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We study a spin-one Heisenberg model with exchange interaction, J , uniaxial single-ion exchange
anisotropy, D, and Zeeman coupling to a magnetic field, B, parallel to the symmetry axis. We com-
pute the (D/J,B/J) quantum phase diagram for square and simple cubic lattices by combining an-
alytical and Quantum Monte Carlo approaches, and find a transition between XY-antiferromagnetic
and ferronematic phases that spontaneously break the U(1) symmetry of the model. In the language
of bosonic gases, this is a transition between a Bose-Einstein condensate (BEC) of single bosons and
a BEC of pairs. Our work opens up new avenues for measuring this transition in real magnets.

PACS numbers: 75.30.Kz,02.70.Ss

The unambiguous realization of BECs in laser cooled
collections of cold atoms [1, 2] triggered the search for
more exotic states of matter and phase transitions that
take place in bosonic gases. In parallel with these efforts,
other experimental groups demonstrated that several as-
pects of the BEC quantum phase transition can also be
measured in quantum magnets that are alternative re-
alizations of bosonic gases [3–7]. The main advantage
of this alternative approach is that the much lighter bo-
son mass leads to much higher transition temperatures,
while the uniform character and well-defined tempera-
ture of quantum magnets are crucial for the study of
quantum phase transitions. The main disadvantage is
that the continuous symmetry associated with particle
number conservation in atomic gases is always an ideal-
ization for the case of quantum magnets [8]. However,
many real magnets, for which the continuous symmetry
breaking terms are much smaller than the ordering tem-
perature, allow for measuring the universal behavior of
continuous symmetry breaking critical points over a large
window of temperatures. The simplest example is mag-
netic field induced BEC quantum critical point (QCP)
that is observed in several quantum magnets [3–7].

S = 1 magnets can be mapped into gases of semi-
hard core bosons via a generalization of the Matsubara-
Matsuda transformation [9, 10] that also maps the local
magnetization into the boson density: nj = Szj + 1. In
contrast to the hard-core bosons associated with S = 1/2
magnets, it is possible to study “Hubbard-like” bosonic
gases with on-site density-density interactions because
nj ≤ 2 [11–15]. Moreover, the semi hard-core constraint,
nj ≤ 2, can be incorporated as an infinitely repulsive
three-body on-site term that precludes phase segrega-
tion when the two-body term is attractive. This situa-
tion is ideal for studying transitions between single-boson
BECs and BECs of pairs, whose counterpart in atomic
physics are transition between BECs of atoms and di-
atomic molecules (transitions between XY-magnetic and
nematic orderings in the spin language).

While the XY terms of the exchange interaction play
the role of the kinetic energy, the Ising terms map into

off-site density-density interactions. On-site density-
density interactions are generated by uniaxial single-ion
anisotropy terms of the form D(Szj )2. A magnetic field,
B, parallel to the symmetry axis acts as a chemical
potential because it couples to the total magnetization
Mz =

∑
j S

z
j that coincides with the total number of

bosons up to an irrelevant constant. Previous works have
exploited this spin-boson mapping for studying spin su-
persolid phases of S = 1 Heisenberg models with uniaxial
exchange and single-ion anisotropies [16–18]. The main
purpose of this work is to study the quantum phase di-
agram (QPD) of the isotropic S = 1 Heisenberg model
when the single-ion anisotropy and Zeeman terms are in-
cluded. This model is relevant for describing several Ni-
based organic compounds as well as inorganic systems
that are discussed at the end of this work.

Our S = 1 model is defined on a hypercubic lattice,

H = J
∑
〈i,j〉

Si · Sj +D
∑
i

(Szi )
2 −B

∑
i

Szi , (1)

and the antiferromagnetic (AFM) exchange coupling J >
0 only connects nearest-neighbor sites 〈i, j〉. Since an
attractive on-site interaction is needed for pairing the
bosons, we will only consider the D < 0 case that corre-
sponds to easy-axis anisotropy.

Hamer et al. computed the mean field QPD of H on a
square lattice and obtained a single phase transition from
AFM Néel (AFM-z) to the fully polarized (FP) state for
large |D|/J values [19]. However, an intermediate ne-
matic phase must exist in this regime according to the ef-
fective low-energy model, H̃, that is derived by expanding
in the small parameter J/|D| (strong coupling expansion
in the bosonic language). The low-energy subspace, S, is
a direct product of the Sz = ±1 doublets of each lattice
site that are separated from the Sz = 0 states by an en-
ergy gap |D| [20]. H̃ is obtained by applying a canonical
transformation and projecting into S: H̃ = PSe

κHe−κPS
(κ is the anti-hermitian generator of the canonical trans-
formation and PS is the projector on S). If we use a
pseudospin s = 1/2 variable to describe each doublet,
Sz = 2sz, we obtain the following expression for H̃ up to



