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There is convincing numerical evidence that fractional quantum Hall-like ground states arise in
fractionally filled Chern bands. Here we show that the Hamiltonian theory of Composite Fermions
(CF) can be as useful in describing these states as it was in describing the FQHE in the continuum.
We are able to introduce CFs into the fractionally filled Chern band problem in two stages. First
we construct an algebraically exact mapping which expresses the electron density projected to
the Chern band, ρFCB, as a sum of Girvin-MacDonald-Platzman density operators, ρGMP, that
obey the magnetic translation algebra. Next, following our Hamiltonian treatment of the FQH
problem, we rewrite the operators ρGMP in terms of CF variables which reproduce the same algebra.
This naturally produces a unique Hartree-Fock ground state for the CFs, which can be used as a
springboard for computing gaps, response functions, temperature-dependent phenomena, and the
influence of disorder. We give two concrete examples, one of which has no analog in the continuum
FQHE with ν = 1

5
and σxy = 2

5
. Our approach can be easily extended to fractionally filled, strongly

interacting two-dimensional time-reversal-invariant topological insulators.

PACS numbers:

I. INTRODUCTION

The first examples of bands with a nonzero, and quan-
tized, Hall conductance arose from electrons in a uniform
external magnetic field. However, it has since become
evident that these are special cases of the more general
phenomenon of Chern bands. Lattice1 and continuum2

models with a quantized Hall conductance σxy and no
reference to a uniform external magnetic field were iden-
tified in the late 80’s. In a Chern band, the breaking
of time-reversal symmetry, necessary for σxy 6= 0, mani-
fests itself as a nontrivial Berry flux for the band, whose
non-zero integral over the Brillouin zone (BZ) gives the
Chern number C. The work of Thouless at al3, relates C
to the dimensionless Hall conductance of the filled band.
We use a convention in which σxy = −C.

While we focus on single Chern bands, the approach
to be described here readily applies to strongly interact-
ing two dimensional time-reversal invariant topological
insulators4,5 which can be thought of as pairs of time
reversed Chern bands.

A question that has recently attracted much atten-
tion is whether these Chern bands could also exhibit the
FQHE at fractional filling in the presence of suitable in-
teractions. In such cases they are called Fractional Chern
Insulators. Optimal (but not perhaps strictly necessary)
conditions call for a hierarchy of scales, where the band
gap ∆, the interaction strength Vee, and the bandwidth
W obey ∆ ≫ Vee ≫ W .

There have been three fronts of attack. Numeri-
cal efforts have concentrated on “flattening” the Chern
band6–8, and realized Laughlin-like states9 by exact
diagonalization8,10–13. Most recently, other principal
FQH fractions such as 2/5 and 3/7 have been seen as
well14. On the analytical front, Qi15 has constructed a
basis in which known FQHE wavefunctions can be tran-
scribed into the Chern band. Subsequently Wu, Reg-
nault and Bernevig16 have pointed out ways to improve
Qi’s results by exploiting the residual gauge freedom in

the choice of basis. Considerable effort has also been
devoted to the parton construction for fractional Chern
insulators17–19 in which the electron is fractionalized into
quarks, each of which is in an integer quantum Hall state.

Our work was stimulated by the third approach due
to Parameswaran et al20, who examined the algebra of
ρFCB(q), the density operators projected into the frac-
tionally filled Chern band (FCB). Recall that in the Low-
est Landau Level (LLL) problem the projected density is
essentially ρGMP(q), the Girvin-MacDonald-Platzman21

(GMP) operator, which obeys the algebra of magnetic
translations:

[ρGMP(q), ρGMP(q
′)] = 2i sin

[

l2

2
q× q′

]

ρGMP(q+ q′).

(1)
where

l =
1√
eB0

(2)

is the magnetic length associated with the perpendicu-
lar external field B0. This algebra was exploited to great
effect by GMP in the their study of collective modes. By
contrast, the algebra of ρFCB(q) does not even close20,
though in the small q, q′ limit the commutator is pro-
portional to q×q′. The fundamental reason for the non-
closure of the density algebra is the varying Chern den-
sity B(p) in the Brillouin Zone (BZ). Parameswaran et
al offer interesting ways to combat the varying B, such
as smoothing it out or replacing it by its average20.

