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ABSTRACT 

Dominant heat-carrying modes in skutterudites are associated with vibrations of the pnicogen rings. Apart from 

filling the structural cages with foreign species, disrupting the pnicogen ring structure by substitutional alloying 

should be an effective approach to reduce thermal conductivity. In this paper we explore alloying configurations of 

pnicogen rings (Sb rings in the case of CoSb3) that yield particularly low values of the thermal conductivity. We find 

that IV-VI double-substitution (replacing two Sb atoms with one atom each from the column IV and column VI 

elements to achieve an average charge of two Sb atoms) is a very effective approach. Our ab initio calculations, in 

combination with a cluster expansion, have allowed us to identify stable alloy configurations on the Sb rings. 

Subsequent molecular and lattice dynamics simulations on low energy configurations establish the range of atomic 

displacement parameters and values of the thermal conductivity. Theoretical results are in good agreement with our 

experimental thermal conductivity values. Combining both approaches of compensated double-substitution and 

filling of structural cages should be an effective way of improving the thermoelectric figure of merit of skutterudites.  
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I. INTRODUCTION 

Filling structural cages in the CoSb3 skutterudite crystal has proved to be an effective way of lowering lattice 

thermal conductivity,1, 2 making filled skutterudites one of the best novel thermoelectric (TE) materials for mid-

temperature power generation applications.3-5 An alternative approach to lowering thermal conductivity is to distort 

the near-square pnicogen (Sb) atomic rings, which are a characteristic feature of the skutterudite structure, thereby 

reducing the Im3 ( Th
5) skutterudite space-group symmetry.6 Since vibration modes involving Sb rings dominate the 

spectrum of heat-conducting phonons,7, 8 distortions of the rings should be particularly effective in disrupting heat 

transport. Ring deformation is easily accomplished via substitution of another species for Sb, with a historic focus 

on the n-type dopant Te.9 Unfortunately, Te has a rather low solubility in CoSb3 (≤ 5%), and only weakly affects 

thermal conductivity. A charge-compensated alloy can be obtained by substitution of IV-VI species (e.g., Sn-Te10 or 

Ge-Te11, 12), which has recently been shown to enhance Te solubility and, in the case of Ge-Te, imbalanced Ge/Te 

induces formation of finely dispersed Ge-Te-rich skutterudite nanodots in the Sb-rich matrix. The enhanced point-

defect scattering and presence of nanoinclusions in these double-substituted skutterudites enabled them to attain a 

thermoelectric figure of merit (ZT) of 1.1, competitive with the best values for single-filled skutterudites. These 

exciting empirical findings reveal a compelling theoretical puzzle surrounding the role of pnicogen ring 

configuration in skutterudite heat transport.  

In this paper, we present a comprehensive theoretical analysis of the physical importance of pnicogen ring 

configuration on the thermal conductivity of the double-substituted skutterudite CoSb3-m-nGemTen.  We use ab initio 

calculations to determine phase stability within CoSb3-m-nGemTen and predict a strong energetic preference for short-

range order of Ge and Te on pnicogen rings. While phase separation is predicted for charge-balanced CoSb3(1-

x)Ge1.5xTe1.5x, we find that it is sufficiently suppressed in the presence of coherency strains to make a solid solution 

experimentally accessible. New single-phase skutterudite samples of CoSb3(1-x)Ge1.5xTe1.5x have been successfully 

synthesized using the traditional melt-quench-anneal technique followed by spark plasma sintering (SPS). We 

explore the effect of the predicted short-range order of Ge and Te on lattice thermal conductivity and phonon 

dispersion of CoSb3(1-x)Ge1.5xTe1.5x  solid solutions from first principles. Our thermal transport measurements support 

the idea that configurational disorder of pnicogen rings is an effective mechanism to reduce thermal conductivity in 

skutterudites.  
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II. GROUND STATES, PHASE STABILITY AND SYNTHESIS 

