corresponded to some of the
topological insulators. The reason that there are more
classes of Dirac hamiltonians is that AZ classify finite
dimensional hermitian matrices (hamiltonians) without

assuming any Dirac structure.

In this paper we explore this ‘holographic classification’
of topological insulators (TI’s) and topological supercon-
ductors (TS’s) in d = 2 spatial dimensions, in order to
ascertain whether it works out as nicely as for d = 3. The
general d dimensional case will be presented elsewhere'®.
It is not obvious from the beginning that this holographic
approach should reproduce precisely the classifications
based on topological invariants. For instance, Anderson
localization properties are generally different in d < 2
verses d > 2. Also, we assume that the surface states
can be realized as Dirac fermions, which is an additional
constraint on top of the discrete symmetries under con-
sideration. More importantly, there is no guarantee that
there exists a microscopic 2D model with topological
wave-functions with the edge modes we classify. How-
ever the subsequent holographic classification by two of
us'® in arbitrary dimensions strengthens the case for the
holographic approach as it was found using only generic
properties of Clifford algebras that this approach gives
precisely the known TI’s and nothing more in odd di-
mensions. In even dimensions with d # 2, only one ad-
ditional class with protected surface Dirac fermions were
found. The d = 2 case turned out to be special and it is
the focus of this paper. Also, it is important to examine
this holographic classification since the edge states are
the most experimentally accessible properties.

This study requires a classification of Dirac hamiltoni-
ans in d = 1, which is carried out for the first time below.
We identify 17 unitarily-inequivalent classes. Since the
classifications in? ' were based on generic properties in
any dimension, it is possible that there exist more classes
of topological insulators in d = 2 due to this richer struc-
ture specific to d = 1. Indeed, based on our classification,
we find 11 classes of Dirac hamiltonians with protected
zero modes on the 1 dimensional edge. In addition to
the previously predicted topological insulators in classes
A, C, D, DIII, and AII, we find the classes AIII, BDI,



two versions of CII, an additional version of DIII, and
a Zsy version of D (the definition of these classes will be
reviewed below; the notation goes back to Cartan). One
interpretation is that, unlike in d = 3, for d = 2 there are
classes of d = 1 Dirac hamiltonians that are protected for
reasons other than the existence of a topological invari-
ant for the d = 2 band structure. On the other hand, our
new classes could in principle be characterized by some
as yet unknown bulk topological invariants. Although
this distinction needs to be kept in mind, henceforth, for
simplicity, we will refer to all classes with protected zero
modes on the boundary as TT’s.

For the QHE, bulk interactions lead to the fractional
QHE, and the effect of these interactions is that the
edge states become Luttinger liquids'®. This is unique
to d = 2 since only in this dimension are quartic interac-
tions on the boundary marginal, which is not unrelated
to the fact that anyons only exist in 2 dimensions. Thus
a criterion for the possible effects of bulk interactions
is the existence of eractly marginal perturbations of the
free boundary Dirac hamiltonian that are consistent with
the discrete symmetries, since an exactly marginal per-
turbation deforms the theory but keeps it gapless. This
leads us to also classify quartic, exactly marginal pertur-
bations that are consistent with the discrete symmetries.
In addition to the ordinary, chiral and helical Luttinger
liquids, we find the possibility of 3 additional varieties in
the classes DIII and CII.

The sections below cover the following. In section II
we review the definitions of the 10 AZ classes. Section
IIT reviews the holographic classification of TI in d =
3. One-dimensional Dirac hamiltonians are classified in
section I'V. This classification is completely general, and
could have applications in other areas, such as disordered
systems. In section V, we identify the Dirac theories
with protected zero modes, and section VI describes their
consequent Luttinger liquids.

II. DISCRETE SYMMETRIES

The 10 Altland-Zirnbauer (AZ) classes of random
hamiltonians arise when one considers time reversal sym-
metry (T), particle-hole symmetry (C), and parity or
chirality (P). These discrete symmetries are defined to
act as follows on a first-quantized hamiltonian H:

T : TH T =H
C: CHTCT = —H (1)
P: PHPT = —H

with TTT = CCt = PP! = 1. We consider two
hamiltonians H,H’ related by a unitary transformation
H' = UHUT to be in the same class, since they have
the same eigenvalues. For C' and T, this translates to
C - C =UCUT and T — T' = UTUT. For P, it
amounts to P — P’ = UPUT. It is thus important to
identify s these unitary equivalences in order not to over-

AZ—classes| T2 | C? | p? |
A 0 0 0
ATIT 0 0 1
ATl -1 0 0
Al +1 0 0
C 0 -1 0
D 0 +1 0
BDI +1 +1 1
DIIT -1 +1 1
CII -1 -1 1
CI +1 -1 1

TABLE I. The 10 Altland-Zirnbauer (AZ) hamiltonian
classes. ) denotes the absence of respective symmetry.

count classes. We will sometimes refer to these unitary
transformations as gauge transformations.