Our main contribution here is to show that in our
Hamiltonian approach22, given any Chern band- whether
it originates from a Landau level problem or a lattice
model23, and no matter how B(p) varies- we may in-
troduce CFs24 and that they will once again single out
gapped states at special fillings and permit the compu-
tation of various correlation functions at non zero q, ω
and T . This is possible because of the way we introduce
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CFs in the FQHE. It differs from the wavefunction ap-
proach of singular gauge transformations25 as adapted by
Jain24, and the Chern-Simons theory along the lines of
Zhang, Hansson and Kivelson26 (who expressed the the-
ory in terms of composite bosons) or Lopez and Fradkin27

who rewrote the theory in terms of composite fermions.
In the Hamiltonian approach22, we focus on ρGMP(q), the
Girvin-MacDonald-Platzman21 density operator in terms
of which the hamiltonian in the LLL problem may be
written (on dropping the constant kinetic energy of the
LLL) as

HLLL =
1

2

∑

q

ρGMP(q)ρGMP(−q)v(q)e−q2l2/2. (3)

Instead of writing ρGMP(q) in terms of the electron
guiding center coordinate Re, we express it in terms of
the guiding center and cyclotron coordinates of a CF
which experience a weaker field than the electron, ex-
actly as in the usual wavefunction-based CF treatments.
While the algebra of ρGMP(q) is replicated in the enlarged
Hilbert space, the macroscopic ground state degeneracy
at fractional filling is removed since the CFs have a nat-
ural gapped ground state in which they fill an integer
number of Composite Fermion Landau Levels, or CF-
LLs.

Having a theory expressed in terms of CFs is very use-
ful in the FQH regime for many reasons: Even though the
electrons are strongly correlated, the CFs are in states
that are weakly correlated, in the sense that they are
treatable by standard many-body approximations such
as Hartree-Fock. Let us also recall that the utility of
CFs goes beyond gapped states, and applies to the Fermi-
liquid-like state at ν = 1

2
28–30.

Our approach22, which has the virtue of allowing the
computation of not only gaps but also non-trivial re-
sponse functions, is applicable to the current problem
of fractionally filled Chern bands. Two results we estab-
lish are key to applying the Hamiltonian approach in this
problem:

• Given canonical creation and destruction operators
d†(p) and d(p) from any band with any lattice sym-
metry, we can form objects that obey the same al-
gebra as ρGMP(q), where q is not restricted to the
BZ.

• The electron density operator projected to the
fractionally filled Chern band (abbreviated FCB),
ρFCB(Q), where Q ∈ BZ, and the kinetic energy
may be expressed as linear combinations of the
above mentioned GMP densities at Q +G, where
G is any reciprocal lattice vector, with coefficients
c(G,Q) that are easily computed as Fourier coeffi-
cients.

It is then a simple matter to rewrite every ρGMP(Q+G)
in the sum in terms of CF variables and proceed with
standard many-body approximations. The rest of this
paper will flesh out the key results above and give exam-
ples of their application.

Our paper is organized as follows. In Section II, we
recall the notion of a Chern band and state the prob-
lem of the fractionally filled Chern band for the benefit
of the non-experts who we hope to draw into this prob-
lem. In Section III we study the oldest Chern band,
the LLL, and explain how the Hamiltonian theory is ap-
plied to the familiar FQHE in the continuum. Section IV
states and proves our central claim, that given any band
in a two-dimensional crystal, one can construct opera-
tors that obey the magnetic translation algebra, and that
these operators form a complete set. Thus, the electron
density projected to the Chern band can be expressed as
a sum over GMP oeprators. Section V describes in some
detail how we implement this techonology in the frac-
tionally filled Chern band problem. We show the results
from Hartree-Fock calculations for a ν = 1

