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Recent theoretical works have demonstrated various robust Abelian and non-Abelian fractional
topological phases in lattice models with topological flat bands carrying Chern number C = 1. Here
we study hard-core bosons and interacting fermions in a three-band triangular-lattice model with
the lowest topological flat band of Chern number C = 2. We find convincing numerical evidence
of bosonic fractional quantum Hall effect at the ν = 1/3 filling characterized by three-fold quasi-
degeneracy of ground states on a torus, a fractional Chern number for each ground state, a robust
spectrum gap, and a gap in quasihole excitation spectrum. We also observe numerical evidence of
a robust fermionic fractional quantum Hall effect for spinless fermions at the ν = 1/5 filling with
short-range interactions.

PACS numbers: 73.43.Cd, 05.30.Jp, 71.10.Fd, 37.10.Jk

Introduction.— Topological states of matter have been
the focus of intensive studies since the discovery of the
integer quantum Hall effect (QHE) [1] and the fractional
QHE (FQHE) [2]. The latter, occurring at fractional fill-
ing of Landau levels (LLs), provides the first example of
fractionalization in two dimensions. The precise quan-
tization of Hall conductance was found to be directly
connected to a topological invariant Chern number [3, 4]
soon after its experimental discovery. The FQHE is
further characterized by quasi-particles with fractional
charge [5] and fractional statistics [6, 7] as well as topo-
logical ground-state degeneracy [8], which are manifes-
tations of its topological order [9]. The idea of flux at-
tachment and composite-particle theory has provided a
simple but profound picture of the FQHE [10, 11].

Recently, a series of numerical works have demon-
strated convincing evidence of the Abelian [12–14] and
non-Abelian FQHEs [15–17] in topological flat band
(TFB) models [18] without an external magnetic field.
These TFB models, belonging to the topological class
of the well-known Haldane model [19], have at least one
topologically nontrivial nearly flat band with a Chern
number C = 1, which is separated from the other bands
by large gaps [18, 20–22]. This intriguing fractionaliza-
tion effect in TFBs without LLs, defines a new class of
fractional topological phases (also known as fractional
Chern insulators), and has stimulated a lot of recent re-
search activities [23–32].

In contrast to the continuum model in a magnetic field
where the Chern number of a LL is always one, higher
Chern numbers are possible for nearly flat bands in lat-
tice models [33]. The Abelian and non-Abelian FQHE
states found in C = 1 TFBs [12–17] generally have anal-
ogy with ones in the continuum LL, while FQHE in TFBs
with high Chern numbers might do not have such sim-

ple analogy; thus new exotic topological states of mat-
ter might occur in these TFBs [34]. Nonetheless, exotic
FQHE in TFBs with high Chern numbers has not been
studied in microscopic models. In this Letter, we aim
to fill in the gap by demonstrating that exotic FQHE
for both hard-core bosons and interacting fermions can
indeed be realized in TFBs with C = 2.
We first introduce a three-band triangular lattice tight-

binding model whose lowest TFB has Chern number
C = 2. Through extensive exact diagonalization (ED)
studies of hard-core bosons in the TFB, we find convinc-
ing numerical evidence of the bosonic FQHE at the filling
ν = 1/3 in the C = 2 TFB. This 1/3 bosonic FQHE is
characterized by three-fold quasi-degeneracy (d = 3) of
ground states on a torus, a fractional quantized Chern
number for each ground state, a robust spectrum gap,
and a gap in quasihole excitation spectrum. For the 1/5
filling of spinless fermions in the C = 2 TFB, clear FQHE
features are also observed. We discuss the plausibility of
understanding the exotic ν = 1/3 bosonic and ν = 1/5
fermionic FQHEs in the C = 2 TFB in terms of effective
two-component (or bilayer) FQHEs.
Formulation.—We introduce a three-band triangular-

lattice model of interacting hard-core bosons:

H = ±t
∑

〈rr′〉

[

b†
r
′br exp (iφr

′
r) + H.c.

]

±t′
∑

〈〈rr′〉〉

[

b†
r
′br exp (iφr

′
r) + H.c.