We explored low-energy ring configurations among all possible ways of arranging Ge, Te and Sb atoms on sites of 

the pnicogen rings in CoSb3-m-nGemTen using density functional theory (DFT) calculations, guided by the cluster 

expansion (CE) method.13 DFT energies were obtained using the Vienna ab initio simulation package (VASP)14 

within the generalized gradient approximation (GGA) for exchange and correlation and using the projector 

augmented-wave (PAW) method.15, 16 Formation energies were calculated relative to the thermodynamically stable 

end compounds (CoGe2+Ge), (CoTe2+Te), and CoSb3. Calculated formation energies of 340 ternary configurations 

of Ge, Te and Sb over the Sb sublattice are plotted in Fig. 1(a), predicting that ternary solid solutions are 

thermodynamically unstable, with only two skutterudite phases globally stable: CoSb3 and CoGe1.5Te1.5 ( R3 space-

group).17 Our calculations show that the driving force for phase separation is minimized along the charge-

compensated CoSb3(1-x)Ge1.5xTe1.5x tie-line connecting CoSb3 and CoGe1.5Te1.5 [x = 0 and 1 in Fig. 1(b)]. The lowest 

energy configurations along the charge-compensated tie-line all contain counter-diagonal (CD) Ge2Te2 rings, as 

shown in Fig. 2, visualized using VESTA.18 As exemplified by the two typical structures in Fig. 1(b), all other ring 

configurations were found to result in substantially higher formation energies. Fig. 2 shows a typical crystal 

structure with an energetically favorable ring configuration at x = 0.5.  

Calculated equilibrium lattice parameters of charge-compensated CoSb3(1-x)Ge1.5xTe1.5x exhibit a strong dependence 

on composition, with an ~11% decrease in volume from x = 0 to x = 1. The large strain energy penalties 

accompanying coherent phase coexistence therefore allow charge-compensated solid solutions to form as long as 

incoherent precipitation is suppressed. Such considerations have proved essential to the understanding of phase 

stability and high performance in other thermoelectric materials, including the well-known LAST alloy (i.e., 

AgPbmSbTem+2).19, 20  

Our DFT energy calculations for CoSb3(1-x)Ge1.5xTe1.5x indicate that it can be approximated as the pseudo-binary 

substitutional alloy Co4/3[Sb4](1-x)[Ge2Te2]x, where x measures the fraction of Sb4 pnicogen rings that have been 

substituted with CD Ge2Te2 rings. Under this constraint, we constructed a free-energy model 

 g x( ) = h(x)− Ts(x),  (1)  
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per pnicogen ring site, where h(x) is the enthalpy and s(x) is the entropy. The enthalpy was modeled by fitting a 5th 

order Redlich-Kister polynomial to the lower bound of DFT formation energies at 0K, resulting in an expression of 

the form 

 ( ) ( ) ,211)(
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where the Ln are fitting parameters.  The resulting enthalpy model is depicted alongside the first-principles formation 

energies in Fig. 1(b). The entropy was calculated for an ideal solution of non-interacting Sb4 and CD Ge2Te2 rings, 

accounting for the two degenerate orientations of a CD Ge2Te2 ring, depicted in Fig. 2. The entropy term per ring-
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where the second expression is obtained for large N from Stirling’s approximation. The resulting total free energy 

model is 
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Minimization of Eq. 4 allowing for the possibility of two-phase coexistence yields the temperature composition 

phase diagram of Fig. 3(a) (black solid lines). The calculated phase diagram shows a miscibility gap below 600 K 

between CoSb3 and CoGe1.5Te1.5 (which we respectively denote phase α and phase β). Any intermediate composition 

should result in a coexistence of the α phase and the β phase in thermodynamic equilibrium. 

The calculated phase diagram of Fig. 3(a) (black lines) describes incoherent two-phase equilibrium. However, 

two-phase coexistence can also occur coherently whereby the continuity of crystal planes across the interface 

between the coexisting phases requires the phase with the larger lattice parameter to be compressed and the phase 

with the smaller lattice parameter to be stretched. An analysis of phase stability then requires an explicit treatment of 

the strain energy arising from coherent two-phase coexistence. In general, the strain energy due to coherent two-

phase coexistence depends on the microstructure. One possible microstructure is as alternating layers of phase α and 

phase β along a single crystallographic direction. Under additional simplifying assumptions (i.e. concentration 

