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Abstract 

Long-range corrected hybrid functionals that employ a non-empirically tuned range-separation 

parameter have been demonstrated to yield accurate ionization potentials and fundamental 

gaps for a wide range of finite systems. Here, we address the question of whether this high 

level of accuracy is limited to the highest occupied / lowest unoccupied energy levels to which 

the range-separation parameter is tuned, or whether it is retained for the entire valence 

spectrum. We examine several π−conjugated molecules and find that orbitals of a different 

character and symmetry require significantly different range-separation parameters and 

fractions of exact exchange. This imbalanced treatment of orbitals of a different nature biases 

the resulting eigenvalue spectra. Thus, the existing schemes for the tuning of range-separated 

hybrid functionals, while providing for good agreement between the highest occupied energy 

level and the first ionization potential, do not achieve accuracy comparable to reliable G0W0 

computations for the entire quasi-particle spectrum. 
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1. Introduction 

 

The combination of photoelectron spectroscopy (PES) with electronic-structure calculations 

based on density functional theory in the Kohn-Sham (KS)1 or Generalized Kohn-Sham (GKS)2 

framework has been used successfully to gain far-reaching physical insight, regarding, e.g., the 

assignment of PES peaks to particular molecular orbitals, as exemplified by Refs. 3-14.  It would 

be intriguing indeed if the complex nature of the quasi-particle (QP) spectra, which arises from 

intricate many-body-interactions,15, 16 could be captured by single-particle quantities such as KS 

or GKS eigenvalues, in particular as the latter can be calculated from a computationally much 

simpler approach, i.e., diagonalization of the KS or GKS Hamiltonian. In practice, interpreting KS 

and GKS eigenvalues obtained from semilocal or global hybrid functionals as approximations to 

relaxed ionization potentials (IPs) often yields good agreement with PES experiments.  

 

Many-body perturbation theory in the GW approximation, where G represents the one-particle 

Green’s function and W the dynamically screened Coulomb interaction, is currently the method 

of choice for calculating QP energies from first principles.15, 16 However, due to its high 

computational cost, the size of the systems that can be studied with a fully self-consistent GW 

approach17 is rather limited. Therefore, the non-self-consistent G0W0 approach, in which G and 

W are evaluated from DFT orbitals and eigenvalues, is often used. It must be borne in mind that 

the results of G0W0 calculations can depend significantly on the chosen DFT starting point.18-22 

Consequently, a DFT-based approach that could yield accurate QP energies for both occupied 

and unoccupied states is highly desirable, not only to extend the range of systems for which 

reliable QP energies can be obtained, but also as a suitable starting point for G0W0 calculations. 
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Although KS eigenvalues do not have any strict physical meaning, a close relationship between 

exact KS eigenvalues and QP energies exists. Following the IP-theorem,23 the highest occupied 

KS eigenvalue equals the first ionization potential. All other occupied KS eigenvalues are well-

defined approximations to the relaxed ionization energies to zeroth order in the adiabatic 

coupling constant.5 Of course, this relation only holds for the occupied, and not the unoccupied 

eigenvalues. Moreover, the exact exchange-correlation (xc) functional is unknown and 

approximate density functionals must be employed instead. In practice, this frequently leads to 

severe problems with the interpretation of KS or GKS eigenvalues as approximations to QP 

energies, which can be summarized as follows:  

(i) The eigenvalue of the highest occupied molecular orbital (HOMO) obtained from commonly 

used DFT functionals is typically too high in energy, i.e., the predicted ionization energy is too 

small.  

(ii) The KS eigenvalue gap between the HOMO and the lowest unoccupied molecular orbital 

(LUMO) is much smaller than the fundamental gap that represents the difference between the 

IP and electron affinity (EA), as it lacks the derivative discontinuity.24, 25 

(iii) The KS eigenvalue spectrum typically appears to be compressed when compared to the 

experimental PES spectrum, i.e., the level spacings are too small.  