For hermitian hamiltonians, HT = #*, thus, up to
a sign, C and T symmetries are the same. We fo-
cus then on these symmetries involving the transpose:
TH'TY = H and CHTCT = —H. Taking the trans-
pose of this relation, one finds there are two consistent
possibilities: T7 = £7T,CT = 4+C, which are unitarily-
invariant relations. It turns out that unitary transforma-
tions allow us to choose T', C' to be real; unitarity of T',C'
then implies C? = 41,72 = £1. The various classes
are thus distinguished by T2 = +1,( and C? = +1,0,
where () indicates that the hamiltonian does not have the
symmetry, and the sign is equivalent to the sign in the
relation between 7', C' and their transpose. One obtains
9 = 3 x 3 classes just by considering the 3 cases for T
and C. If the hamiltonian has both T and C symmetry,
then it automatically has a P symmetry, with P = TC*
up to a phase. If there is neither T nor C symmetry,
then there are two choices P = (),1, and this gives the
additional class AIII, leading to a total of 10. Their prop-
erties are shown in Table I. We also mention that one
normally requires P2 = 1. Below, we will require T and
C to commute, thus P2 = T2Ct> = +£1. However one
has the freedom P — iP to restore P? = 1. In the se-
quel, in the cases with both T, C symmetry, we simply
define P = TCT, up to a phase.

III. REVIEW OF THE d = 2 DIMENSIONAL
CASE

The connection between the bulk topological proper-
ties and the existence of protected zero modes on the
boundary was first pointed out for d = 3 by Schnyder
et. al.?. This relied on the classification of d = 2 di-
mensional Dirac hamiltonians found by two of us'®. In
this section we review this holographic classification of
d = 3 TT’s since this illustrates what we are attempting
to accomplish in d = 2.



If one requires a Dirac structure of the hamiltonian,
then the AZ classification can be more refined. The most
general hamiltonian in d = 2 dimensions is of the form:

Vi+ Ve —ids+ Az
H=| T O 2
(—i&Z+AZ V+—V> ®

where 0, = 0, — 0y, 0z = 0, + 10y with x,y the spatial
coordinates and Vi, A, z are matrices. The above H is
just a relabeling of H = —i0,0, — i0,0y + 7 - V + Vo, ie.
the block structure comes from the Pauli matrices o.

One then finds the most general form of the T,C, P
matrices that preserve the Dirac structure. Thirteen in-
equivalent classes were found!'3. In particular, there exist
two inequivalent versions of the chiral classes AIII, DIII,
and CI, simply because the discrete symmetries can take
different forms. In was shown in® that precisely 5 of the
13 classes corresponded to the surface states of TT’s, with
discrete symmetries consistent with the predictions from
bulk topology. As argued there, the criterion for a TT is
that V_ has a zero mode, i.e. det V_ = 0. This led to the
following identification of TI’s, where the nomenclature
of'3 is given in parentheses. As far as the bulk proper-
ties, the are two types of topological invariants, Z and Zs,
which are also indicated. In the holographic approach,
Z verses Zg corresponds to the two ways of obtaining a
zero mode, namely V_ =0 or det V_ = —det V_ for V_
odd dimensional, and the exceptional case CII, which is
also Zsy. (See section VA for a more detailed discussion
of these topological identifications.).

e AIIT (1) , DIII (5) , CI (6) .  These are the
three classes that are doubled in comparison with
AZ. For one of the two in each these classes, the

discrete symmetry forces V_ = 0. These are all of
type Z or 27.%°

e AII (3,). Here the discrete symmetries re-
quire VX' = —V_, which implies that if V_ is odd-
dimensional, det V_ = 0. Type Z,.

e CIT (9_). In this case, the discrete symmetries
constrain V_ = (0 UO’) with v = —v_,w! =

—w_. Thus if v_,w_ are odd-dimensional, then
up to a sign, det V_ = det v_det w_ = 0. Type
Zs.

IV. THE d =1 DIMENSIONAL
CLASSIFICATION OF DIRAC HAMILTONIANS

In this section, we present the complete classification
of d = 1 dimensional Dirac hamiltonians. Although the
identification of TI’s and TS’s will be the subject of the
next section, it is useful to motivate what follows by dis-
cussing chiral Dirac Hamiltonians with only right moving
or left moving fermions®%. Since a mass term necessarily
couples left and right movers (see section V), these classes

have a protected zero mode for somewhat trivial reasons.
Such Hamiltonians cannot be realized on a 1d lattice and
they necessarily break T and P. However they can ap-
pear as a d = l-edge state of a 2d TI or TS in classes
A, C, and D which break both T and P. An example
of class A is the quantum Hall effect. Depending on the
number of filled Landau levels there are Z number of edge
states'. An example of class C is the spin quantum Hall
effect in a singlet time-reversal breaking superconductor.
The spin quantum Hall conductivity will be proportional
to the Cooper pair angular momentum, hence this is a Z
TS. Although there is no known experimental realization,
dy2_y2 + id,, superconductor (SC) was extensively dis-
cussed theoretically'®19. A realization of class D would
be the thermal Hall effect of a time-reversal breaking su-
perfluid of spinless (fully spin polarized) fermions. The
v = 5/2 quantum Hall state could be a p, + ip, paired
superfluid of composite fermions?’.