]

+V1

∑

〈rr′〉

nrnr
′ + V2

∑

〈〈rr′〉〉

nrnr
′ (1)

where b†
r

creates a hard-core boson at site r, 〈. . . 〉
and 〈〈. . . 〉〉 denote the nearest-neighbor (NN) and the
next-nearest-neighbor (NNN) pairs of sites, respectively
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FIG. 1: (color online). (a) The three-band triangular-lattice
model: The NN and NNN hopping amplitudes are positive
(negative) along the solid (dashed) lines; The arrows represent
the phases ±2φ (signs are represented by arrow directions) in
the NN hoppings and ±φ in the NNN hoppings. (b) Edge
states of the triangular-lattice model in (a), and the lower
TFB owns the Chern number C = +2.
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FIG. 2: (color online). The 1/3 bosonic FQHE. (a) Low en-
ergy spectrum En − E1 versus the momentum k1N2 + k2 of
the 1/3 bosonic FQHE phase for three lattice sizes Ns = 45,
54 and 63 at ν = 1/3 filling with V1 = V2 = 0.0. (b) Spectrum
gaps versus 1/Ns for four lattice sizes.

[Fig. 1(a)], and V1 and V2 are the NN and the NNN re-
pulsions.

The triangular-lattice model has a unit cell of three
sites, and therefore has three single-particle bands. Here,
we adopt the parameters t = 1, t′ = 1/4 [the signs
of hoppings are descried in Fig. 1(a)] and φ/2π = 1/6,
such that a lowest TFB of C = 2 is formed with a flat-
ness ratio (of the band gap over bandwidth) of about
15 [Fig. 1(b)]. In our ED study, we consider a finite
system of N1 × N2 unit cells (total number of sites
Ns = 3 × N1 × N2 and total number of single-particle
orbitals Norb = N1N2 in each band) with basis vectors
shown in Fig. 1(a) and we use periodic boundary condi-
tions. We denote the boson numbers asNb, and the filling
factor of the flat band is ν = Nb/Norb. The momentum
vector q = (2πk1/N1, 2πk2/N2) will be denoted by a pair
of integer quantum numbers (k1, k2). The amplitude of
the NN hopping t is set as the unit of energy.

The 1/3 bosonic FQHE. (a) Low energy spectrum.—
We first look at the low-energy spectrum for a finite lat-
tice with Ns = 45 (3× 3× 5) sites at filling ν = 1/3 with
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FIG. 3: (color online). The 1/3 bosonic FQHE. Low energy
spectra versus θ2 at a fixed θ1 = 0 for three lattice sizes at
ν = 1/3 filling with V1 = V2 = 0.0: (a) Ns = 36; (b) Ns = 45;
(c) Ns = 54.

V1 = V2 = 0.0 as shown by Fig. 2(a). We denote Ei as
the energy of the i-th lowest many-body eigenstate. The
ground state manifold (GSM) is defined as a set of low-
est states with close energies well separated from other
excited states by a finite spectrum gap. For the ν = 1/3
bosonic FQHE phase, two necessary conditions are satis-
fied: a GSM with three quasi-degenerate (d = 3) lowest
eigenstates (E3−E1 ∼ 0); and the d = 3 GSM being sep-
arated from the higher eigenstates by a finite spectrum
gap E4 − E3 ≫ E3 − E1.
We have also obtained numerical results from other

lattice sizes of Ns = 36 (3 × 3 × 4), 54 (3 × 3 × 6) and
63 (3 × 3 × 7) around V1 = V2 = 0.0. Similar to the
FQHE in the C = 1 TFBs [12–14], if (k1, k2) is the mo-
mentum sector for one of the states in the GSM, we find
that other state in the GSM can be found in the sector
(k1 +Nb, k2 +Nb) [module (N1, N2)] demonstrating the
momentum space translation invariant as an emerging
symmetry of the system. Indeed, for Ns = 36, 45, 63, the
three GSs are in the (0,0), (1,0), and (2,0) sectors, respec-
tively; while for Ns = 54, both Nb/N1 and Nb/N2 are in-
tegers, and all three GSs are in the same (0,0) sector [with
very close energies as shown in Fig. 2(a)]. Therefore, for
each system size, there is an obvious GSM with three-fold
quasi-degenerate states, which is well separated from the
higher energy spectrum by a large spectrum gap. We
have also attempted a scaling plot of spectrum gaps for
the four lattice sizes [as shown in Fig. 2(b)], which in-
dicates that the spectrum gap of the 1/3 bosonic FQHE
phase should survive in the thermodynamic limit. We
further find that this ν = 1/3 FQHE is stable (with
large spectrum gap and well-defined d = 3 GSM) in
the presence of relatively weak repulsions (V1 < 0.5 and
V2 < 0.5).
(b) Berry curvature and Chern number.—The Chern

number [3] (which is the Berry phase in units of 2π)
of a many-body state is an integral invariant in the
boundary phase space [4, 35]: C = 1