(iv) The relative ordering of eigenvalues corresponding to orbitals of a different nature (e.g., 

localized versus delocalized or π versus σ orbitals) can be wrong, leading to severe distortions 

in the DFT eigenvalue spectrum.8-12  

 

Recently, several publications have discussed the origin of these drawbacks.5, 8-12, 26, 27 They 

ascribed points (i) and (iv) primarily to self-interaction errors (SIEs) in the employed 

approximate xc-functionals. Indeed, SIE-free KS-DFT10, 11 provides for much improved 
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eigenvalues in terms of the HOMO and the relative ordering of the deeper-lying states. This is 

true not only for the orbital energies11, 12 but also for their character,13 even in the case of 

challenging systems. Calculating the so-called “orbital self-interaction error” (OSIE)11, 12 can 

therefore help predict if major problems with the orbital ordering in approximate density 

functionals is to be expected for a given system of interest.22 In contrast to issues (i) and (iv), 

issues (ii) and (iii) would persist even if the exact KS-functional was employed.28 Consequently, 

they cannot be solved by improving upon existing approximations to the KS-functional. In this 

sense, issues (ii) and (iii) can be ascribed to effects beyond the single-particle picture, i.e., 

many-particle effects. In the G0W0 approach, which is designed to include many-particle effects 

via many-body perturbation theory, it is the quasi-particle corrections to the KS eigenvalues 

that open the KS gap to equal the fundamental gap and stretch the spectrum to match the 

experimental PES spectrum.  

 

The use of hybrid functionals within a GKS scheme can mimic the QP corrections by including a 

fraction of the exchange-only derivative discontinuity in the eigenvalues.2, 22, 27 Overall, this 

leads to a stretching of the eigenvalue spectrum, an improved HOMO eigenvalue, and an 

increase in the HOMO-LUMO gap. In contrast to SIE-free KS approaches, the HOMO eigenvalue 

obtained from standard global hybrid functionals is still too small, and the relative ordering of 

the states may not always be correct,13 although it is generally much improved as compared to 

semilocal DFT.27 Importantly, the stretching of the eigenvalue spectrum, the relative ordering of 

states, the HOMO eigenvalue, and the HOMO-LUMO gap predicted from global hybrid 

functionals are primarily determined by the amount of HF exchange employed in the 

functional.27 However, the amount of HF exchange needed to obtain an approximately correct 

relative occupied eigenvalue spectrum (20-25%)22 is much smaller than that needed to correct 
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for the HOMO eigenvalue and the HOMO-LUMO gap (50-80%).29 Thus, there is no global hybrid 

functional that yields the correct IP, fundamental gap, and quasi-particle spectrum all at the 

same time. In fact, both SIE-free KS and global hybrid GKS approaches have their advantages, 

but none of them has been demonstrated to be capable of solving all four issues related to the 

interpretation of KS/GKS eigenvalues as QP energies.30  

 

Recently, tuned long-range corrected (LRC) hybrid functionals, in which the range-separation 

parameter is non-empirically tuned to satisfy exact physical constraints for the ionization 

potential (IP) or the fundamental gap, have been proposed as a possible solution for this 

problem.31-37 The GKS eigenvalues obtained from this class of functionals can predict ionization 

potentials and fundamental gaps of comparable accuracy to G0W0 calculations at a lower 

computational cost,34, 38 thus solving the two major problems of the global hybrids discussed 

above. Here, we analyze whether LRC hybrid functionals tuned to reproduce the IP and/or 

fundamental gap can retain a high level of accuracy for the entire valence spectrum in 

π−conjugated molecules, both in terms of the absolute energies as well as their relative 

ordering. It is only if the entire spectrum is predicted with sufficient accuracy, that the tuned 

LRC-hybrids could truly be considered as reliable, computationally low-cost alternatives to GW 

methods. 
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2. LRC hybrid functionals and the MSIE 

 

The central premise underlying all LRC functionals is a separation of the Coulomb operator into 

short-range (SR) and long-range (LR) components, typically achieved by employing the standard 

error function (erf):  ଵ௥ ൌ ௘௥௙ሺఠ௥ሻ௥ ൅ ௘௥௙௖ሺఠ௥ሻ௥                                                               (1)                               

 

The range-separation parameter, ω, determines the partitioning of the SR and LR components. 