independent elastic moduli and a lattice parameter variation with concentration that satisfies Vegard’s law), the 

analysis of coherent two-phase equilibrium becomes straightforward and reduces to the application of a common 

tangent construction of strain modified homogeneous free energy.21-23  
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Fig. 3(a) also shows a phase diagram for coherent two-phase coexistence in CoSb3(1-x)Ge1.5xTe1.5x, calculated using 

the free energy expression Eq. 4 and assuming (i) that the elastic constants are independent of the CD Ge2Te2 ring 

concentration (they were taken to be the average of each cij for CoSb3 and CoGe1.5Te1.5, as listed in Table I), and (ii) 

that the lattice parameters obey Vegard’s law. We found that the coherent phase diagram had a negligible 

dependence on the direction of two-phase separation and on whether plane strain or plane stress constraints in the 

plane perpendicular to two phase coexistence was used in the energy expression for the elastic strain energy. 

As is clear in Fig. 3(a), the miscibility gap is substantially suppressed by the strain energy penalty that emerges if 

phase separation occurs coherently. In the temperature range relevant to thermoelectric applications, this leads to a 

potentially large solid solution domain for Sb-rich and intermediate compositions (if incoherent precipitation can be 

suppressed). Coherent phase separation at Ge-Te-rich composition is still predicted to occur, however, in the 

temperature range of interest.  

Following the predicted phase diagram, skutterudite compounds were synthesized using high purity Sb (6N), Co 

(4N), Te (6N), and Ge (4N) starting materials. Stoichiometric amounts of constituents were weighed in a glovebox 

under high-purity Ar to prepare CoSb3(1-x)Ge1.5xTe1.5x with x = 0, 0.17, 0.33, 0.50, and 1. The charge was sealed in a 

carbon-coated silica tube under the pressure of 10-3 Pa and then melted and kept at 1373 K for 30 hours. 

Subsequently, the ampoules with the melt were quenched in a supersaturated salt water bath, and ingots were 

annealed at 873 K for 7 days. The obtained material was ground into fine powder in a glovebox and sintered by 

spark plasma sintering (SPS) at 923 K (for x = 0, 0.17, 1) and 903K (for x = 0.33, 0.50) for 5 min under the pressure 

of 40 MPa. X-Ray diffraction (XRD) patterns (2θ 10°-80°) for all samples were collected using a Rigaku Ultima IV 

X-Ray Diffractometer with Cu Kα radiation on powders obtained by grinding the SPS bulks. The experimental XRD 

patterns, as shown in Fig. 3(b), confirm the existence of a solid solution. A transmission electron microscopy (TEM, 

JEOL 2010) study showed no Ge-Te-rich nanodots, whose formation we ascribe to the rather more complicated 

thermodynamics of the imbalanced Ge/Te alloy.  

 

III. LATTICE DYNAMICS AND PHONON CONDUCTIVITY 

Because our calculations predict pronounced short-range order of Ge and Te substituted on the pnicogen sublattice 

and the calculated phase diagram of our model system indicates that a range of compositions exhibiting such short-

range order is accessible, we have focused our investigation of heat transport mechanisms on the charge-balanced 
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CoSb3(1-x)Ge1.5xTe1.5x alloy. VASP and PHONON24 codes were used for the ab initio phonon calculations. The total 

energy and Hellmann-Feynman (HF) forces were found starting from the fully relaxed configuration, such that 

initial ionic forces were less than 10-5 eV/Å. Ionic displacements of 0.03Å of each atom were sampled along the x-, 

y-, and z-directions. All phonon and thermodynamic properties (Table I, with literature results for CoSb3 also listed25-27) 

are predicted using a fit of interatomic force constant tensors to the calculated HF forces. Diagonalization of the 

dynamical matrix yields the phonon dispersion, from which density of states and atomic displacement tensors are 

obtained. The trace of the diagonalized atomic displacement tensor is the atomic displacement parameter (ADP), a 

scalar measure of single-atom vibration amplitude based on finite-temperature phonon mode occupancy.  