2

quadratic order in J :

H̃ =
∑
〈ij〉

J zszi szj + J xy(sxi s
x
j + syi s

y
j )− 2B

∑
j

szj , (2)

with J z = 4J − J2/D and J xy = J2/D. H̃ is an XXZ
s = 1/2 model whose QPD is well-known in any dimen-
sion. In particular, the mean field phase diagram is qual-
itatively and quantitatively correct for spatial dimension
d ≥ 2. Since the case of interest corresponds to effec-
tive strong easy-axis anisotropy, |J z/J xy| ' 4D/J � 1,
the low field ground state has Néel ordering that extends
up to the spin-flop field, Bsf , whose mean field value is
Bsf ' d

√
(J z + J xy)(J z − J xy)/2. The corresponding

curve is the lower dotted line on the left of Figs. 1a and
b. At B = Bsf , the pseudospin variables flop from the
Néel state to a canted ferromagnetic state (J xy < 0)
whose canting angle relative to the z-axis is given by
cosαsf = 2〈szj 〉 =

√
(J z + J xy)/(J z − J xy). The effec-

tive operator for S+
j

2
is S̃+

j

2
= PSe

κS+
j

2
e−κPS = 2s+j .

This identity implies that the planar ferromagnetic order-
ing in the pseudospin variables or “spin-flop” phase cor-
responds to ferronematic (FNM) ordering in the original

S = 1 spin variables, i.e., 〈s+j 〉 6= 0 implies 〈S+
j

2〉 6= 0. On

the other hand, the effective operator for S+
j is equal to

zero, S̃+
j = PSe

κS+
j e
−κPS = 0, because of the following

symmetry argument. Being odd under time reversal sym-

metry, S̃+
j must be equal to a polynomial form that only

contains odd terms in the sνl variables ν = {x, y, z}. Such
polynomial form must be odd under a π spin rotation
along the z-axis because eiπ

∑
l S

z
l S+

j e
−iπ

∑
l S

z
l = −S+

j .

Since eiπ
∑

l S
z
l s+j e

−iπ
∑

l S
z
l = s+j , the polynomial form

must be equal to zero, implying absence of planar mag-
netic ordering in the large D/J limit and confirming the
FNM character of the intermediate phase. The transi-
tion to the fully saturated state is of second order in this
regime and belongs to the BEC universality class in di-
mension d+2. A mean field treatment [19] of the original
Hamiltonian, H, misses the second order fluctuations in
J (J xy = J2/D) that stabilize the FNM phase.

The approximated value of the saturation field is

Bsat(|D|/J � 1) ' d

2
(J z − J xy) = d(2J − J2

D
), (3)

and the corresponding curve is the upper dotted line
on the left of Figs. 1a and b. While Eq. (3) is a good
approximation for Bsat if |D|/J � 1, the exact curve
Bsat(|D|/J � 1) can be computed analytically as long
as the transition remains continuous. By solving the two
body problem of diagonalizing H in the Mz = N − 2
invariant subspace (two flipped spins relative to the FP
state) we obtain the exact energy, Eg(M

z = N − 2), of
the two bosons bound sate. The condensation of these
pairs leads to the FNM ordered state. If the transition is
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FIG. 1: Quantum phase diagrams in (a) square lattice and
(b) cubic lattice. Single and double solid lines correspond to
first and second order phase transitions respectively. Single
solid lines are obtained by exact solutions while double solid
lines are guides for the eye based on QMC results. Insets:
enlarged views of the FNM to AFM-xy transition. Dashed
and dotted lines are analytical solutions for the weak and
strong anisotropy regimes respectively.

continuous, the exact value of Bsat is the field such that
Eg(M

z = N−2) = Eg(M
z = N) = N(Jd−D−B). The

resulting curve is shown as a full line in the |D|/J � 1
region of Figs. 1a and b.

The opposite limit, |D|/J � 1, is well described by
a mean field treatment of the original Hamiltonian H.
The mean field Néel state |ΨN〉 =

⊗
j∈A |1〉j

⊗
l∈B |1̄〉l is

the most stable at low-enough fields. Here A and B de-
note the two sublattices, while |1〉j , |1̄〉j and |0〉j are the
eigenvectors of Szj with eigenvalues 1, −1 and 0 respec-
tively. In this regime there is a spin-flop transition, but
to a canted XY AFM (AFM-xy) phase that is described
by the mean field state

|Ψsf〉 =
⊗
j

eiQ·rj sin θ[cosφ|1〉j + sinφ|1̄〉j ] + cos θ|0〉j ,

where Q is the AFM wave vector that has all the com-
ponents equal to π. The optimal variational parameters,
θ0 and φ0, are obtained by minimizing the mean field en-
ergy 〈Ψsf |H|Ψsf〉. The dashed line on the right of Figs. 1a
and b corresponds to the spin flop curve Bsf(D/J) that
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results from 〈ΨN|H|ΨN〉 = 〈Ψsf(θ0, φ0)|H|Ψsf(θ0, φ0)〉.
For small D/J , the second order transition between

the spin-flop and FP states belongs to the BEC univer-
sality class. The exact value of the saturation field in this
regime is shown as a full line in the upper right region of
Figs. 1a and b, and given by the equation