3 -filled Chern
band arising from a problem involving two Landau levels
in a periodic potential. We also show how one should
proceed given a lattice model, using the lattice Dirac
model as an example. Section VI discusses the possi-
bility of observing the FQHE in band with zero Chern
number. In Section VIII we present results on a state
that is possible only on a lattice. These are states where
the filling fraction is not equal to the dimensionless Hall
conductance: ν = 1

5 and σxy = 2
5 , and arise from the ex-

plicit breaking of Galilean invariance. They are concrete
realizations of Chern-Simons theories in the presence of
a periodic potential31–33, but can also be thought of as
Hall Crystals34 stabilized by the lattice. Conclusions and
discussion follow in Section VIII.

II. THE FRACTIONALLY FILLED CHERN
BAND PROBLEM

A Chern band is a concept applicable to non-
interacting systems, an example of which is the lattice
Dirac model:

H(p) = σ1 sin px + σ2 sin py + σ3(M − cos px − cos py)

≡ σ · h(p) (4)

where p is a momentum in the BZ and σ are the Pauli
matrices and M is a free parameter. At each p the eigen-
value equation for the Bloch spinor

H(p)u(p) = ε(p)u(p) (5)

has two solutions

ε(p) = ±|h|. (6)

Focus on the lower band and follow the down spinor u(p)
as p varies over the BZ. The expectation value

n(p) = u†
σu (7)

lies on the unit sphere and the number of times the BZ
wraps around this target sphere is the winding number
W and it equals C the Chern number. If M is very large
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the spinor will get stuck at one of the poles for all p and
C will vanish. It turns out that M has to lie in a limited
range for non-trivial topology. We will work with M = 1,
for which C = −1.

While the above approach is adequate for a two-band
model, the more general way to define the Chern density
is as follows: Given the Bloch functions |u(p)〉 of the
band of interest, first define the Berry connection

A(p) = i〈u(p)|∇p|u(p)〉 (8)

Then the Berry curvature or Chern flux density is

B(p) = ∇p ×A in terms of which (9)

C =
1

2π

∫

BZ

B. (10)

A Chern band has non-zero C.
Without interactions two things are certain: if the

band is filled it will have a dimensionless Hall conduc-
tance σxy = −C and if it is partially filled, it will be a
Fermi liquid.

At partial filling we need interactions if we want a
different answer. Abbreviating fractionally filled Chern
band as FCB, the Hamiltonian to solve is

HFCB =
∑

p∈BZ

d†(p)d(p)(−ε(p)) (11)

+
1

2

∑

q

ρFCB(q)ρFCB(−q)v(q) (12)

where ρFCB(q) is the density projected to the Chern
band and v(q) the electron-electron interaction. We can-
not do weak coupling perturbation theory around the
Fermi liquid if we want to see the FQHE and we can-
not resort to the Hartree-Fock approximation because no
unique gapped state emerges in the electron variables at
fractional filling. We do not have analyticity as we did
in the LLL, which together with antisymmetry pointed
to the Laughlin fractions for ν = 1

2s+1 .
Clearly, to pick out the FQH-like states we need to

express the Hamiltonian in CF variables. To this end
we recall how they were intrduced by us in the usual
continuum FQHE.

III. THE OLDEST CHERN BAND: THE LLL

Working back from the result σxy = 1 in the LLL we
may conclude it has C = −1. (The minus sign simply
reflects our convention.) Let us ask how we can show
that. (We recommend the review by Xiao, Chang and
Niu for some basic ideas of magnetic Bloch bands35.)