All non- “chiral” non-interacting 1d Dirac hamiltonians
with equal number of right-movers and left-movers can
be written as H = —ioy0p + 7 - A + Vy, where & are
the Pauli matrices acting on a space of right /left-movers
|or = +). Redefining A, = V_, these hamiltonians can
be expressed as

Vi+V. —id,+A
H=| T v : 3
<—z’8m+AT V+—V_> ®)

The potentials Vi are hermitian matrices and A =
Az +1iA, where A, , are also hermitian matrices in gen-
eral. The dimension of V3 and A is the number of edge
mode species for each chirality. When Vi and A are even
dimensional we use 7 to denote a set of Pauli matrices
acting on the even dimensional flavor space. 1 will de-
note the identity in either the o or 7 space. Note that
& and T have distinct physical meaning: & acts on the
space of “chirality” as we show explicitly in sectionV B,
and it is responsible for the block structure of Eq.(3),
whereas 7 acts on the space of flavors which could be
spin or pseudo-spin. If there is spin-momentum locking
(see sectionV B) & will act on the spin space as well as
on the space of “chirality”.

The Dirac derivative structure of H constrains the form
of T, C, and P in terms of ¢ and 7. Furthermore, we can
specify the conditions V4 and A have to satisfy in order
for H to have discrete symmetries under specific T, C,
or P. Hence the specific forms of symmetry transforma-
tions can be used to classify hamiltonians of form Eq.(3).
Since, as described below, there are multiple sets of ma-
trices T, C, P with the same T2, C?, P2, this scheme
refines the AZ classification of Table I. Here we find
even more classes of Dirac hamiltonians in d = 1 than in
d = 2, and more classes with symmetry protected zero
modes (see sectionV).

In the rest of this section, we first specify the forms of
T,C and P symmetry that preserve the Dirac structure,
and describe the resulting conditions on V3 and A in a
fixed & basis and arrive at 25 classes as summarized in



Table II. We then check for unitary equivalences. The
unitary transform is

H — UgHU, (4)

with Up a rotation about the z-axis in o-space by an
angle 6:

Up=u-e?:/2 =y . (1cos(0/2) +io, sin(0/2))  (5)

where v is unitary and commutes with o,. We find 17
unitarily-inequivalent classes, each forming a row sepa-
rated by a horizontal line in Table II.

Consider first the T symmetry. In order to preserve
the derivative structure of the hamiltonian Eq.(3), using
(—i0,)T = i0,, one finds that T must anti-commute with
oz. Since T is (anti)-symmetric and unitary, it is then
either proportional to o, or i¢o,. This leads to 2 ways
of implementing of T-symmetry transformations: using
either

T:nt®iay:<0 Wt) (6)
=t 0

~ 0

T=m®0, = e ~ | (7)
O —Mh

where 7; or 7; are unitary matrices in general. Then, for

a hamiltonian of form Eq.(3) to have T symmetry the

potentials have to satisfy either

mVE=+Vim, mAT=-An (8)

or

VL =Vem, A" =—An 9)
Now the condition TT = £+T (T? = +1) which distin-
guishes Al from AII for instance, implies either n! = +n;
or fjf’ = +7j;. Hence all AZ classes with T-symmetry are
further refined depending on whether T (Eq.(6)) or T
(Eq.(7)) is used to implement T. This distinction has a
physical significance: the use of 1" o i0, leads to spin-
momentum locking (see section V B).

Finally we can choose representations of 7, in terms of
7 up to the unitary transformations: n, = 1 if nf = n,,
and n; = ir, if nf = —n?'. We can do the same for
7t. The unitary transform T — UTU?T corresponds to
n — unu® with u unitary, for all ’s. The unitary trans-
formation affects the choice of 1 v.s. 7, for n;’s. How-
ever the unitary transform cannot affect the distinction
between T" and T'. In particular when T is the only avail-
able discrete symmetry, 72, T2 = +1 completely classifies
d = 1 Dirac Hamiltonians into Alyy, Alg) and All(y),
All(3). See Table II.

We can specify C, following steps analogous to those
for specifying T'. As C must commute with o, for Dirac

hamiltonian Eq.(3), it is in the linear span of 1 and o,.
Hence there are two possibilities:

Tle V:E::FV:E Ney e AT:_AWC (10)
ﬁc ViT:_Vi ﬁcu 770 A*:_Aﬁc

O:nc®axa

C:ﬁc@)la

with 7. and 7). unitary. The condition C7 = £C that
distinguishes AZ class C from D for instance, implies
that nI’ = +n. or 77 = +7j.. One can again represent
up to unitary transformations 7. = 1 if n7 = 7., and
ne = ity if I = —n.. This again refines the AZ classes
with C symmetry. However unlike 7" and T which are
unitarily-inequivalent, C' and C' are unitarily-equivalent
for non-zero A, (see the end of this section). We denote
such unitarily-equivalent refinements using primed nota-
tion within the same row in Table II. In particular, this
completes our classification of d = 1 Dirac hamiltonians
with only C symmetry into C, C’, D, D’.