Since the inception of the range-separated hybrid functionals,39 it has been clear that ω should 

in fact be a functional of the density. However, the exact density dependence of ω is not 

known. Initially, most range-separated hybrid functionals employed a fixed value for ω, which 

was determined empirically.40, 41 Later, a number of approaches have been developed that 

allow for a more flexible range separation. Examples include LRC hybrids with multiple ranges42, 

43 as well as the so-called “local range-separated hybrids”.44-46 Recently, an alternative strategy 

has been suggested,31-36, 38 in which the single range-separation parameter is tuned separately 

for each system of interest. In so called “IP-tuned”34 LRC-hybrids  the optimal range-separation 

parameter is found by minimizing the difference between the HOMO eigenvalue and the 

computed IP:  

 

 ∆ூ௉ሺ߱ሻ ൌ ቚെߝுைெைఠ െ ቀܧ௚௦ሺ߱, ܰሻ െ ,௚௦ሺ߱ܧ ܰ െ 1ሻቁቚ           (2)     

 

The IP-tuning procedure has been shown to improve the description of properties related to 

the IP and the fundamental gap for a range of systems.34, 38 The tuning is completely non-

empirical, as it simply requires that the resultant generalized Kohn-Sham solution obeys a 
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property that would be identically satisfied for an exact Kohn-Sham or generalized Kohn-Sham 

approach. Other tuning procedures have been proposed to find the optimal ω, such as tuning 

to the fundamental gap instead of the IP38 or tuning to minimize the many-electron self-

interaction error (MSIE).47, 48  

 

An approximation to the exchange-correlation (xc) functional is called free from MSIE if it 

captures a certain property of the exact xc functional for fractional particle numbers, i.e., the 

total energy for fractional occupation numbers is a series of straight lines with kinks at integer 

occupations (piecewise linear).49, 50 As the slope of the total energy curve is closely related to 

the HOMO eigenvalue via Janak’s theorem,23 the MSIE may be alternatively evaluated by the 

HOMO eigenvalue instead of the total energy, i.e., a functional is called free from MSIE if the 

HOMO eigenvalue is constant for fractional occupation numbers. The IP-tuning procedure for 

the LRC hybrids can be interpreted as a minimization of the MSIE at the HOMO level. As the 

HOMO KS-eigenvalue equals the slope of the total energy, IP-tuning guarantees that the initial 

slope of the total energy curve at δ=0-, i.e., when going from the neutral to the cation state, 

equals the vertical ionization potential, i.e., the energy difference between neutral and cation.32 

However, this does not apply for the whole fractional particle curve, which is why a very small 

and typically positive MSIE remains after the IP-tuning. Still, the MSIE at the HOMO level is 

significantly reduced in the IP-tuned LRC-hybrids as compared to Hartree-Fock and all other 

commonly used semilocal, global hybrid, and standard LRC-hybrid functionals. This has recently 

been demonstrated by some of us for the case of polyene chains.51 
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In order to quantify the MSIE in different exchange-correlation (xc) functionals and systems of 

interest, we evaluate the deviation of the total energy E from the expected straight-line 

behavior: 

ሺܰܧ∆  ൅ ሻߜ ൌ ሺܰܧ ൅ ሻߜ െ ሺܰሻܧ  െ  ሾܧሺܰ ൅ 1ሻ െ  (3)                         ߜሺܰሻሿܧ

 

where N is an integer and 0 ൑ ߜ ൑ 1. ΔΕ vanishes for integer particle numbers. For fractional 

particle numbers however, ΔΕ vanishes only if ∆ܧሺܰ ൅  :ሻ is linear in δ, i.e., if the expressionߜ

ሺܰܧ∆  ൅ ሻߜ ൌ ሺܰሻܧ  ൅  ሾܧሺܰ ൅ 1ሻ െ  (4)                        ߜሺܰሻሿܧ

 

holds, as is the case for the exact xc-functional. In the following, we define the integral: 

׬  ሺܰܧ∆ ൅ ଵ଴ߜ݀ ሻߜ                                         (5) 

 

as the orbital many-electron self-interaction error (OMSIE) corresponding to the HOMO of the 

N+1-electron system. Following this definition, the OMSIE can vanish although Eq. (4) does not 

hold, i.e., a vanishing OMSIE does not necessarily imply a perfect straight-line behavior of the 

total energy. In contrast, a straight-line behavior of the total energy does imply a vanishing 

OMSIE. A positive OMSIE is referred to as a localization error, as it spuriously favors situations 

with integer particle numbers over situations with fractional particle numbers,52 while a 

negative OMSIE is referred to as a delocalization error. In contrast to the original definition of 

the MSIE, which just qualitatively distinguishes between MSIE-free and not MSIE-free 

approaches, the OMSIE provides for a quantitative analysis of the MSIE in a given 
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approximation and system and allows distinguishing between single-particle orbitals. Although 

the OMSIE vanishes for the exact functional, it should be kept in mind that there is no theorem 

that directly relates the OMSIE to the quasi-particle energies. Consequently, a vanishing OMSIE 

does not guarantee an accurate quasi-particle spectrum (in particular not for deeper lying 

states) and vice versa. 