First we mentally superpose on the continuum two-
dimensional electron gas immersed in a perpendicular
field B0, a square lattice of side a (the square lattice is
the simplest case; as will be evident in the following, we
can start with any lattice whatsoever). No real periodic

potential is applied yet. Working in the Landau gauge
where the vector potential has components

Ay(x, y) = xB0 Ax(x, y) = 0 (13)

we seek energy eigenfunctions which are also simulta-
neous eigenfunctions of Tx and Ty, the magnetic transla-
tion operators in the x and y directions:

Tx = e−iayel
−2

ea∂x Ty = ea∂y . (14)

These commute withH , but not with each other unless
each unit cell has an integer number of flux quanta. We
choose the simplest case of one flux quantum penetrating
each unit cell, i.e.,

a2 = 2πl2. (15)

The simultaneous eigenfunctions we seek are3:

〈xe, ye|p, n〉 = Ψp,n(xe, ye) (16)

=
1√
a

∞
∑

j=−∞
eiye(py+ajl−2)eiapxjφn(xe−aj−pyl

2) (17)

where φn(xe − aj − pyl
2) is the wavefunction for an

oscillator in level n centered at xe = aj + l2py.
Hereafter we will set a = 1 which means

l2 =
1

2π
. (18)

The states are normalized to unity, and re integrals go
over the spatial unit cell. The Bloch functions are

|u(p, n)〉 = e−ip·re |p, n〉 (19)

and the Berry connection

A(p , n) = i〈u(p, n)|∇p|u(p, n)〉 (20)

can be computed to have components

Ay = 0 Ax = pyl
2 =

1

2π
py so that (21)

B(p) = ∇p ×A = − 1

2π
which means (22)

C =
1

2π

∫

BZ

B = −1. (23)

The Hamiltonian in the LLL was referred to earlier:

HLLL =
1

2

∑

q

ρGMP(q)ρGMP(−q)v(q)e−q2l2/2. (24)

Let us now obtain this projected Hamiltonian and
ρGMP(q) form the original electronic problem. Start with
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the standard expression for the electron density operator
in the full Hilbert space (including all Landau levels) in
first quantization:

ρ(q) =
∑

j

eiq·re . (25)

The electron’s position re may be decomposed as

re = Re + ηe (26)

where the electronic guiding center coordinate Re =
re−ηe, and where the cyclotron coordinate ηe is in turn
defined as

ηe = l2z×Πe = l2z× (pe −A(re)). (27)

Here A(re) is the vector potential of the external mag-
netic field, not to be confused with the Berry connection
A. The coordinates ηe, Re satisfy the commutation re-
lations

[Rex, Rey] = −il2 (28)

[ηex, ηey] = il2 (29)

[ηe,Re] = 0. (30)

Upon projecting the electron density operator to the
LLL we obtain

ρLLL(q) =
∑

j

〈eiq·ηej 〉LLLe
iq·Rej = e−q2l2/4ρGMP(q)

(31)
where each term eiq·Rej in the sum obeys the GMP al-
gebra by itself thanks to Eq. 28. We shall use the same
symbol for the densities when we switch to second quan-
tization.

The cyclotron coordinate enters the non-interacting
Hamiltonian:

H0 =
(pe − eA(re))

2

2m
=

η
2
e

2ml4
(32)

while the guiding center coordinate Re, which is a cyclic
coordinate, explains the degeneracy of the LLL. Since re
can roam over the sample of area A and |ηe| ≃ l, Re

can roam over the sample area. Since Rex and Rey are
conjugate variables, and l2 plays the role of h̄, the sample
is the phase space for Re and the number of states in a
LL is

A

”h”
=

A

2πl2
=

eAB0

2π
=

Φ

Φ0
= NΦ (33)

which is the total flux in units of flux quantum Φ0 = 2π/e
(with the real h̄ = 1). If Ne is the number of electrons,
the filling fraction is ν = Ne/NΦ and its inverse is the
number of single particle states or flux quanta per elec-
tron. For ν < 1, we face a macroscopic degeneracy trying
to fill NΦ states with Ne < NΦ electrons.

The CF idea of Jain24 for ν = p/(2p+ 1) is to attach
two flux quanta per electron to form the CFs. The num-
ber of electrons is the same as the number of CFs, but

the number of effective flux quanta seen by the CFs is
N∗

Φ = NΦ − 2Ne which leads to the CF filling factor

(ν∗)−1 =
N∗

Φ

Ne
= ν−1 − 2 =

1

p
(34)

Thus, the CFs fill p CF-LLs. (Jain’s approach
applies24 in general to ν = p/(2ps + 1), where 2s flux
quanta are attached, but we focus on s = 1 to illustrate
our ideas.)

