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We performed an experimental study of coupled optical cavity arrays in a photonic crystal plat-
form. We find that the coupling between the cavities is significantly larger than the fabrication-
induced disorder in the cavity frequencies. Satisfying this condition is necessary for using such cavity
arrays to generate strongly correlated photons, which has potential application to the quantum sim-
ulation of many-body systems.

PACS numbers:

I. INTRODUCTION

Solving strongly correlated quantum many-body sys-
tems is a formidable task. One promising approach is to
mimic such complicated systems using another simpler
and easily controllable quantum system, as envisioned by
Richard Feynman1. To that end, the first demonstration
of quantum phase transitions with ultra-cold atoms in an
optical lattice2 sparked a significant amount of research
on quantum simulation with atomic systems3. Another
very promising direction of using photons themselves as
the interacting particles has generated considerable in-
terest recently4–6. The main idea of this approach is to
obtain a correlated “quantum fluid of light”4 by building
a coupled network of nonlinear electromagnetic cavities.
The photons can hop between cavities due to the electro-
magnetic coupling and can repel each other in the same
cavity due to the intra-cavity nonlinearity. We note that
such a coupled cavity network exhibits rich physics such
as topologically protected optical delays7, even with-
out any nonlinearity, although having nonlinear cavities
opens up many more avenues of research. Obviously, the
optical nonlinearity required for significant repulsion at
low photon number is very high, and in current tech-
nology, only 2-level systems (for example, atoms, single
quantum emitters such as quantum dots (QDs) or super-
conducting transmon qubits) strongly coupled to a cavity
provide such strong nonlinearity in the photon blockade
regime8–11. In most of the applications relating to quan-
tum simulations, one needs to deterministically position
single quantum emitters in each of the cavities, which
is very difficult to achieve in the state-of-the-art solid-
state technology. However, recently several groups have
demonstrated deterministic positioning of semiconductor
QDs12–16, and the hope is that these site-controlled QDs
will also perform well within the setting of cavity quan-
tum electrodynamics (CQED). Another approach would
be to use a bulk nonlinearity or quantum well nonlin-
earity, but significantly enhanced by a cavity with high
quality (Q) factor and low mode volume17,18. We note
that such a platform consisting of coupled nonlinear cav-
ities is useful not just for the quantum simulation, but
also for quantum error correction19 as well as for classical
optical signal processing20.

Although plenty of theoretical proposals for simulating
interesting physics in such a coupled cavity array (CCA)
are present in the literature, the experimental progress
in that direction is rather limited. As one needs to have
many cavities for this operation, a solid-state system is
obviously an ideal choice. However, due to imperfect
nano-fabrication solid-state cavities have inherent dis-
order, resulting in different resonance frequencies than
the cavities were originally designed for. Such disorder
might limit the utility of CCAs for quantum simulation.
However, in a recent paper it is argued that as long as
the coupling strengths are much larger than the disor-
der, the CCAs can be used for quantum simulation, and
it is shown that microwave transmission line cavities for
circuit QED satisfy this condition21.

In this paper, we demonstrate high-Q 2-D CCAs based
on photonic crystals fabricated in GaAs with embedded
high density self-assembled epitaxially grown InAs QDs.
Although a pair of coupled cavities, also known as a pho-
tonic molecule, is well studied in the literature22–27, rel-
atively little literature exists for CCAs. A 2-D CCA of
photonic crystals in GaAs (with multiple quantum wells
as active materials) has been studied previously for in-
creasing the output light intensity from nano-lasers or
slowing down light28–31, but the Q-factors of the cavi-
ties were too low to identify individual cavity modes. A
long chain of high-Q coupled cavities has been studied
in silicon32, but the physical phenomena observable in
such a 1-D chain are rather limited. While a 1-D array33

has been studied as a platform to simulate the physics of
Bose glass34, and Tonks-Girardeau gas35, a 2-D array is
a more suitable candidate for simulating many other sys-
tems including topologically non-trivial states such as the
fractional quantum Hall state36–38. We also note that,
although an extensive treatment of such disorder in the
context of circuit quantum electrodynamics has already
been reported in Ref.21, our optical cavity QED system
is capable of achieving much larger coupling strengths (∼
THz) between the cavities. We believe that our experi-
mental findings (on the nature of coupling strengths and
disorder) will provide a more realistic picture for explor-
ing the utility of optical CCAs for quantum simulation.
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II. SPECTRA OF COUPLED CAVITIES