Consider now P symmetry. P must anti-commute with
o, for the Dirac hamiltonian Eq.(3), so P is in the linear
span of o, and o,. For P unitary, this implies that P =
Ny - (cosb o, +sinb o,) for some real b. All these choices
are unitarily-equivalent by rotations around the z-axis
in the sigma space. However, in order to accommodate
P =TC" in all cases, we define two unitarily-equivalent

types:

P=n,®0., nVe=-Vin,, 77pA=A77p (11)

P:ﬁp@)i‘jy ﬁpV:t::FV:tﬁpv ﬁpAT:Aﬁp

where 71, and 7, are unitary. The unitary freedom re-
duces to 1, — un,u’ and the same for 7. Up to unitary
transformations there are two choices: n,,7, = 1 or 7.
This gives 4 AIII classes.

Finally for the classes with both T, C symmetries, T
and C must either commute or anti-commute'?. The
argument is simple. Given both T" and C, a P symmetry
is provided by P = TCT or P = C'T. These two P’s
must be equivalent up to a sign since P2 = 1, thus TC" =
+C*1T, which is a gauge-invariant condition. Thus T, C
commute or anti-commute, since in all cases, CT = +C.

Now the AZ classes BDI, CI, DIII, and CII refines into
12 classes; among these 8 are gauge inequivalent. We
label the three subclasses associated with the BDI class
by BDI(;), BDI(y), BDI'(Q)7 and similarly for CI, DIII,
and CII. Table IT shows this classification with respective
representations of T, C and P. In some cases 1; or 7,
had to be taken to be 7, which is unitarily-equivalent to
1, in order for T and C to anti-commute. When there
are both T, C symmetries, then there is automatically
a P = TCT symmetry (up to a phase). Depending on
the type of C, T, one finds the Z, graded multiplication:
P =TCl P =TC'P=TCl,P=TC!. This gives
1p = e} or 7t and 7, = 0,77k or gl

Let us finally return to the issue of unitary equivalence.
The unitary transform of Eq. (4) preserves the Dirac

structure for Uy of Eq. (5). The two possibilities T and T'



1d-classes | T | C | P | Vi A zero-mode

A 0 0 0 vi=vy Z

Al 0 0 1®o. V=0 Z

ATIT 0 0 1®ioy Vi=0

Alllo) 0 0 T: ® 0 T.Ve=-Vir, T.A=Ar,

AIIII(Q) [0} [0} T. @ ioy Ve =FVaT,

Ally | 1®ioy, 0 0 Vi ==VE AT =-4A Ly

Allp) |in, ®o0. 0 0 T,V =Vir, T, A = —Ar,

Al ity ®ioy 0 0 T, Vi =4+Viry T, AT = — A1,

Al | 1®o0. 0 0 VE=Vvy A" =—A
C 0 ity @1 0 T, VL = ~Viry TyAT = —Ary, 27
c’ 0 iTy @ g 0 T, VL = FViry Ty AT = — A1,
D 0 11 0 Ve =-VE A" =—A 7, T
D’ 0 1® o, 0 Ve =FVI AT =-4A

BDI) |ity ®ioy| 1®1 |ity®ioy| Vi=-VI =%7,ViT, A=A =1 A7,

BDI/(D Ty @10y | Ta ROz | - Q0. |Vi = iTyViTTy =Fr Vi szyAT = —ATsy

BDlp | 1®0. | 101 | 1®0; Vi=0 Ar=—-A Z

DIl |1®ioy, | 101 | 1®io, Vi=0,VI=-V_ A=—A"=—-AT Zo

Dill) |ity®o.| 1®1 |it,®0.| Vi=-V{ =—-71,Var, A=—-A"=-1,AT7, Za

DIHEQ) Ty Q0. | Te @0g | T2 ®ioy | Vi = TyViTTy = :FT;UViTTw A=—-1yA"7TY = 1. AT T,