We, too, embrace the idea of the CF that sees just
the right field to fill p CF-LLs, but implement it in
an operator-based approach as follows. We introduce a
Hilbert space for a CF which sees the field B∗ = B0

2p+1

that the CF of reduced charge e∗ = e
2p+1 is supposed to

see in Jain’s picture. This information is encoded in the
algebra of its cyclotron η and guiding center R coordi-
nates (which do not carry the subscript e) and obey

[ηx, ηy] = il∗2 = i
l2

1− c2
(35)

[Rx, Ry] = −il∗2 (36)

[η,R] = 0 (37)

c2 = 2ν =
2p

2p+ 1
(38)

It is readily verified that the combination

Re = R+ η c (39)

(40)

obeys

[Rex, Rey] = −il2. (41)

This in turn permits the crucial CF substitution

ρGMP(q) =
∑

j

exp
[

iq · (Rj + cηj)
]

(42)

in Eqn. 24 for the projected Hamiltonian HLLL, which
now acts on a regular fermionic Hilbert space with two
conjugate pairs per particle. Since the CFs see exactly
the right field to fill p CF-LLs, a natural, gapped Hartee-
Fock state emerges.

There is a catch. Using R and η we can form a second
conjugate pair

Rv = R+ η/c (43)

called the pseudovortex coordinate, obeying

[Rvx, Rvy ] = i
l2

c2
(44)

[Re,Rv] = 0. (45)

It has no dynamics and commutes with HLLL(Re).
We call it the pseudovortex coordinate because it has

the same charge as the double vortex that is supposed
to bind with the electron to form the CF in the wave-
function approach. The price we pay for obtaining a
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good mean-field starting point is that our Hilbert space
has these unphysical degrees of freedom Rv. In order
to work in the physical sector the vortex coordinates
need to be constrained. Specifically, the vortex densi-
ties, ρv(q) = eiq·Rv , emerge as a gauge algebra. The way
to handle this gauge degree of freedom is described in our
review22.

The Hamiltonian is a function of Re alone, and thus
any function of the Rv commutes with the Hamiltonian.
This has the following important consequence:

The energy of any trial state in the enlarged Hilbert
space provides a variational upper bound on the true
ground state energy.

To see this note that the exact ground state in the en-
larged space is a tensor product of the exact ground state
in the physical space (of Re) and an arbitrary state in
the Rv sector. Since H is independent of Rv, the ground
state energy in the enlarged Hilbert space is identical
to the exact ground state energy. The variationality of
ground state energy in the enlarged space follows. We
will use this fact to investigate the relative stability of
electronic versus CF ground states in what follows.

We have computed many physical quantities in this
Hamiltonian approach in the continuum FQH regime22.
We find semiquantitative agreement with numerical re-
sults for gaps36. Response functions can be computed
in a conserving approximation (which approximately
projects to the physical space) and qualitatively correct
results for the static structure factor of incompressible
states are obtained37. With the introduction of the layer
thickness as a single fitting parameter, experimental spin
polarizations for 1/3 and 1/2 can be reproduced over the
entire temperature range to within a few percent38. Fur-
thermore, disorder can also be handled in this formalism,
leading to good agreement with data on NMR relaxation
time39 as a function of total field at ν = 1/2, and gaps
as a function of total field40 at ν = 1/3.

The key point, going forward, is this: once the problem
is written in terms of ρGMP(q) we can make the CF substi-
tution and go on to standard many-body approximations
for single-particle as well as collective properties.