In our experiment, we employ an array of linear three-
hole (L3) defect photonic crystal cavities, typically stud-
ied in single QD-cavity QED experiments39,40. The fun-
damental mode of such a cavity is linearly polarized in
the direction orthogonal to cavity axis; in our proposed
CCA geometry all the cavities have parallel axes, and
their modes have the same polarization. The photonic
crystal CCA (with photonic crystal hole radius ∼ 60 nm
and lattice periodicity 246 nm) is fabricated in a 164 nm
thick GaAs membrane (with self-assembled InAs QDs
embedded at a depth of 82 nm from the surface) us-
ing electron-beam lithography and reactive ion etching39.
Scanning electron micrographs of the fabricated struc-
tures are shown in Figs. 1a,b,c. Three different CCAs
are designed consisting of 4, 9 and 16 cavities. These
cavities are coupled to each other by three different cou-
pling strengths depending on the relative orientation and
separation of two cavities. When two cavities are coupled
at an angle of 60o (Figs. 1d,e) the coupling strength t is
strongest; for vertically stacked coupled cavities (Figs.
1h,i) the coupling strength J1 is smaller than t; and
for horizontal coupled cavities (Figs. 1f,g) the coupling
strength J2 is much smaller than t and J1 (the difference
in coupling strengths is a result of the different radiation
patterns of the cavity modes, and their different overlaps
in various directions). From the finite difference time
domain (FDTD) simulations we can calculate the field
profiles of the coupled cavities (Figs. 1 d-i) and esti-
mate the coupling strengths from the separation of the
super-modes in the simulated spectra, assuming cavity
operation in the range of QD emission (∼ 900−930 nm).
For a hole radius r varying from 70 nm down to 50 nm,
with photonic crystal lattice constant a = 246 nm, we
find that t/2π ∼ 0.8 − 1.3 THz; J1/2π ∼ 0.4 − 0.8 THz
and J2 << t,J1.

We characterize the resonances of the coupled cavity
array by photoluminescence (PL) studies, where the large
density of embedded QDs (∼ 200/µm2) acts as an inter-
nal light source. Figs. 2a,b,c show the PL spectra ob-
tained from the CCAs at 30 K, under excitation of an 820
nm continuous wave excitation. The excitation power is
∼ 1 nW measured in front of the objective lens. Fig. 2d
shows the PL spectrum collected from the bulk QDs. The
quality factors of the observed modes are ∼ 1000− 3000
(Fig. 2e), and all the modes are linearly polarized with
similar polarization axis. We note that the set of higher
Q-factor resonances in Fig. 2 are identified as the coupled
fundamental modes of the L3 cavities, shown in Fig. 1.
These modes are not necessarily in the same wavelength
range for different sizes of the arrays, as the structures
were defined during the fabrication process with different
doses in e-beam lithography, and thus photonic crystals
have different parameters (in this case slightly different
radii).

We also point out that the number of modes observed
in PL should be the same as the number of cavities in
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FIG. 1: (color online) Scanning electron micrograph (SEM)
images of CCA with (a) 4 cavities, (b) 9 cavities and (c) 16
cavities. The simulated electric field profiles for each of the
two super-modes of the coupled cavities are shown: (d),(e)
for 60o coupled cavities; (f),(g) for laterally coupled cavities;
(h),(i) for vertically coupled cavities.
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FIG. 2: (color online) The PL spectra of the CCA for (a)
4; (b) 9 and (c) 16 cavities. We can clearly identify all the
cavity array modes. We focus on several specific separations
between the CCA modes labeled ∆1 through ∆6 in the plots
and perform statistical analysis. We also observed several low-
Q modes at long wavelengths for several cavity arrays, as can
be seen in part (a). These modes are not the actual coupled
cavity modes under study, which is confirmed by monitoring
the resonance frequencies of single (uncoupled) L3 cavities
fabricated in the same chip. (d)PL spectra collected from
the bulk QDs. (e) Lorentzian fits to the highest frequency
modes (shaded in the part (a),(b) and (c)) to estimate the
quality factors. The estimated quality factors for the highest
frequency mode in 4, 9 and 16 CCA are ∼ 1800, ∼ 2800 and
∼ 2500 respectively.
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the CCA, irrespective of whether the cavities are coupled
or not (assuming any degeneracy is lifted due to fabrica-
tion imperfection). Without coupling between the cavi-
ties, the observed modes would be randomly placed and
no specific order between the modes should be observed.
On the other hand, in the presence of the coupling be-
tween the cavities, the cavity modes are expected to be
spaced at a specific order determined by the coupling
strengths. However, due to the disorder introduced dur-
ing the nano-fabrication process, the exact distribution
of the cavity resonance frequencies will be perturbed.
Hence from a statistical study of the differences in the
cavity resonance frequencies we can estimate the ratio
between the cavity coupling strengths and the disorder
in the cavity resonances. We note that one could instead
estimate the disorder in the cavity resonances from the
actual cavity frequencies, and not the differences. How-
ever, cavities written on different parts of the chip are
more susceptible to fabrication variation, and might suf-
fer an overall frequency shift. Thus, the mode separations
provide a better measure of the disorder present within
each CCA, while allowing us to gather statistics from sev-
eral CCAs for comparison. We have also performed the
disorder analysis by using a normalized mode separations
(normalized by the bare cavity frequency) to exclude any
contribution from the overall frequency shift. We found
that simple mode separations and normalized mode sep-
arations provide very similar results, so in the interests
of clarity,, we provide statistical data for the actual mode
separations only.