 

In the present work, the range-separation parameter was tuned to the IP following Eq. (2) and 

the OMSIE was evaluated following Eq. (5). We note that, after this part of our work was 

completed and reported,53 we became aware of a different tuning procedure to determine ω 

(involving the IP for the anion, neutral, and cation states) proposed by Refaely-Abramson et 

al.48; in addition, the authors of Ref. 48 evaluated the MSIE for the HOMO and LUMO by 

studying the dependence on the fractional particle number of the eigenvalues rather than the 

total energy (see further discussion in Section 5). 

 

3. Computational Details 

 

The DFT geometries for all the molecules we considered here, that is benzene, pyrimidine, 

3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA), and 1,4,5,8-naphtalene-tetracarboxylic-

dianhydride (NTCDA) (see their chemical structures in Fig. 1), were optimized using QChem54 at 

the B3LYP/cc-pVTZ level. GKS eigenvalues were computed with QChem54 using a cc-pVTZ basis 

set and the semilocal Perdew-Burke Ernzerhof (PBE) functional,55 as well as the corresponding 

global hybrid, PBEh,56, 57 and the LRC-hybrid LC-ωPBE58 using the standard (ω=0.4 bohr-1) and IP-



tuned range-separation parameters. The fractional particle curves for the evaluation of the 

MSIE were performed in a local development version of PSI4.59  

 

The G0W0 calculations employed the all-electron numerical atom-centered orbital (NAO) code 

FHI-aims21, 60, 61 and a tier 4 basis set. In order to avoid issues with the starting point 

dependence of G0W0, which can be significant for the types of molecules studied in this work, 

the recently introduced consistent starting point (CSP) scheme was used.22 For PTCDA and 

NTCDA, the CSP is 30% HF-exchange. In contrast to alternative semilocal DFT or HF starting 

points for G0W0, the CSP has been demonstrated to yield very accurate QP spectra for the 

molecules studied in this work. For 1,8-naphthalene-dicarboxylic anhydride (NDCA), a molecule 

similar to PTCDA and NTCDA, the mean absolute error (MAE) of G0W0@CSP with respect to PES 

is 0.1 eV, whereas the MAE of G0W0@PBE is 0.55 eV.22 The improvement gained from using the 

CSP is particularly significant for sigma orbitals. For the highest occupied sigma orbital in NDCA, 

HOMO-2, the absolute error from comparison to experiment is reduced from 0.68 eV in 

G0W0@PBE to 0.1 eV in G0W0@CSP.22 

 

Figure 1: Molecules studied in this work. 
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4. Quasiparticle spectra from tuned LRC-hybrids 

 

In the following, we assess the performance of tuned LRC-hybrids for PTCDA and NTCDA. The 

intricate electronic structure of these organic-semiconductor molecules has been the subject of 

several theoretical studies8, 11-13, 22, 26, 27, 48 and it has been demonstrated that predicting their 

valence spectra correctly represents a major challenge for electronic-structure methods. At the 

same time, accurate experimental data for the ionization energies62 and the nature of the 

corresponding orbitals13, 14 exist, making PTCDA and NTCDA ideal test cases for the 

performance of tuned LRC hybrids in predicting QP spectra. 

 

Figure 2 shows the comparison of the eigenvalue spectra obtained for PTCDA and NTCDA from 

PBEh and the standard and IP-tuned LC-ωPBE to the G0W0@CSP QP spectrum,22 as well as the 

experimental PES.62 Following common practice, the vibrational broadening is simulated by 

convolution of the eigenvalues with Gaussians and the HOMO eigenvalue and the experimental 

HOMO peaks are shifted to zero. We note that this alignment of the HOMO peaks in fact masks 

one of the main advantages of the tuned LRC hybrids, i.e., their ability to predict very accurate 

IPs from the HOMO eigenvalue. This is a major difference to semilocal, global hybrid, and 

standard LRC hybrid functionals, for which the KS or GKS HOMO eigenvalues typically do not 

yield good approximations to the IP (see Table 1). However, since the superior performance of 

tuned LRC hybrids for IPs and fundamental gaps has already been well documented,34, 38 we will 

not dwell on this question here. Rather, we are interested in the performance of tuned LRC 

hybrids for the entire valence spectrum. For this purpose, the alignment of HOMO peaks 

provides for a relevant, easy comparison of the various DFT functionals. 