2π

∫

dθ1dθ2F (θ1, θ2),
where two boundary phases θ1 and θ2 are introduced
as the generalized boundary conditions in both direc-
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FIG. 4: (color online). The 1/3 bosonic FQHE. Berry curva-
tures F (θ1, θ2)∆θ1∆θ2/2π at 10×10 mesh points for the GSM
of the Ns = 45 lattice at ν = 1/3 filling with V1 = V2 = 0.0:
(a) the 1st GS in (0,0) sector; (b) the 2nd GS in (1,0) sector;
(c) the 3rd GS in (2,0) sector.
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FIG. 5: (color online). The 1/3 bosonic FQHE. Quasihole
excitations for three lattice sizes with V1 = V2 = 0.0: (a)
Ns = 45 and Nb = 4; (b) Ns = 54 and Nb = 5; (c) Ns = 63
and Nb = 6;

tions, respectively. The Berry curvature is given by

F (θ1, θ2) = Im
(〈

∂Ψ
∂θ2
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∂θ1

〉

−
〈

∂Ψ
∂θ1

∣

∣

∣

∂Ψ
∂θ2

〉)

. For the GSM

of 1/3 bosonic FQHE phase, the three GSs maintain their
quasi-degeneracy and are well separated from the other
low-energy excitation spectrum upon tuning the bound-
ary phases, which indicates the robustness of this FQHE
phase (Fig. 3). For each GSM of Ns = 36, 45, 63, the
three states are found to evolve into each other with level
crossings when boundary phases are changed. [Fig. 3(a)
and 3(b)]. While for Ns = 54, with all three states of the
GSM in the (0, 0) sector, through tuning the boundary
phases, each state evolves into itself without level crossing
[Fig. 3(c)], consistent with the level repulsion principle.

Furthermore, for the three GSs of the GSM in the
(0,0), (1,0) and (2,0) sectors of the Ns = 45 case, the
Berry curvatures in boundary phase space (with 10× 10
mesh points) are shown in Fig. 4(a)-4(c). The summa-
tion of Berry curvatures in three sectors gives the integral
Berry phase 4π (each GS contributes an almost precisely
quantized Berry phase 4π/3 with 6-digit high accuracy),
and thus the total Chern number of the d = 3 GSM is
Ctot = 2 which corresponds to a fractional quantized Hall
conductance of 2e2/3h per GS.

(c) Quasihole excitation spectrum.—In order to inves-
tigate the possible fractional statistics of the 1/3 bosonic
FQHE state, we study the quasihole spectrum by re-
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FIG. 6: (color online). The 1/5 ferminoic FQHE. Low energy
spectrum En − E1 versus the momentum k1N2 + k2 of the
1/5 fermionic FQHE for four lattice sizes with V1 = 8.0 and
V2 = V3 = 1.0: (a) Ns = 45; (b) Ns = 60; (c) Ns = 75; (d)
Ns = 90. The quasi-degeneracy has been labeled for the (0,0)
sector of the Ns = 75 case in (c).

moving one boson from the ν = 1/3 filling. As shown
in Fig. 5(a), for the case of Ns = 45 and Nb = 4,
the quasihole spectrum exhibits a distinguishable gap
which separates 5 lowest states in each momentum sec-
tor from the other higher-energy states, and there are
75 low-energy quasihole states in total. This number of
low-energy quasihole states is consistent with the count-
ing rule of splitting one hole into three quasiholes (each
with fractional charge 1/3), i.e. the quasihole-counting
in Laughlin’s 1/3 fermionic FQHE state, based upon the
generalized Pauli principle [14, 16]. Similarly, for the
Ns = 54 and Nb = 5 case [Fig. 5(b)], and the Ns = 63
and Nb = 6 case [Fig. 5(c)], there are also distinguishable
spectrum gaps and well-separated lower-energy quasihole
manifolds.

The 1/5 ferminoic FQHE.—For the case of interacting
spinless fermions [where the bosonic operators in Eq. (1)
are replaced by the fermionic ones] in the C = 2 TFB,
we have also observed FQHE features at the ν = 1/5
filling [36] for four different lattice sizes of Ns = 45 (3 ×
5× 3), 60 (3× 5× 4), 75 (3 × 5× 5) and 90 (3 × 5× 6).
We denote the fermion numbers as Nf , and the filling
factor of the TFB is ν = Nf/Norb. In contrast to the
ν = 1/3 bosonic FQHE around V1 = V2 = 0.0, the onset
of fermionic FQHE features at ν = 1/5 needs finite values
of short-range repulsions (V1, V2 and a third-neighbor
interaction V3), similar to the fermionic 1/5 FQHE [12]
or the bosonic 1/4 FQHE [13] in the C = 1 TFBs. At ν =
1/5, the topological ground-state degeneracy is d = 5: for
Ns = 45, 60, 90, the five GSs are in five different sectors,
e.g. the (0,0), (1,0), (2,0), (3,0) and (4,0) sectors for
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FIG. 7: (color online). The 1/5 ferminoic FQHE. Low energy
spectra versus θ1 at a fixed θ2 = 0 for three lattice sizes at
ν = 1/5 filling with V1 = 8.0 and V2 = V3 = 1.0: (a) Ns = 45;
(b) Ns = 60; (c) Ns = 90. The quasi-degeneracy of the GSM
has been labeled.