IV. THE CHERN BAND IN TERMS OF ρGMP(q)

We will now show how the entire Chern band Hamil-
tonian can be expressed in terms of GMP densities. First
let us go back to the electrons in the continuum, on which
a periodic “empty” lattice was mentally imposed, lead-
ing to the symmetry-adapted wavefunctions of Eq. (17).
Denoting the electron creation and destruction operators
in the BZ as c†n(p), cn(p), we can express ρGMP(q) in
the LLL in second quantization as

ρGMP(q) =
∑

p

c†0(p
′)c0(p)e

iΦ(q,p) where (46)

eiΦ(q, p) = 〈p′|eiq·Re |p〉 (47)

where the subscript 0 denotes the n = 0 Landau level,
and where the final state momentum p′ is p+q brought

back to the BZ (we have introduced the notation [p+ q]
for this)

p′ ≡ [p+ q] = p+ q− ex2πNx − ey2πNy. (48)

The matrix element of Eq. 47 is

eiΦ(q, p) = exp

[

i

2π

(

1

2
qxqy + qxpy − (px + qx)2πNy

)]

(49)

It is important to note that q is not restricted to the
BZ. While the above is special to the square lattice, it is
evident that a similar construction can be performed for
any lattice.

Now, let us consider any given band on a square lat-
tice with canonical destruction and creation operators
d(p), d†(p). Let us construct the following operator
with momentum q not necessarily in the BZ

ρGMP(q)

=
∑

p∈BZe

d†(p′)d(p)eiΦ(q,p) (50)

=
∑

p∈BZe

d†(p′)d(p)

× exp

[

i

2π

(

1

2
qxqy + qxpy − (px + qx)2πNy

)]

(51)

We call this operator ρGMP(q) because it obeys the
algebra of the GMP densities since all it takes is the
right coeffcient eiΦ and canonical commutation rules of
d and d†. It does not matter that they do not come from
a Landau Level. Once again, q is not restricted to the
BZ. In a purely lattice problem the momentum transfer
Q will also be restricted to the BZ, so let us decompose

q = Q+G = Q+ 2πnxex + 2πnyey : (52)

leading to

ρGMP(Q+G)

=
∑

p

d†(p′)d(p)eiΦ(Q+G, p)

=
∑

p

d†(p′)d(p)eiΦ(Q, p)e
i
2
(Qynx−Qxny+2πnxny)e−ipxny+ipynx

(53)

Clearly, adding G to Q does not affect the values of
p, p′, but does affect the phase factor in the sum.

Now we are ready to state our central claim. The elec-
tron density operator projected to the fractionally filled
Chern band (FCB) can be expressed as

ρFCB(Q) =
∑

G

c(G,Q)ρGMP(Q+G) (54)
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where the coefficients c(G,Q) can be computed from the
data on the original Chern band, essentially by Fourier
transformation.The CF-substitution can be then made in
each ρGMP(Q+G).

Indeed we will show that we can expand any bilinear of
the form d†d in terms of ρGMP(Q+G). The reason is that
there are as many independent operators ρGMP(Q + G)
as there are bilinears d†(p2)d(p1) in the canonical basis.

To count the number of linearly independent operators
we need to consider a finite system, which we choose to
be a torus of size L × L. Firstly, it is clear that ρGMP

for different values of Q ∈ BZ are linearly independent.
So the question becomes, for a given Q ∈ BZ, for how
many different values of G are the ρGMP(Q+G) linearly
independent? Since a = 1, the number of sites is N2 =
L2

a2 = L2, which also equals the number of points in the

BZ. Clearly, N2 is the number of distinct values for the
single-particle momentum p ∈ BZ, and the number of
distinct values of Q ∈ BZ in the lattice model. The
smallest value for any component of Q or p is Qmin =
pmin = 2π

L .

Now we demonstrate that adding 2πNêx or 2πNêy
to Q in ρGMP does not lead to a linearly independent
expression.

To verify this consider the second and third exponen-
tials in Eq. 53 which alone depend on G. Focus on a

factor like e−
i
2
Qxny when Qx = Qmin and ny = N

e−
i
2
qxny

∣

∣

∣

qx=
2π
L

,ny=N
= e−iπN

L = −1. (55)

The same goes for all the terms in the second exponential,
while the third exponential always equals unity, which
means

ρGMP(q+Gmax) ∝ ρGMP(q) (56)

It is easy to see that this linear dependence holds for
any value of Q.