 



 

Figure 2: DOS for PTCDA (top) and NTCDA (bottom) from G0W0@CSP, standard LC-ωPBE, IP-
tuned LC-ωPBE, and PBEh as compared to the experimental PES.62 
 
 

 
Exp. 

G0W0@CSP PBE PBEh LC-ωPBE Tuned LC-ωPBE 

  ΔSCF εH ΔSCF εH ΔSCF εH ΔSCF = εH  

PTCDA 8.20 8.13 7.87 6.14 8.04 6.89 8.36 8.85 8.07 

NTCDA 9.67 9.65 9.21 7.12 9.54 8.13 9.92 10.37 9.65 

 

Table 1: HOMO eigenvalues and ΔSCF ionization energies from the different DFT approaches 
compared to G0W0@CSP energies and experimental gas phase IPs62 for PTCDA and NTCDA in 
eV.  
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The frontier orbitals in PTCDA and NTCDA, shown in Fig. 2, generally fall into two categories: π 

orbitals delocalized over the perylene and naphthalene cores, respectively, and σ orbitals 

primarily located on the anhydride groups. Earlier analysis showed that the two types of 

orbitals suffer from significantly different OSIEs, leading to major spectral distortions in 

commonly used semilocal DFT approaches.11, 12 Indeed, Fig. 2 confirms that predicting the 

correct relative position of the σ and π orbitals in PTCDA and NTCDA is a major challenge for 

approximate density functionals. Generally speaking, none of the employed DFT functionals 

satisfactorily matches the G0W0@CSP spectrum. Although the hybrid functionals clearly 

improve upon the semilocal PBE, they all show significant deviations from the G0W0@CSP 

benchmark, in particular in the positions of the σ orbitals located on the anhydride groups. For 

example, the global hybrid PBEh does not predict the correct orbital ordering for the σ and π 

orbitals in both PTCDA and NTCDA. This failure was demonstrated earlier for the B3LYP 

eigenvalue spectrum of PTCDA.13  

 

Turning to the tuned LRC-hybrid, the comparison of the calculated eigenvalue spectra for 

PTCDA and NTCDA to the G0W0@CSP reference is even worse than in the case of the global and 

standard LRC hybrid functionals.  As predicted by G0W0@CSP and confirmed by recent angular 

resolved photoelectron spectroscopy (ARPES) measurements on thin films,13 the PES peak 

between -1.5 eV and -2.1 eV in the PTCDA spectrum has contributions from four π orbitals. 

Moreover, both the ARPES measurement and G0W0@CSP show the HOMO-2/HOMO-3 levels to 

be degenerate. The tuned LC-ωPBE, however, gives the second peak in the PTCDA spectrum to 

be a superposition of two σ-orbitals (HOMO-5/HOMO-6) and does not capture the degeneracy 

of the HOMO-2 and HOMO-3 eigenvalues. However, it has to be kept in mind that, due to the 

interactions with the substrate, the ordering of states obtained from ARPES measurements on a 
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thin film does not have to be necessarily exactly the same as in gas-phase experiments. Also, 

the ARPES signal intensity for σ orbitals is smaller than for π orbitals, which opens the 

possibility that the σ states might hardly be seen in ARPES. As a result, we have chosen to 

compare the QP energies related to σ orbitals to the most accurate theoretical benchmark data 

available for these systems, i.e., G0W0@CSP energies.22 From this comparison, it is clear that the 

tuned LC-ωPBE eigenvalue spectrum presents substantial errors, primarily for those eigenvalues 

that correspond to the σ orbitals located on the anhydride groups. 

 

Of the functionals studied in Fig. 2, only standard LC-ωPBE captures the expected ordering of 

states. However, it also predicts too large level spacings and does not capture the degeneracy 

of the HOMO-2/HOMO-3 levels. In addition, standard LC-ωPBE does not predict accurate IPs 

and fundamental gaps (see Table 1). Based on the results shown in Figure 2, we conclude that 

tuning a LRC-hybrid functional to obtain highly accurate IPs does not guarantee the same level 

of accuracy for the entire valence spectrum. We now elaborate on the reason for that behavior. 