III. ESTIMATION OF COUPLING AND
DISORDER

Using the coupling strengths derived from FDTD sim-
ulations (t/2π = 1.2 THz, J1/2π = 0.8 THz, J2 ≈ 0), we
calculate the eigen-states of the CCA by diagonalizing
the Hamiltonian H:

H =
∑
i

∆ia
†
iai +

∑
〈i,j〉

gij(a
†
iaj + a†jai) (1)

where ∆i is the resonance frequency of the ith cavity
due to fabrication imperfection, and gi,j is the coupling
strength between the ith and jth cavities. The cavity
frequencies ∆i are randomly chosen from a Gaussian dis-
tribution with zero mean and standard deviation σf

21:

Pr(∆0) =
1√

2πσf
e
− ∆2

0
2σ2
f (2)

The zero for the eigen-frequencies of the coupled-cavity
system is set at the frequency of an uncoupled cavity with
no disorder. We note that for photonic crystal cavities,
the disorder affects both the bare cavity frequencies and
the coupling strengths, however, it is very difficult to sep-
arate the two effects. Depending on the spatial locations
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FIG. 3: (color online) FDTD simulation of the effect of disor-
der on the observed mode separations in a photonic molecule:
(a) perturbation where a side hole in the cavity is changed;
(b) perturbation where a hole in between two cavities are
changed; (c) the observed mode-separations as a function of
the perturbed hole radius for two cases shown in (a) and (b).
The unperturbed hole radius is 60 nm.

of a disorder, the bare mode separation and the coupling
strengths can vary. Fig. 3 shows the finite difference
time domain (FDTD) simulation of the effect of disorder
on the coupling between cavities in a photonic molecule.
We consider two different perturbations in the cavities:
in one case a side hole of one of the cavities is perturbed
(Fig. 3 a) and in the other case, a hole between two
cavities is perturbed (Fig. 3 b). The unperturbed hole
radius is 60 nm, and the perturbed hole radius changes
from 30 nm to 90 nm. We find that the mode separations
in the numerically simulated spectrum vary differently
(Fig. 3 c): for the side hole perturbation the mode sepa-
ration changes by ∼ 500 GHz, whereas for the perturbed
hole between two cavities the mode separation changes
by ∼ 800 GHz. In the latter case, the perturbation af-
fects the coupling strength strongly, but the effect in bare
detuning is not significant (as both the cavities sense the
perturbation). However, for the side hole perturbation,
the coupling strength is not affected much, but the bare
mode separation changes more. Hence, the experimen-
tally measured variations have contributions from ran-
domness both in the bare mode separations, as well as
the coupling strengths. Nevertheless, in order to simplify
our analysis we assume that the total variance originates
from just the bare mode separations and the coupling
strengths are constant.

The mean values of the eigen-frequencies (averaged
over ∼ 10000 instances) are plotted in Figs. 4a,b,c as
a function of increasing σf . We observe that the relative
separations between the modes follow a specific pattern
when the disorder is small. However, with increasing dis-
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FIG. 4: (color online) Numerically-calculated eigen-spectra
of the coupled cavities: the eigen-frequencies as a function of
the disorder standard deviation σf for (a) 4, (b) 9 and (c)
16 cavities in the arrays. The spacings between the cavities
are the same as the structures shown in the SEM images in
Figs. 1 a-c. The difference in the subsequent eigen-values are
shown as a function of σf for (d) 4, (e) 9 and (f) 16 cavities
in the arrays. We note that the mode separations increase
linearly with increasing σf , when σf is much greater than
the coupling strengths, as found in the theory from a simple
photonic molecule. Insets magnify the region of low disorder
and we identify the mode separations ∆1 → ∆6.

order any specific distribution of the cavity modes disap-
pears. This can be observed more clearly in Figs. 4d,e,f,
where the differences in the mode frequencies are plot-
ted as a function of σf . We note that the differences be-
come similar, and increase linearly with σf . We note that
the mean µ of the mode separations is a combination of
the coupling strength and the disorder, whereas the stan-
dard deviation σ of the mode separations depends mostly
on the disorder. To elaborate further, we can consider
the simple example of a photonic molecule (two coupled
cavities), where the observed separation ∆ between two

modes is
√

∆2
0 + 4J2 with ∆0 being the random bare

detuning between the cavities due to fabrication imper-
fection and J being the the coupling strength22. Under
the approximation of a Gaussian distribution for the bare
cavity detunings we find that the mean µ of the mode sep-
aration ∆ (we consider the absolute value of the separa-