Thus we get linearly independent densities only for
components up to Gmax = 2πN . There are only N2

independent values of G, just as for p or Q. But this
means there are N4 linearly independent operators of
the form ρGMP(Q + G), exactly the right number to
form a basis, like the canonical basis d†p2

dp1
. So what

we find is that not only ρFCB, but any bilinear oper-
ator O (such as the lattice current operator) of the
form

∑

p d†(p′)d(p)O(Q,p) can be expanded in terms

of ρGMP(Q+G).

Now consider the proposed expansion ρFCB(Q) in
terms of ρGMP(Q+G):

∑

p

d†(p′)d(p)eiΦ(Q+G, p)

=
∑

p

d†(p′)d(p)eiΦ(Q, p)e
i
2
(Qynx−Qxny+2πnxny)eipynx−ipxny

(57)

This amounts to a Fourier expansion of f(Q,p):

f(Q,p) =
∑

nx,ny

c(nx, ny,Q)

× e
i
2
(−Qxny+Qynx+2πnxny)e−ipxny+ipynx (58)

is, at each Q, just the Fourier expansion of the function
f periodic in p in terms of oscillating exponentials of the
right period.

Since f(Q,p) was not anything special above, the re-
sult holds for any bilinear. The expansion of the kinetic
term is a special case of Q = 0:

∑

p

d†(p)d(p)(−ε(p))

=
∑

G

h(G)ρGMP(G) (59)

=
∑

nxnyp

d†(p)d(p)h(nx, ny)e
−ipxny+ipynx+iπnxny(60)

which amounts to Fourier expanding the energy disper-
sion −ε(p). We now have the full electronic Hamiltonian
for the FCB in terms of ρGMP. We are now ready to
perform the CF substitution and the Hartree-Fock ap-
proximation.

V. COMPOSITE FERMION SUBSTITUTION
AND THE HARTREE-FOCK APPROXIMATION

We have found two ways to demonstrate our method
which differ only in the way the Chern band is intro-
duced.

In the first subsection we couple two LL’s with a pe-
riodic potential and use the lower band as the Chern
band. It should be clear by now that once you have a
Chern band it does not matter where it came from. Our
reason for using this version is that the expansion of ρFCB

in terms of ρGMP converges very rapidly. This is the case
for which we display the results of the Hartee Fock cal-
culation for ν = 1

3 and ν = 1
5 , (with σxy = 2

5 .)
In the final subsection we consider the lower band of

the lattice Dirac model at M = 1 when C = −1. Here
we show how a satisfactory expansion of ρFCB in terms of
ρGMP obtains. No Hartee Fock results are presented for
this model, since these have not yet been carried out.

A. Landau Level based models

The goal of this section is to convince the reader that
a nonconstant B(p) is no impediment to the CF substi-
tution, and to flesh out the key expansion Eq. 54. We
begin with the construction of a nontrivial Chern band
with a non-constant B(p).

Consider a problem with two LLs labeled 0 and 1 sep-
arated by a gap ω that is at our disposal, as shown in
Fig.1. By choosing the Hamiltonian to be a suitable func-
tion of η†

eηe, not simply linear, we can arrange for the
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FIG. 1: Left: Two unperturbed Landau Levels with C =
−1 and zero width separated by energy ω. The dotted grid
represents a fictitious square lattice with one flux quantum
per unit cell. Right: The two bands with finite width after a
periodic potential VPP (solid grid) is imposed. The lower of
the two bands is our Chern band with C = −1.

other LLs to be separated by a parametrically larger gap
than ω and hence ignorable in what follows.