 

In order to analyze the performance of the employed functionals in terms of the OMSIE, we 

considered the successive ionization of PTCDA and NTCDA up to the +10 cation in steps of 0.1 

of an electron charge, using the standard and IP-tuned LC-ωPBE as well as the global hybrid 

PBEh. The deviation of the total energy curves from linearity, ΔΕ (see Eq. (3)), is provided in 

Figure 3. As expected, the global hybrid PBEh yields a significant delocalization error for all 

orbitals, which is as large as -0.20 eV for PTCDA and -0.26 eV for NTCDA. The standard LC-ωPBE 

leads to a localization error of around 0.1 eV for the π orbitals and a very small OMSIE (<0.01 

eV) for the σ orbitals. The IP-tuned LC-ωPBE exhibits an opposite behavior with very small 

OMSIEs well below 0.01 eV for all π orbitals, but a significant delocalization error of 



approximately 0.1 eV for the σ orbitals. The delocalization error in the σ orbitals is consistent 

with the too high energies of the corresponding eigenvalues. This imbalanced treatment of the 

σ and π orbitals helps rationalize the unsatisfactory performance of the IP-tuned LRC-hybrid for 

the prediction of the QP spectra of PTCDA and NTCDA.   

 

 

Figure 3: Many-electron self-interaction error for the ionization of PTCDA (top) and NTCDA 

(bottom) from standard LC-ωPBE (black squares), IP-tuned LC-ωPBE (green triangles), and PBEh 
(blue dots). 
 
 

5. Global exchange vs. range-separation 

 

In Ref. 48, it was demonstrated that the LRC-hybrid γBNL, in which the range-separation 

parameter γ is tuned by imposing Koopmans’ condition on the anion, neutral, and cation states, 

shows the same drawbacks in terms of the QP spectra for PTCDA and NTCDA as the IP-tuned 

LC-ωPBE discussed in our work. Although the authors of Ref. 48 restricted their analysis of the 

OMSIEs to those of the HOMO and LUMO, both of which are π orbitals, they also suggested 
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that the problem was related to an imbalanced treatment of σ and π orbitals. Following earlier 

work by Srebro and Autschbach,47 they proposed that the issue could be addressed by 

combining a fraction of short-range (SR) HF exchange with the LRC hybrid by partitioning the 

Coulomb operator according to: 

 ଵ௥ ൌ ሻ௘௥௙ሺఠ௥ሻ௥ןାሺଵି ן ൅ ሺଵିןሻ ୣ୰୤ୡሺఠ௥ሻ௥                  (6) 

 

In the following, we refer to the functional resulting from replacing the Coulomb operator in LC-

ωPBE by the one in Eq. (6) as LC-ωPBEα. This functional introduces the additional parameter α, 

i.e., the amount of HF exchange employed in the SR part, and thus involves an additional 

(ideally non-empirical) constraint. In search for such a constraint on α, Refaely-Abramson et al. 

chose different values of α between 0 and 0.5, tuned the range-separation parameter by 

imposing Koopmans’ condition on the anion, neutral, and cation states, and analyzed the MSIE 

in the HOMO eigenvalue when going from the dication to the anion. They showed that once the 

range-separation parameter was fixed, the σ orbitals located on the anhydride groups were 

sensitive to α, whereas the π orbitals delocalized over the perylene or naphthalene backbones 

were not. A value of α=0.2 was found to minimize the eigenvalue MSIE for the HOMO and 

LUMO orbitals of both PTCDA and NTCDA.48 The authors concluded that the inclusion of SR HF 

exchange improves the agreement between the eigenvalue spectra obtained from tuned LRC-

hybrids and their G0W0@PBE benchmark within the energy range studied in their work, i.e., 3 

eV below the IP. In the light of this finding and the results presented in Figure 3, we reexamine 

the performance of LC-ωPBE when including a fraction of HF exchange in the SR. In contrast to 

Ref. 48, our focus here lies on evaluating the OMSIE for both π and σ orbitals; thus, here, the 



 18

deeper eigenvalue spectrum is considered as well and we take two additional molecules into 

account, namely benzene and pyrimidine. 

  

Following the method proposed by Refaely-Abramson et al.,48 we varied α in LC-ωPBEα 

between 0 and 0.5 and tuned ω for each α separately using the IP-tuning procedure for PTCDA 

and NTCDA. For the case of PTCDA (top of Figure 4), we find ω values and eigenvalue spectra in 

very good agreement with Ref. 48, which underlines that the difference mentioned above in the 

tuning procedures does not have a significant influence on the obtained spectra.  