ADP values of various low-energy configurations of CoSb3(1-x)Ge1.5xTe1.5x containing CD Ge2Te2 rings (x = 0.25, 

0.5 and 1) are shown in Fig. 4(a). Due to the strong covalent bonds of the rings, the ADPs of substitutional atoms are 

not expected to be large. Surprisingly, the calculated ADP of Ge is significantly larger than that of Sb for all three 

low-energy configurations considered at x = 0.25 and 0.5. For comparison, Fig. 4(a) shows values for the Ba-filled 

skutterudite BayCo4Sb12 at several values of y. The large ADP of the Ba filler atom, relative to most atoms on the 

pnicogen rings, indicates the rattling behavior of Ba. The rattling behavior of the Ba filler species is believed to 

cause a reduction in the lattice thermal conductivity of partially-filled skutterudites.28-30  

While the Ge ADP is large for all compositions, it is maximized at x = 0.5 where it becomes comparable to that of 

a Ba filler atom. This suggests that Ge atoms on the CD Ge2Te2 ring could play a similar role as a rattler. As 

reported in Refs. 30-32 rattler species inhibit heat transport by both (i) reducing average vibrational frequencies via 

local bond-softening, and (ii) giving rise to low-frequency “guest” vibrational modes decoupled from the host 

crystal. In addition to having a large ADP, Ge exhibits similar projected phonon dispersion curves to those of Ba, as 

shown in Fig. 4(b). Phonon modes arising predominantly from either Ba or Ge displacements show negligible 

dispersion, characteristic of local deformational modes with low group velocity. Note that full band structures and 

phonon density-of-states (Dp) of various CoSb3(1-x)Ge1.5xTe1.5x compounds are shown in Fig. 5. In spite of this 

similarity to Ba filler, the collective modes of substituted Ge deform different segments of the skutterudite crystal 

structure and have different modal frequencies [i.e., Fig. 4(b) for Ge and Ba show 2.27 and 1.52 THz at Γ; 1.24 and 

1.45 THz at X]. Additionally, the dominant vibrational distortions of Ge responsible for its large ADP are along the 

diagonal of the CD Ge2Te2 rings, as illustrated in Fig. 4(c). Collectively, this corresponds to a breathing mode (i.e., 

expansion/shrinkage) of the cage [Fig. 4(b)]. We consider whether the distinct highly-displaced Ge modes and rattler 
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modes of Ba can influence the phonon transport by simultaneously affecting different portions of the phonon 

spectrum. Our preliminary ab-initio calculations, as shown in Fig. 5(d), show this hybrid skutterudite structure (x = 

0.5 and y = 0.5, which is close to the filling limit33), will retain these distinct features. In particular, our results 

indicate mode flattening in specific direction (Ge at X; Ba at Γ), overall phonon downshift (Ba), and distinct 

softening induced in the guest vibrational mode frequencies.  

Experimental measurements34 on charge-balanced CoSb3(1-x)Ge1.5xTe1.5x solid solutions show a dramatic decrease 

in the thermal conductivity with increasing x, as shown in Fig. 6(a). In fact, the minimum in the measured κL near x 

= 0.5 coincides with the maximum of the calculated Ge ADP. The total measured thermal conductivity can be 

decomposed as κ = κL + κe, where κL and κe are the lattice and electronic thermal conductivity, respectively. An 

experimental value of κL is calculated by approximating and subtracting κe which, in turn, is determined from the 

Wiedemann-Franz law. Here κe = LσeT, where σe is the measured electrical conductivity and L is the Lorenz number, 

determined from the experimental Seebeck coefficient by assuming a single parabolic band.35 The experimental 

value of κL obtained in this way, which Fig. 6(a) shows for several compositions at 500 K, quickly decreases with 

initial substitution before reaching a plateau at intermediate composition. The temperature dependence of κL, shown 

in Fig. 6(b), exhibits a decreasing trend at all compositions.  