Cllyy | 1®ioy |imy ®1 |ity ®ioy| Vi==+V{ =F7,Var, A= AT = —7,A"7, Za

CII/(D Te Qioy |iTy @ 0x| T @0, | Vo = 1. VI = T, VI T, Tey AT = — ATy,

Cllgy |ity®o:|iny®1| 1®0. Vi=0 A= -1 A%y 27

Clyy |ity ®ioy| ity ®1| 1®i0, | Vi=0,7,V =-V_r, |A=-1,A"T7,=-7,A"T,

Clyy) 1®o. |iTy,®1 |iTy ®o0. Vi =V{§ = —71,Vary A=-A"=-—1A"7y

CI'(Q) Te @0, |iTy @ 0g| T- Qioy | Vi = ToVETe = q:ryViTTy A= -7, A%, = TyATTy

TABLE II. The properties of the 25 non-chiral d = 1 Dirac classes. 17 unitarily-inequivalent classes separated from each other
by a horizontal line. The first column lists the d = 1 Dirac classes. Columns T, C and P show representations of symmetry
transformations for each class. The columns Vi and A show symmetry constraints on the potentials. A blank cell denotes
absence thereof. The symmetry constraints guarantee zero modes in some classes (see section V). The last column shows
classes with symmetry protected zero modes and the type of zero modes.

d =1 classes |zero modes |topological invariant|

examples

A / /
C 27, 27
D Z Z

thermal QH edge states in spinless chiral p-wave SC*®

QH edge states
spin QH edge states in d + id-wave SC'819

TABLE III. d = 1 chiral Dirac hamiltonian classes.

for T are unitarily-inequivalent, because unitary trans-
formations preserve the relation 77 = +T, or equiva-
lently, UgcryyzU@T = 0y,.. However C' and C are unitarily-
equivalent for non-zero A,, since U,,/QUJCU;{/2 = 4. In
Table II, we listed all 25 classes separating 17 unitarily-
inequivalent classes by horizontal lines. It is important to
note however that all of the 25 classes should be viewed as
inequivalent once Uy is used to set A, = 0 since C, C' are
inequivalent under the residual symmetry. (If A, = 0,
A* = AT)) We will take this route in the next section
where we investigate the symmetry protection of zero
modes.

V. “TOPOLOGICAL INSULATORS” IN TWO

DIMENSIONS

We conjecture a ‘holographic’ classification of 2D TI-
TS based on the classification of d = 1 Dirac hamiltoni-
ans that are symmetry protected to be gapless, i.e. have
a protected zero mode. We list such d = 1 Dirac hamil-
tonian classes in Tables III and IV. For a subset of these
classes, there exists a d = 2 gapped hamiltonian in the
same class and a known topological invariant which one
can calculate from the ground state wave function which
takes on Z-values or Zo-values?'0: these are indicated



d=1 classes| T | C | P |zer0 modes|top. inv.|locking| examples
AIIL,) 0 0 o Z
All) ioy 0 0 Lo Lo Y HgTe/(Hg,Cd)Te
D 0 1 0 Ly
BDI o 1 B Z
DIITy ioy 1 1oy Zs Zs Y (p+ip) x (p —ip)-wave SC
DIII(2> 1Ty @ 0 1 Ty @02 Zio Zio N particle-hole symmetric KM model
CII 1® oy ity @ 1|iTy @ioy Lo Y doubled KM
CII |y Ty @0.|iTy 1| 1® 0. 27 N trigonally strained graphene®°

TABLE IV. d = 1 non-chiral Dirac hamiltonian classes with symmetry protected zero modes. The spin-momentum locking
column is left blank when spins cannot be assigned because the time-reversal operator do not involve either ioy, or ity. New

classes are shown in boldface (red online).

in the columns denoted “topological invariant”. Surpris-
ingly, for a class with a known bulk topological invari-
ant, there is a correspondence between the values it can
take and the number of gapless Dirac edge branches (di-
mension of the block matrices Eq(3) for the non-chiral
case). Namely, classes with Z-invariants are gapless for
any number of Dirac edge branches; classes with Zo-
invariants are gapless only when there are odd-number
of branches for each chirality. The main point of this
paper is that there are additional classes with protected
edge zero modes beyond the 5 predicted on the basis of
the known topological invariants.

In the rest of this section we enumerate the classes
of d = 1 Dirac hamiltonians that have a protected
zero mode as a consequence of the discrete symmtries.
We then comment on the microscopic 2d models cor-
responding to a subset of our new classes. We finally
discuss physical properties of these classes such as spin-
momentum locking through a second quantized descrip-
tion.

A. First quantized description

First we discuss the chiral (only right or left moving)
Dirac fermion classes we mentioned at the beginning of
section I'V. These are massless for a “trivial” reason since
a mass term necessarily couples left to right. As T and P
transform left to right movers (see below), hamiltonians
with these symmetries cannot be chiral. On the other
hand, AZ classes A, C, D have at most a C symmetry
and can be chiral. For chiral hamiltonians in classes A,
C, D, any Z number of branches will be gapless. For
chiral class C, since the auxiliary 7 space is doubled, as
explained above this is of type 2Z. See Table III for the
summary.

Now consider non-chiral hamiltonians of the form
Eq. (3) whose block diagonal structure implies that the
second quantized theory has both right movers v =
(x|or = +) and left movers ¢y, = (x|o, = —) (see below).
The hamiltonian H is gapless if it has a zero eigenvalue

at k = 0, i.e. det H(k = 0) = 0. Below we simplify this
into a condition on V_.