 

Figure 4 shows the evolution of the GKS eigenvalues as a function of α for PTCDA and NTCDA. 

For PTCDA, the GKS eigenvalues corresponding to the π orbitals HOMO to HOMO-4 are not 

significantly affected by the variations in α. In contrast, the σ eigenvalues markedly change 

with α. The best agreement with the G0W0@CSP benchmark is found for α-values between 0.3 

and 0.4, where the GKS eigenvalues approximate the theoretical benchmark within an error bar 

of 0.2 eV. Although the description of the eigenvalues corresponding to π orbitals is much 

better than for σ-type orbitals, it is not entirely without flaws. For example, the tuned LRC-

hybrid does not capture the degeneracy of the HOMO-2 and HOMO-3 orbitals.  

 

For NTCDA, the analysis is somewhat less conclusive with respect to the optimal value of α. In 

this case, it is not only the σ orbitals but also some of the π orbitals that show a significant 

dependence on α, as exemplified by HOMO-5, HOMO-7, and HOMO-8. In addition, there is no 

single α value for which all GKS eigenvalues match the G0W0 QP energies. When considering an 

error bar of 0.2 eV on the GKS eigenvalues, an approximate agreement with the G0W0@CSP 

energies is again found for α-values between 0.3 and 0.4. 



 

 

Figure 4: Highest occupied GKS eigenvalues (solid lines) as a function of fraction of HF exchange 

in the SR, α, for PTCDA (top) and NTCDA (bottom) computed from tuned LC-ωPBEα. G0W0@CSP 
energies are denoted as dashed horizontal lines. Eigenvalues for which the G0W0@CSP energies 
are degenerate are represented by the same color. 
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Figure 5 illustrates the analysis of the OMSIE for the ionization of the two highest occupied 

σ (left) and π (right) orbitals in PTCDA (top) and NTCDA (bottom). Several conclusions can be 

drawn from this figure. First, the OMSIE for the highest two occupied π orbitals is very small 

(well below 10-3 eV) and does not significantly depend on α. The differences among the OMSIEs 

for the different values of α are not significant (on the order of 10-4 eV) and no general trend in 

the evolution of the OMSIE with α can be found. This is not surprising since the IP-tuning 

procedure is known to significantly reduce the OMSIE for the HOMO and it was found earlier 

that similar types of orbitals display similar OMSIE values with LRC-hybrids.51 In contrast, the 

highest two occupied σ orbitals show a significant delocalization error that decreases with 

increasing α. However, the OMSIE for the σ orbitals is not minimized in the range of α values 

studied here. In particular, a significant delocalization error is found in the range of α-values for 

which the best agreement of the GKS eigenvalues with the QP energies was found, i.e., 0.3 < α 

< 0.4.  

 

From the general trends illustrated in Figures 4 and 5, it is clear that, even if it were possible to 

find a combination of α and ω values for which the OMSIEs of both σ and π orbitals are 

minimized, this would not lead to a GKS eigenvalue spectrum that satisfactorily reproduces the 

G0W0 QP spectrum. Also, our results demonstrate that there is no single value of α for which 

the entire GKS valence spectrum matches the G0W0@CSP reference. It might still be possible to 

find tuning procedures for α and/or ω that improve the overall eigenvalue spectra obtained 

from the LRC-hybrids “on average”. However, it is clear that while tuning the range-separation 

parameter to a single orbital with a particular character may yield a high level of accuracy for 

the IP, the same level of accuracy is not guaranteed for the entire valence spectrum. 

 



 

Figure 5: Deviation of the total energy from straight line, ΔΕ, for the ionization of the two 

highest occupied σ (left) and π (right) orbitals in PTCDA (top) and NTCDA (bottom) computed 

from LC-ωPBEα for different amounts of SR HF exchange, α, between 0 and 0.5. 
 