In order to analyze the effect of pnicogen ring substitution on κL, we use experimentally- and DFT-parameterized 

analytical models for phonon-phonon and point-defect scattering,26, 36-40 as well as non-equilibrium ab initio 

molecular dynamics (NEAIMD) simulation.41  

Starting with κL of CoSb3 and CoGe1.5Te1.5, which are dominated by phonon-phonon scattering, we add an 

analytical factor for point-defect scattering at intermediate alloy compositions.37-40, 42 Using the Matthiessen rule 42, 

the overall κL with the inclusion of the point-defect scattering is 1/κL(x, T) = x/κL(0, T) + (1 - x)/κL(1, T) + 1/κL,d.40, 43 

Here κL(0, T) and κL(1, T) are obtained from the Slack relation.42  

 ,
101.3

)(
3/22

3
,

4

cG

D
L

NT

TM
T

γ

δ
κ ∞×

=  
(5)  

where <M> is the mean atomic weight in the primitive cell, Nc is the number of atoms in a primitive cell, δ3 is the 

average volume per atom, TD,∞ is the Debye temperature and γG is the Grüneisen parameter. For the κL,d, the point-

defect scattering parameter Γs including mass fluctuation and atomic displacement38, 44-46 is  
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where M is the average atomic mass of the CoSb3(1-x)Ge1.5xTe1.5x alloy, R is the average atomic radius, and γG is the 

Grüneisen parameter. The lattice thermal conductivity limited by the point defect scattering κL,d is  

 ,
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where CT is the relaxation time for phonon-phonon scattering including normal, N-processes, and U-processes. Here 

CT can be estimated from the experimentally-determined κL(0, RT) of 8.3 W/m-K for CoSb3. Using  
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where n is the atomic number density, yields CT = 4.758 × 10-16 s.40 The parameter a1 is the coefficient for the 

Rayleigh point-defect scattering rate, given by  
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where Vc is the unit cell volume. To clarify this effect with a rattler, the analytical results for the partially-filled (y = 

0.5) and for the hybrid structure (various x with y = 0.5) are also shown in Fig. 6(a). Here the overall κL is given as 

1/κL,y=0.5(x, T) = x/κL,y=0.5(0, T) + (1 - x)/κL,y=0.5(1, T) + 1/κL,d,40, 43 assuming κL,y=0.5(0, T) is equal to κL,y=0.5(1, T). Here, 

κL,y=0.5(0, T) is obtained from the classical MD results in Ref. 40. Using this combined strategy we predict a further 

33% reduction in κL (much closer to the theoretical minimum, κmin, of an amorphous phase). 

The lattice thermal conductivity using NEAIMD is computed as the ratio of an applied heat flux to the resulting 

temperature gradient, 

 ,
dd
)(
zT

tq
L −=κ  (10)  

where the brackets indicate time averages and q(t) is the heat flux. The heat flux is imposed by dividing the 

simulation cell into sections of equal width, and exchanging kinetic energy between hot and cold sections. The 

temperature gradient along the z axis is computed from the mean temperature of adjacent sections. For simulations 

we use the VASP code modified to perform NEAIMD -energy exchange47, 48 as reported in Ref. 41. The simulations 

are performed on supercells of 192 atoms (3×1×2) and 384 atoms (6×1×2), constructed as a solid-solution of 

pnicogen rings, based on the phase diagram of Fig. 3(a). We equilibrate each simulation using equilibrium AIMD 
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for 1 ps with a 0.5-fs time step. Equilibration is followed by 22 ps of NEAIMD using a 1-fs time step. This duration 

proved sufficiently long to obtain converged lattice thermal conductivity. Because the exchange of kinetic energy 

results in non-Newtonian dynamics in the hot and cold sections, only the linear portion of the temperature gradient is 

considered in calculating the lattice thermal conductivity. 

The juxtaposition of the point-defect scattering model and our experimental measurements in Figs. 6(a) and (b) 

indicates favorable agreement between the two, suggesting that the reduction in κL at intermediate substitution 

composition can largely be attributed to scattering from point-defects, which take the form of mass disorder and 

local atomic relaxations. Our analytical model does not account for the effect of bipolar carrier transport in our 

calculation of κe, likely resulting in overestimation of experimental κL values at high temperature. As shown in Figs. 

6(a) and (b) the NEAIMD prediction agrees with experimental and analytical results.  