Ns = 45 [Fig. 6(a), 6(b) and 6(d)]; while for Ns = 75,
both Nf/N1 and Nf/N2 are integers, and all five GSs
are in the same (0,0) sector [with very close energies as
shown in Fig. 6(c)]. Therefore, for each system size, there
is an obvious GSM with five-fold quasi-degenerate states,
which is well separated from the higher energy spectrum
by a distinguishable spectrum gap.

For the 1/5 fermionic FQHE, the five GSs also main-
tain their quasi-degeneracy and are well separated from
the other low-energy excitation spectrum when we tune
the boundary phases (Fig. 7), indicating a possible robust
topological phase. Moreover, the d = 5 GSM in the 1/5
fermionic FQHE is found to share a total Chern number
Ctot = 2: e.g. for the Ns = 60 case [Fig. 6(b)], the sum-
mation of Berry curvatures in 10× 10 mesh points gives
the Chern numbers 0.39629, 0.40975, 0.38792, 0.40975
and 0.39629 for the five GSs in (0,2), (1,2), (2,2), (3,2)
and (4,2) sectors, respectively; and thus the total Chern
number is found to be almost precisely Ctot = 2 for this
d = 5 GSM, which implies that each GS supports a frac-
tional quantized Hall conductance of 2e2/5h.

Concluding discussions.— We find convincing numer-
ical evidences of ν = 1/3 bosonic FQHE in the C = 2
TFB near V1 = V2 = 0. This odd-denominator bosonic
FQHE phase is in stark contrast to the C = 1 TFB where
the most robust bosonic FQHE occurs at the ν = 1/2
filling for hard-core bosons with V1 = V2 = 0 [13]. It
is desired to physically understand the nature of this
odd-denominator bosonic FQHE. Due to the absence of
higher topological ground-state degeneracy and the same
quasihole counting as Laughlin’s 1/3 fermionic FQHE, we
believe that the 1/3 bosonic FQHE phase is of Abelian
nature. Moreover, when we treat the C = 2 band as
an effective two-component (or bilayer) system [34] with
the number of orbitals reduced to half for each compo-
nent (which doubles the effective total filling to 2/3),
the 1/3 bosonic FQHE would be consistent, in terms of
fractional quasihole charge and ground state degeneracy,
with Halperin’s mmn state (with m = 2 and n = 1)

at the 2/3 total filling. For the 1/5 filling of interact-
ing spinless fermions in the C = 2 TFB, clear FQHE
features have also been observed with a five-fold degen-
erate GSM and a fractional quantized Hall conductance
of 2e2/5h per GS, which could also be consistent with
the Halperin 332 state. Nonetheless, the two “compo-
nents” in a C = 2 TFB are mutually entangled, one may
speculate that our states may be different from the con-
ventional bilayer mmn states where the two separated
layers are only coupled by interaction. We believe that
more direct evidence is needed to verify the nature of the
obtained FQHE states, which calls for further studies in
the future.

Other topological phases are also possible in other frac-
tional fillings. For the ν = 1/4 hard-core bosons, we have
observed a bosonic state with some topological features.
However we can not determine the nature of this 1/4
bosonic state as its ground-state degeneracy and the to-
tal Chern number varies with the particle numbers which
will be presented in the Supplementary Material [37].

Although our results are obtained in a specific three-
band triangular-lattice model, one may speculate that
such results, especially the very robust 1/3 bosonic state,
might be universal for generic C = 2 TFB models [38]. In
the future, it would be also highly interesting to demon-
strate more exotic fractional topological phases in micro-
scopic TFB models with high Chern numbers.
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Note added.—After the submission of the present Let-
ter, a few related works appeared very recently [39–43].
Two works have shown that flat bands with arbitrary
high Chern numbers can be systematically constructed
using multi-layer lattice models [39, 40]. Another two
works reported some numerical evidence for a series of
fermionic and bosonic fractional incompressible states in
a multi-layer kagome-lattice model with high Chern num-
bers [41, 43]. These results together with ours suggest
some universality of FQHE in TFBs with high Chern
numbers.
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