The potential A, can be removed by redefining
the fields in the second quantized theory: v r —
et )" As(@)dz) b (see subsection VB). A constant V is
a chemical potential which shifts the overall energy lev-
els. Hence we set this to zero. Now the condition for
existence of a zero mode and hence a gapless spectrum is

det [ V= M) g (12)
—iA, —V_

However Eq. (12) is difficult to use in general®”. Hence
we use the freedom of unitary transform Uy to set A, = 0.
The criterion for a TT is now simply det V_ = 0 for fixed
Ay =0.

Now we test if the conditions on V_ imposed by sym-
metry listed in Table II guarantee det V_ = 0. As the

choice of A, = 0 makes C and C inequivalent we con-
sider all 25 entries. Once we identify symmetry protected
gapless Dirac classes, we check for unitary equivalence
among those by consulting the Table II. In Table IV we
list unitarily inequivalent protected classes.

There are two generic types of constraints on V_ that
protect a gapless spectrum. First, V_ = 0 guarantees
det V_ = 0 independent of the dimension of V_ nor
the Z number of edge modes. This is identified with
a type Z TI. If the T or C symmetry involves a dou-
bling of the auxiliary 7 space, then this doubling is the
signature of a type 2Z TL' Second, VI = —V_ im-
plies det V_ = — det V_ when V_ is odd dimensional, and
hence det V_ = 0. By analogy with the 3d case, those
that rely on VT = —V_ with V_ odd-dimensional should
be of Zs type because of the even/odd aspect.

There are also two exceptional cases: DIII;y  Here

= ity, . = 1, n, = it,. Here VI = —V_, however
it is even dimensional, and constrained to be of the form
— (Z: j’;ﬁ) with o = —a_ b7 = —b_. Thus, if
a_,b_ are one dimensional, then V_ = 0. Type Zo.

0 b_

CIly) Heren = 1u,me =iTy,mp = —72. Vo = (07 0 )



with 8T = —b_, L = —c_. Ifb_, c_ are odd dimensional,
then, up to a sign, det V_ = det b_detc_ = 0. Type Zs.

The table IV lists new classes with protected Dirac
edge modes in boldface(red online). An immediate ques-
tion is whether these classes can be realized in a micro-
scopic 2D model and if so, why they were missed in pre-
vious classifications. First we point out that by consid-
ering an additional reflection symmetry, Yao and Ryu?®
recently found topological invariants for all of our new
classes except CII(1). As first noticed by Fu®®, when
considering microscopic realizations of topological insula-
tors, point-group symmetry can play an important role.
While we required our non-chiral edge state to be de-
scribed by a Dirac hamiltonian, it is plausible that the
latter assumption automatically implies a reflection sym-
metry for some of the classes for d = 1. This is a topic to
be investigated further in the future. Nevertheless, what
is clear from the work?® is that indeed there are micro-
scopic 2d theories whose edge states are described by our
new classes.

Turning to physical realizations of the new classes of
edge states so far we have found two examples: DIIL(5)
and Cll5). An example of DIl is the Kane-Mele
model in the presence of particle hole symmetry2®29,
This can be viewed aa special case of All(;)-type TI with
additional particle-hole symmetry. The additional sym-
metry enables quantum Montecarlo simulations without
sign-problems. But it also means absence of spin or
charge edge current as we will discuss further in the
next section. Of particular interest is the zero field
QHE in trigonally strained graphene3°3! as an exam-
ple of CIl(3). The details of this identification will be
presented elsewhere?”. However, the underlying reason-
ing is rather simple. The observation of Landau levels
in3° in the absence of magnetic field calls for a Z type TI
among time-reversal symmetric classes. In the original
classification by Schnyder et al.? Z type TI are found
only among T breaking classes. Since trigonal strain in-
troduces pseudo-magnetic fields of opposite direction for
two valleys, there are 2Z edge modes when the system is
subject to a confining potential.

B. Second quantized description and
spin-momentum locking

One can define a second-quantized hamiltonian:
= [do 3 i@ Huin(o) (13)
a,b

from H of Eq. (3). Now let T,C be time-reversal and
particle-hole transformation operators in the field theory
and define

Ty T! = Tuythy,  CuCl = Cuthf.  (14)

This and the T, C properties of H (Eq. (1)) implies the
invariance: THTt=H, CHC'=H.

Since right movers and left movers are ¥p = (x|, =
+) and left movers ¢, = (x|o, = —), the spinor field ¢
has the block structure:

_(Yr+YL 15
) e

in the eigenbasis of o,. Upon passing to Euclidean space
by t — —ir, the Schrodinger equation for H in Eq. (3),
10¢p = Hp, becomes 0,9r = 0z, = 0, where 05 =
Or + i04,0, = 0, — i0,. This confirms the anticipated
chirality of ¢z and .