tion) is µ =
√

2
πσf if there is no coupling (J = 0 or (i.e,

σf/J >> 1) and µ = 2J +σ2
f/4J +O(σ4

f ) if the disorder

is weak compared to the coupling i.e., σf/J << 1). The
standard deviation σ for the mode separations is σ ∼ σf
without any coupling (J = 0) and σ ∼ O(σ2

f/J) when

σf/J << 1. Similar analysis can be performed for CCAs

with more than two cavities, although the expressions for
the mean and standard deviation become complicated,
and a simple closed form expression is difficult to obtain.
Nevertheless, as seen for the photonic molecule, the ratio
of the standard deviation to the mean gives us an esti-
mate of the relative contribution of the disorder and the
coupling to the mode separations.

We also note that several modes are spaced very closely
at weak disorder, indicating a lesser contribution of the
coupling to such mode separations (inset of Figs. 4d,e,f).
On the other hand several detunings between the modes
are large compared to others (denoted by ∆1 → ∆6) sig-
nifying a large contribution from the coupling strengths
to the mode separations. We observe that the relative po-
sitions of the cavity modes match qualitatively with our
experimental findings. We can identify the same specific
separations ∆1 → ∆6 between the modes in the experi-
mental results of Fig. 2 as in the theoretical calculations
of Fig. 4. Clearly, the fabricated structures are in the
regime where the coupling strengths are greater than the
disorder. This regime is magnified in the inset of Figs.
4d,e,f and the mode separations ∆1 → ∆6 are identified.

IV. STATISTICAL STUDY OF MODE
SEPARATIONS:

We find a consistent order between the experimentally
observed modes of different CCAs (Fig. 2), indicating the
cavities are coupled. Next we analyze all the separations
between the subsequent cavity modes. In order to do
this, we fabricated ∼ 30 copies of each of the three types
of cavity arrays, and calculated the mean µ and standard
deviation σ of all these mode separations.

In our fabricated CCAs, we find that the ratio σ/µ <<
1 for almost all the mode separations, indicating the pres-
ence of strong inter-cavity coupling; otherwise, for no
coupling, the ratio would be equal to

√
π/2− 1 ∼ 1. Ta-

ble I shows the data for specific separations (∆1 → ∆6)
between the cavity modes in the cavity array spectra in
detail. We note that all the separations are not equally
influenced by the coupling strengths as seen from the
numerical simulations presented above (Fig. 4), and the
chosen separations (indicated in Fig. 2) are the ones that
are most heavily influenced by the coupling strengths.

Finally, as a further proof of the fact that the detun-
ings between the observed cavity array modes are mostly
due to the coupling between the cavities, and not the
disorder, we repeated the fabrication of sets of ∼ 30 cav-
ities for different values of air-hole radius for all three
types of CCAs. A decreasing trend in the separation is
observed with increasing hole radius (Fig. 5). A similar
trend is observed in simulation for a photonic molecule
with diagonally placed cavities, as a function of the hole
radius (inset of Fig. 5). Such a trend also indicates that
the separations are mostly due to the coupling between
cavities, as a detuning due solely to disorder would have
a much weaker dependence on the photonic crystal hole
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TABLE I: The mean mode separations (µ), and standard de-
viation (σ) measured over ∼ 30 cavity arrays, with similar
hole radii (see Fig. 2 for the definition of the separations).

∆ µ(THz) σ(THz) σ/µ

∆1 2.33 0.25 0.1

∆2 3.22 0.13 0.04

∆3 2.35 0.14 0.06

∆4 1.19 0.19 0.16

∆5 1.94 0.2 0.1

∆6 2.35 0.14 0.06
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FIG. 5: (color online) The mode separations ∆1 → ∆6 as
a function of the photonic crystal hole radius. A decreasing
trend in the separation is observed with the increasing hole
radius (the photonic crystal lattice periodicity a is 246 nm).
For comparison, the inset shows the numerically simulated
(FDTD) coupling strength between two cavities placed diag-
onally as a function of the hole radius.

size. The decrease in the mode separation with an in-
crease in the hole radius can be explained by the accom-
panying increase in the photonic band gap size (and thus
larger reflectivity of the mirror layers separating cavities,
which reduces the cavity couplings).

V. CONCLUSION

We show the signature of large coupling strengths be-
tween photonic crystal cavities, in a coupled cavity ar-
ray fabricated in GaAs containing InAs QDs. We ob-
serve that the coupling strengths are significantly larger
than the disorder introduced during the nano-fabrication.
Satisfying this condition is necessary for employing such
cavity arrays in quantum simulation with correlated pho-
tons, although the challenge of achieving a nonlinearity
in each cavity still remains open.
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(2012).

10 K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E.
Northup, and H. J. Kimble, Nature 436, 87 (2005).

11 A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff,
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