B0 = D + 4dJ. (4)

However, we know that the effective interaction between
bosons should become attractive for |D| > |Dc1|. There-
fore, the second order transition line described by Eq.(4)
should become of first order at a tricritical point (TCP)
with coordinates [Dc1/J,B0(Dc1/J)/J ] (see Figs. 1a and
b). The region near TCP is well described by the
Ginzburg-Landau (GL) free energy density,

f(φ) = (B −B0)|φ|2 + u|φ|4 + w|φ|6. (5)

Here φ is the complex order parameter for the BEC of
single bosons. u and w are the amplitudes of the ef-
fective two-body and three-body interactions in the long
wavelength (or continuum) limit. The field induced tran-
sition is continuous for repulsive u > 0 and it happens at
Bsat = B0 [see Eq.(4)]. However, it is clear from Eq. (5)
that the transition becomes discontinuous for u < 0.
In this case, the transition field is Bsat = B0 + u2/4w
and the discontinuous change of the boson density is
∆mz = ∆|φ|2 = −u/2w (mz =

∑
j〈Szj 〉/N). The am-

plitude u changes sign when the two-boson scattering
length, as, diverges in d = 2 (as → ∞) and becomes
equal to zero in d = 3 (as = 0). These conditions deter-
mine the values of Dc1/J in d = 2 and d = 3 respectively,
that can be obtained by computing the effective interac-
tion vertex in long wave length and low frequency limits:

Γq(k,k′;ω) = Vq(k) +

∫ π

−π

ddp

(2π)d
Vq−p(k)Γp(k,k′;ω)

ω − εk+p − εk′−p + iδ
(6)

where Vq(k) = 2D + γq + (
√

2 − 2)(γk+q + γk), εq =
(2dJ + γq) is the single boson dispersion at the TCP
and γq = 2J

∑
ν cos kν . By solving Eq. (6) for q = 0,

k = k′ = Q, and ω → 0, we obtain |Dc1|/J = 4d/3.
A similar analysis cannot be applied to the point where
the FP phase boundary changes from second to first or-
der coming from the strongly anisotropic side |D| � J .
Note that the FNM phase disappears right at this critical
D = Dc2/J point (see Fig. 1), while the magnetization
vs field curve becomes discontinuous (see insets of Figs. 2
and 3). This discontinuity indicates that it is critical end
point (CEP) and the effective GL theory is not applica-
ble. Then, the coordinates of the CEP must be obtained
from the quantum Monte Carlo (QMC) simulations that
we describe below.

Our analysis of the two opposite regimes, |D|/J � 1
and |D|/J . 1, indicates that there is a transition be-
tween AFM-xy and FNM orderings in the intermediate
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FIG. 2: Magnetic field sweep showing AFM-z to FNM to
FP sequence of ground states for d = 2 lattices of L2 sites
and periodic boundary conditions (PBC). Data shown are for
D/J = −5 and inverse temperature of βJ = 4L. The inset
shows mz along the along the line B(D/J) where the two-
magnon ground state is degenerate with the FP state.

region. We use a QMC method with global updates [21]
for studying this regime, because there is no small pa-
rameter for validating an analytical approach. Although
H does not have a negative sign problem, standard QMC
algorithms cannot output the off-diagonal FNM correla-
tor because of a slowing down problem. Therefore, we use
a novel multi-discontinuity algorithm [22], that is based
on the directed-loop algorithm [23] and eliminates the
slowing down problem.
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FIG. 3: QMC results for d = 3 lattices of L3 spins with
PBC. The temperature is scaled with the systems size, βJ =
4L, and the Hamiltonian parameters are (a) D/J = −5, (b)
D/J = −7.5. Inset of (b) shows mz along the line B(D/J)
where the two-magnon ground state is degenerate with the
FP state (βJ = 6L).

The different phases are characterized by computing
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the zero frequency AFM-xy and FNM susceptibilities,

χxxQ =
1

βN

∑
i,j

∫ β

0

〈S+
i (τ)S−j (0)〉eiQ·(ri−rj)dτ,

χFNM =
1

βN

∑
i,j

∫ β

0

〈S+
i (τ)S+

i (τ)S−j (0)S−j (0)〉dτ,

where N = Ld is the number of lattice sites. We also
compute standard thermodynamic quantities, like the
magnetization, mz, and the spin stiffness, ρs (response
of the system to a twist in the boundary conditions),
that is obtained from the fluctuations of the world lines
winding numbers along the principal axes [24].