The T and P transformations exchange left and right
movers:

T: Yr— —m¥r, YL — mUr
T: Yr— e, Ur— s (16)
and
P: yYr—=nptn, YL — mpir
P: Yr— —pYr, Y = YR (17)

On the other hand, C transforms fields into their conju-
gates:

C: Yr— W/)Iz, YL = —nept
C: Yr—0h, Y — hl. (18)

Hence for the AZ classes A,C,D which do not have T
or P symmetry, chiral states with only ¢ or ¢ 1 can be
realized as edge states and are protected from a mass gap
since mass term couples left and right.

We now use the T symmetry to assign (pseudo-) spins
and check for spin-momentum locking. On physical
grounds, we consider the smallest number of components
in each class, i.e. either 1 or 2. It is well-known that T
has the representation T = ( % §) on spin 1/2 particles
and T? = —1. Hence when the representation of T in-
volves i, or i, and T? = —1 in Table II, & or 7 should
act on the spin space. This is particularly interesting
since |0, = +) and |0, = —) are right- and left-moving
states by definition of the hamiltonian Eq. (3): this, as we
mentioned earlier, is a manifestation of spin-momentum
locking.

The classes with spin-momentum locking are All(),
DIIl(yy, CI(yy. These are all TI-TS edge states of type
Zo within our scheme. For these, we can label the fields
1/)R = 1/)RT, 1/)L = 1/)L¢- AII(l) and DIII(l) have well
known examples. QSH edge states®®?3 in the absence
of particle hole symmetry are examples of All(;) class.
Note that we derived here the spin-momentum locking,
which arises from the spin-orbit coupling in QSH sys-
tems, on very general grounds. A 2d version of a He3B
superfluid phase where up-spin pairs and down-spin pairs
have opposite angular momentum, would be an example
of the DIy class.?8. Such a state has not been realized
yet, but perhaps could be in a film geometry with control



over the boundary conditions. CII(;) can be realized®” as
a particle-hole doubled version of All;) much the same
way as how in 3d a CII TT was constructed out of two
copies of 3d Dirac Hamiltonian in Schnyder et al.?.
DIII(3) and CIly) classes have both spin components
for right-movers and left-movers each. The Kane-Mele
(KM) model* at zero chemical potential has particle-hole
symmetry and hence does not strictly speaking belong
to class AIl. Moreover the spin or charge edge current
is absent as the current operators are odd under charge
conjugation?®. Nevertheless, there is a charge neutral
gapless edge mode®®??. This is an example of DIIL)
class?”. ClIl(3) is unique in that spin is tied to charge,
i.e. particle-hole transformations flip spin: (¢Yry,¥r;) —

(—1/1}; 1 w}Lﬁ). Note that these spin-momentum lock-
ing properties offer concrete distinctions between classes
(DIH(l), CII(l)) and (DIII(Q), CH(g))

Alll(yy, non-chiral D, and BDI 5y are spinless fermions.
Note that we find the non-chiral D TI to be of Zy type
and distinct from the chiral D which is of Z type.

VI. VARIATIONS OF LUTTINGER LIQUIDS

We are now in the position to consider how interactions
consistent with the T, C, P symmetries could affect the
d = 1 edge states. In general, bulk interactions should
lead to interactions on the edge. If the bulk stays gapped,
one can focus on the edge states even in the presence of
interactions. While the topological invariants based on
single particle wave functions cannot be applied to inter-
acting systems, the edge state theory can incorporate the
effects of interactions.

The fractional quantum Hall effect (FQH) is the prime
example. The FQH edge state resulting from Coulomb
interaction in the bulk has no topological invariant asso-
ciated with it, while the integer QHE is associated with
the Chern number?. However the fractional quantum
Hall edge states are chiral Luttinger liquids which are
related to the integer quantum Hall edge states (chiral
Fermi liquid) by the addition of an exactly marginal per-
turbation to the Dirac action'®. An exactly marginal
perturbation on a non-interacting edge state preserves
the gaplessness, but deforms it into an interacting the-
ory with non-trivial exponents, fractional charges, etc.

Motivated by the FQH case, we classify the exactly
marginal perturbations for each proposed TI-TS’s in Ta-
ble IV, as a way of characterizing the effect of bulk in-
teractions.

The starting point is the action for the generic free
Dirac Hamiltonian Eq. (13):

S= [dzdt [wg(az + Aw+ Vg (19)
+ UL (0 — Ap + Vi)
+ (zp{(v_ iAo + h.c.)} .