 
 

At this stage, it would be interesting to find the source of the distinctly different behavior of π 

and σ orbitals of NTCDA and PTCDA and to understand the reason why only the σ (and not the 

π) orbitals of PTCDA seem to be affected by α. For this purpose, we have repeated the analysis 

of Figure 4 for the cases of benzene and pyrimidine (see Fig. 1), both of which have been 

studied extensively experimentally and theoretically (see Ref. 22 and references therein). While 

benzene and pyrimidine are very similar molecules in terms of their size and overall electronic 

structure, there is a major difference in the nature of their frontier orbitals: the HOMO of 

benzene is a (degenerate) π-orbital, while the HOMO of pyrimidine is a nonbonding orbital with 

dominant contributions from the nitrogen lone pairs. An important advantage of benzene and 

pyrimidine is that, in contrast to PTCDA and NTCDA, their PES shows distinct and separate 

peaks. Hence, we can directly compare to experimental ionization energies in addition to 

theoretical benchmark data. As the G0W0@CSP spectrum agrees well with the experimental 

PES, as confirmed by the small MAEs of 0.16 eV for benzene and 0.09 eV for pyrimidine, we 

only show the comparison to the experimental PES in the following. 
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Again, we employ LC-ωPBEα, obtain ω from IP-tuning, and vary α between 0 and 0.5. The 

evolution with α of the GKS eigenvalues obtained in this way is depicted in Figure 6.  For 

benzene, the eigenvalues corresponding to the σ orbitals decrease by as much as 1 eV with α  

going from 0 to 0.5, while the π orbitals do not change significantly. As in the case of NTCDA 

and PTCDA, α has a negligible influence for those orbitals whose character is similar to that of 

the HOMO. For pyrimidine, the IP-tuning sets the eigenvalues corresponding to the n-type 

HOMO and all other orbitals of a similar nature, including HOMO-4 and HOMO-5, whereas the 

eigenvalues corresponding to the π orbitals strongly increase with α.  

 

These results demonstrate that the different behavior of different types of orbitals with respect 

to α is a direct consequence of the tuning procedure. The IP-tuning does minimize the OMSIE 

for the HOMO and all orbitals of a similar character. The consequences are that: (i) the 

eigenvalues of the latter become essentially independent of the amount of HF exchange 

employed in the SR; and (ii) a change in α primarily influences eigenvalues that correspond to 

orbitals of a different character.  

 

The comparison to experimental data shows that, similarly to NTCDA and PTCDA, there is no 

single α value such that the GKS eigenvalues match the reference data with adequate accuracy 

for the entire spectrum.  Some GKS eigenvalues, such as the HOMO-4 in both benzene and 

pyrimidine, even deviate by more than 0.5 eV from the experimental ionization energies for the 

whole range of α values studied here. For pyrimidine, this also means a qualitative failure of LC-

ωPBEα to reproduce the orbital ordering of HOMO-4 through HOMO-6.63, 64 

 

 



 

Figure 6: Highest occupied GKS eigenvalues (solid lines) as a function of fraction of HF exchange 

in the SR, α, for benzene (top) and pyrimidine (bottom), computed from LC-ωPBEα. 
Experimental ionization energies in gas-phase for benzene65 and pyrimidine66 are denoted as 
dashed horizontal lines. Eigenvalues for which the experimental (and G0W0@CSP) energies are 
degenerate are represented by the same color. 
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6. Conclusions 

 

We have demonstrated, using representative molecules such as PTCDA, NTCDA, benzene, and 

pyrimidine, that the high level of accuracy obtained from tuned LRC-hybrid functionals for 

ionization potentials and fundamental gaps is not retained for the entire valence spectrum. This 

drawback can be rationalized by the observation that orbitals of different character, such as σ 

and π orbitals in conjugated molecules, require significantly different range-separation 

parameters to minimize their corresponding orbital-specific many-electron self-interaction 

errors. Thus, the IP-tuning of the range-separation parameter significantly reduces the OMSIE 

for the HOMO and all similar orbitals, but not for orbitals of a different nature.  

 

To assess to what extent the inclusion of a suitable fraction of short-range HF exchange (α) can 

improve the accuracy of the GKS eigenvalue spectra, different non-empirical approaches to  

optimize α have been considered. No single value of α was found to provide a sufficiently 

accurate description of the entire QP spectrum as compared to the most accurate benchmark 

data available. Even if α is chosen empirically, such that the overall spectrum is as similar as 

possible to experiment and/or to benchmark calculations, the obtained GKS eigenvalues do not 

reach a level of accuracy comparable to G0W0 calculations that employ a reliable DFT starting 

point. We conclude that the existing schemes for the tuning of range-separated hybrid 

functionals have yet to achieve the accuracy of reliable GW methods for the calculation of 

quasi-particle spectra. 
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