 

IV. CONCLUSION 

We have demonstrated that Ge/Te double substitution on pnicogen rings is an effective means of lowering the 

lattice thermal conductivity of skutterudites. Although comparable in magnitude to the effect of Ba filling, Ge/Te 

substitution targets vibrational modes that are qualitatively different from those of Ba fillers.  We therefore expect 

that a combination of filling and substitutional double-doping is likely to act in a complementary manner in 

suppressing thermal conductivity.  This combined strategy should therefore lead to even lower total skutterudite 

thermal conductivity and higher ZT values than have been realized using either strategy in isolation.  
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Table(s) 

Table I. Calculated properties of CoSb3 and CoGe1.5Te1.5. The literature results for CoSb3 are also listed. TD, γG, B, cij, and cv are 
the Debye temperature, the Grüneisen parameter, bulk modulus, elastic constant, and specific heat capacity. 

 TD  
(K) 

γG 
 

B 
(GPa) 

c11  
(GPa) 

c12  
(GPa) 

c44  
(GPa) 

cv  
(J/mol-K) 

CoSb3 305.9 1.11 91.89 174.6 50.52 66.34 22.9 

CoGe1.5Te1.5 283.5 1.28 55.87 125.6 20.40 29.35 22.9 

CoSb3 307a, b 0.95a 82c 158c - 57c - 
afrom reference [25] 
bfrom reference [26] 
cfrom reference [27] 
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Figure Captions 

Figure 1 (Color Online). (a) DFT formation energies of all 340 calculated configurations of CoSb3-m-nGemTen. 
Configurations featured with CD Ge2Te2 rings (solid points) have considerably lower energy than those without CD 
Ge2Te2 rings (open circles). (b) Formation energies of CoSb3(1-x)Ge1.5xTe1.5x. Two typical structures are illustrated at 
x = 0.5. The solid red line is the 5th-order Redlich-Kister polynomial fit to the lower bound of formation energies, 
which is used to model finite-temperature phase stability.  

[note to editor, 2 column figure] 

Figure 2 (Color Online). A typical crystal structure (left) of CoSb3(1-x)Ge1.5xTe1.5x at x = 0.5 which mixes variety of 
rings (right) of Sb4 and CD Ge2Te2 (or Te2Ge2). The cubic unit cell contains 32 atoms. The tilting of rings gives rise 
to the formation of corner-shared octahedrons, which create large cages centering at (0, 0, 0) and (1/2, 1/2, 1/2). 

[note to editor, 1 column figure] 

 

Figure 3 (Color Online). (a) The phase diagram of CoSb3(1-x)Ge1.5xTe1.5x. The miscibility gap without coherency 
strain (solid, black) becomes significantly suppressed by the presence of coherency strain (dashed, red). (b) XRD 
pattern of various CoSb3(1-x)Ge1.5xTe1.5x samples.  

[note to editor, 1 column figure] 

 

Figure 4 (Color Online). (a) Composition dependence of the mean square displacement for individual atoms (ADP) 
in atomic-substituted CoSb3(1-x)Ge1.5xTe1.5x and filled BayCo4Sb12. (b) Projected phonon dispersion curves for x = 0.5 
and y = 0.5 using DFT. Atomistic configurations of each vibration mode for filler and double substitution are also 
given. Blue sphere represents the Co atom. Green sphere represents the Ba filler atom. (c) Atomistic configurations 
showing a pnicogen ring and octahedron consisting of substituted atoms (x = 0.5). Red arrows show the large 
displacement of each Ge atom.  
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Figure 5 (Color Online). Calculated phonon dispersion curves and density-of-states: (a) x = 0, (b) 0.5, (c) y = 0.5, 
and (d) a hybrid filled-substituted structure (x = 0.5 and y = 0.5). The site-projected density-of-states are also shown. 
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Figure 6 (Color Online). Variations of the predicted lattice thermal conductivity of CoSb3(1-x)Ge1.5xTe1.5x, (a) 
concentration dependence at T = 500 K, and (b) temperature dependence for several compositions. Our experimental 
results (using the Wiedemann-Franz law) and the results of the point-defect model and NEAIMD are shown. The 
minimum conductivity κmin (~ 0.37 W/m-K) for the amorphous CoSb3 phase40 is also shown.  
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