Recall that ¥gr and 1 are vectors in the space repre-
sented by 7. Vi can be interpreted as a chemical po-
tential, or equivalently the time component of a gauge
field as it couples to currents z/J}L%VJrz/JR + wEV_ﬁ/}L. We
set it to zero. If V_ + iA, is one dimensional, it sim-
ply corresponds to a complex mass. Hence removing A,
through a unitary transform Uy is equivalent to removing
the phase of the mass by redefining . After removing
Ay, and absorbing the physical gauge field A, to the def-
inition of the v fields, the action for the massless zero
mode simplifies to

S = / dzdt (wgazwﬁe - w}%m) : (20)

We consider left-right current-current perturbations in
analogy with Luttinger liquids and single out those pre-
serving the T, C, P of the free theory. Consider the
currents J¢ = i t%pp, J& = ht*Yr, where t* is a
hermitian matrix acting on the 7 space, and define the
operator O% = J{Jg (no sum on a). Since ¢ has scal-
ing dimension 1/2, the operator O® has dimension two,
Le. it is marginal, and a term g O can be added to
the lagrangian. For the T',T, P, P symmetries, O¢ is in-
variant if the appropriate n commutes with . For the
C,C symmetries which transform fields into their con-
jugates, invariance of the operator additionally requires
(t4)T = 4t The renormalization group beta function
for O% is in general proportional to the quadratic Casimir
for the Lie algebra generated by the t*. If this beta func-
tion vanishes for a symmetry invariant O, it is an exactly
marginal perturbation.

For all TI-TS’s, the marginal perturbation O® is in-
variant for t* = 1, and we can consider the action

5= [ dudt (who.vn+v}ombn+9JIr).  (21)

Since the currents Jp p are then U(1) currents, the
beta function vanishes making this perturbation exactly
marginal. Eq. (21) describes different versions of Lut-
tinger liquids for different classes.

The choice t* = 7, which requires at least 2 compo-
nents for each chirality, also yields an invariant O for the
classes DIII(5y and ClII; 3). Since this involves a single
1, it again generates a U(1) current and the associated
O is again exactly marginal.

We list each exactly marginal perturbation for the
above TT-TS’s:

e AIl(;) and DIII ;). Both are one-component spin-
momentum locked classes. The only allowed per-
turbation is with t* = 1:

0 = (v, vu) (Vhyvm ). (22)

The so-called helical liquid for interacting QSH
edge state3? requires such a perturbation. Inter-
estingly such a bulk interaction effect on the edge
states has been recently confirmed?®:29:33,



e DIIl(;) and CII3. Both are two-component
classes which can be perturbed with ¢* = 1 and
t* = 1,. t* = 1 yields the spin-full Luttinger liquid
with

0 = (whwm + ¢L¢L¢) (@gﬁﬁm + w;ruwm) - (23)

Whereas t* = 7, turn J{ and Jg into a spin-singlet
currents and

0" = — (v — vl vn) (Vhvm - vhvnr) .
(24)
These are new types of Luttinger liquids which we
refer to as the “spin-singlet liquid”.

e AIIly, non-chiral D and BDI(3). These are spin-
less fermion classes which can be single component.
They can only be perturbed with t* = 1.

e CII(;). This has both particle and hole components
with spin-momentum locking for each component.
It is a different kind of Luttinger liquid, which we
refer to as the “double helix”, since the free part is
essentially a doubled KM model.

0 = (w} Wy + WLTW'N) (ﬂwﬁm + Wn%ﬁ) (25)

Next consider adding more than one perturbation, i.e.
>0 9aO%. In general, the operator product expansion of
0% with O° generates another O operator associated with
the current corresponding to [t%,¢°], and this gives rise
to a renormalization group beta function proportional
to the quadratic casimir of the Lie algebra generated by
the ¢*. Only classes DIIl(;y and Cll(3) have two allowed
O listed above: t* = 1 or 7,. However since these t*
commute, this two parameter perturbation is also exactly
marginal. In summary, we find all possible symmetry
preserving quartic interactions to be exactly marginal,
deforming the free Dirac edge theory into an interacting
one that preserves the gaplessness .

VII. CONCLUSIONS

We classified Dirac hamiltonians in one dimension
according to the discrete symmetries of time-reversal,

particle-hole and chiral symmetry, and found 17 inequiv-
alent ones. Assuming that two-dimensional topological
insulators (or superconductors) are realized on their one
dimensional boundary as Dirac fermions, we found 11 of
these classes that possessed a zero mode which was pro-
tected by the symmetries. This should be compared with
the classifications based on bulk topological or boundary
localization properties in® ', which predict 5 classes in
any dimension. The classes we find beyond the standard
5 are in classes AIIl, BDI, two versions of CII, a distinct
version of DIII and a Zg version of D. We suggested that
physical realizations for the new TI’s in classes CII() and
CII(2) could perhaps be a doubled Kane-Mele model and
trigonally strained graphene respectively.

The simplest interpretation of the existence of these
new classes of TI in two spatial dimensions is that there
are theories with boundary zero modes that are not nec-
essarily protected by topology, and this is attributed to
the richer structure of the classification of Dirac hamil-
tonians in 1 dimension. On the other hand, it remains a
possibility that the new classes are characterized by some
as yet unknown topological invariants.

We also studied possible manifestations of bulk inter-
actions as quartic interactions on the boundary in two
dimensions. For all classes of potential TT's, we found
that all such interactions that preserve the discrete sym-
metries are exactly marginal. The exact marginality pre-
serves the gaplessness, but deforms the theory into dis-
tinct variations of Luttinger liquids.
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