Figs. 1a and b include the d = 2 and d = 3 QPDs
obtained from our QMC results. Figs. 2 shows the four
different observables computed as a function of B/J for
D/J = −5 and different system sizes. Except for the
FNM-AFM-xy transition, the phase boundaries of the
first order phase transitions, shown in Figs. 1a and b,
are determined from the size dependence of the disconti-
nuity of the uniform magnetization and the correspond-
ing kink of energy density. These boundaries agree very
well with our analytical solutions in the limiting regimes
|D|/J � 1 and |D|/J . 1. Moreover, the QMC re-
sults indicate that the transition to the saturated state
becomes of first order between the CEP and TCP that
we discussed above. The coordinates of the TCP coin-
cide with the exact values obtained by solving Eq.(6).
The coordinates of the CEP obtained from our QMC
simulations are Dc2/J = −3.70 ± 0.03 for d = 2 and
Dc2/J = −6.33 ± 0.03 for d = 3. Figs. 3a and b show
that the magnetization curve has a small discontinuity
for D/J = −5, while it is continuous for D/J = −7.5.
The first order transition line for |Dc1| < |D| < |Dc2|
falls consistently above the curves given by Eqs. (3) and
(4), as expected from our GL analysis near the TCP.

The transition from FNM to AFM-xy ordering (double
full-dashed line in Figs. 1a and b) spontaneously breaks
the discrete symmetry of global spin rotation by π along
the z-axis. Consequently, if continuous, this transition
should belong to the Ising universality class in dimension
d+1. The scaling analysis shown in Fig. 4 indicates that
this transition is most likely continuous away from the
FP and AFM-z phases. However, our magnetization vs.
field curves indicate that it becomes weakly first order
near the boundaries with these two phases, implying that
the upper end of the FNM to AFM-xy phase boundary is
a CEP, while the lower end corresponds to a triple point
(TP) at the junction of the FNM, AFM-xy, and AFM-z
phases (see Fig. 1).

The continuous or quasi-continuous nature of the FNM
to AFM-xy quantum phase transition indicates that the
single-boson condensate is continuously converted into
a condensate of pairs (the condensate density is equal
to the particle density ρ = 1 − mz in the low-density
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FIG. 4: Finite size scaling of the QMC results for the AFM-
xy structure factor, S+−(Q) =

∑
jl S

+
j S

−
l e

iQ·(rj−rl)/N , near

the FNM to AFM-xy transition in d = 2 with B/J = 4.1 and
β = 4L. The values of the exponents for the Ising universality
class in dimension 3 = 2+1 are extracted from Ref. [25]. The
common crossing point at Dc/J = −4.22 ± 0.02 (see inset),
together with the curve collapse in the critical region, suggests
that the transition is continuous.

limit). This observation implies that BECs of pairs and
single-bosons coexist in a finite region of the AFM-xy
phase that ends up at the phase boundary between the
two phases where the single-boson BEC disappears com-
pletely: 〈S+

j 〉 = 0. Indeed, for d = 3 and D = −6.3J ,
the size of the boson-pair, ξ ' 0.77, is three times shorter
than the average inter-boson distance, ρ−1/3, right below
the saturation field (ρ = 1−mz ' 0.1).

The AFM-xy and FNM orderings correspond to BECs
of single bosons and pairs of bosons, respectively. The
shape of the phase boundary opens the possibility of mea-
suring magnetic field induced transitions between these
two phases (see Figs. 1a and b). Since a direct experi-
mental detection of the spin-nematic order parameter can
be rather challenging, our predictions for the quantum
phase diagram and behavior of different thermodynamic
properties are crucial for unveiling this ordering in real
magnets. While many S = 1 magnets are described by H
[26–29], it is vital to know what are the optimal ratios of
D/J for detecting the FNM ordering and characterizing
the FNM to AFM-xy quantum phase transition. Since
most of these compounds are organic magnets, the D/J
ratio can be largely tuned as a function of pressure.Thus,
knowing the appropriate range of D/J values is necessary
for detecting organic materials in which such a transition
can be induced by pressure in magnetic fields that should
be nearly 95% of the saturation field.

Finally, we mention that field-induced spin supersolid
states (coexistence of AFM-z and FNM orderings) ex-
ist at least in the strongly anisotropic limit of H for
triangular [30–32] and face-centered-cubic lattices [33].
Other exotic states have been reported for the kagome
lattice [20]. Ferronematic order has also been obtained
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for S = 1 Heisenberg models that include biquadratic
interactions.[10, 34–37]
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