Each level has C = −1. However the Chern density B
is constant in p in both LLs. To make it vary, we add a
periodic potential

V (re) =
∑

G

V (G)eiG·re (61)

which mixes the LLs, bequeaths a bandwidth and in-
duces structure in B(p). In our illustrative example we
keep only the harmonics ±2π in the two directions with
coefficient V10, though the following analysis applies to
the general case. Using

〈pn2|eiG·r|pn1〉 = ρn2n1
eiGxGy/4πeiG×p/2π (62)

where (for the general value of l),

ρn2n1
(q) = e−q2l2/4

√

n<!

n>!
L|n1−n2|
n<

[

q2l2

2

]

×











(

ilz̄√
2

)|n1−n2|
when n1 > n2

(

ilz√
2

)|n1−n2|
when n2 ≥ n1

z = qx + iqy (63)

we find

HI(p) =
[

g(p)− Ṽ σ1 sin py + Ṽ σ2 sin px

− σ3

[

ω

2
−

√
πṼ

2
(cos px + cos py)

]]

(64)

Ṽ = V10e
− 1

2
π√π (65)

The ground state of HI(p) is our Chern band. The
function g(p) affects the energy dispersion of the band,
but not the Chern density B(p).

ThoughHI(p) has the form of the Lattice Dirac Model
(Eq. 4), it is in the topologically trivial region. This is

due to our requirement ω > 2
√
πṼ which ensures that

the two bands do not touch at px = py = 0, which in
turn ensures that the Chern number remains C = −1.
Due to the topological triviality ofHI(p) the pseudo-spin
n(p) = 〈u(p)|σ|u(p)〉 never enters the southern hemi-
sphere. Nonetheless the overall C = −1 because nontriv-
ial topology is contained in the p-dependent basis func-
tions. Whereas in the traditional lattice Dirac model, the
tight binding wavefunctions are p-independent spinors,

[1, 0]
T

and [0, 1]
T
, here they are the states |p, n = 0, 1〉

with topologically nontrivial p dependence. The total B
in this problem has a constant piece − 1

2π coming from
the basis functions and responsible for C = −1, and two
more p-dependent terms with zero integrals: one due to
the p-dependence of the ground state spinor, and a cross
term that arises because 〈n|∇p|n′〉 6= 0 for n 6= n′. The
total B(p) is shown in Figure 2 along with the Chern
density for the Lattice Dirac Model at M = 1. Notice
the strong similarity even in this minimal model with just
two LLs and one harmonic in V .

Now that we have a nontrivial Chern band with a
nonconstant B(p) let us proceed to the CF-substitution,
which will in turn lead us to the gapped state in the
Hartree-Fock approximation at ν = 1

3 when interactions
are turned on.

First we need to find ρFCB, the projection of the elec-
tron density operator to the Chern band. When V10 = 0,
clearly ρFCB(q) = ρLLL(q). To find out what it is when
V10 is turned on we proceed as follows:

• Find the 2 × 2 matrix that describes the electron
density ρe(q) = eiq·re in the space of the LLs, n =
0, 1.

• Find the eigenstates of HI(p).

• Project ρe(q) = eiq·re to the ground state at each
p, our Chern band.

Consider each step in turn. First we find the matrix
elements of ρe(q) = eiq·re between the magnetic Bloch
states defined in Eq. 17, which vanish unless the initial
momentum p and final momentum p′, both restricted to
the Brillouin Zone. Recall that

p′ ≡ [p+ q] = (p+ q) mod G (66)

We remind the reader of the definition of p′ ≡ [p+ q]
as the final state momentum brought back to the Bril-
louin Zone by modding out the appropriate reciprocal
lattice vector G. We are aware that this may not be a
standard notation.

The non-zero matrix elements are found to be
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FIG. 2: Top: B(p) in the in the lowest band with just two
LLs and one harmonic V01 6= 0. Bottom: Berry flux density
in the lattice Dirac model at M = 1 .

〈[p+ q]n2|eiq·re |pn1〉 =

ρn2n1
exp

[

i

2π

(

1

2
qxqy + qxpy − (px + qx)2πNy

)]

≡ ρn2n1
(q)eiΦ(q, p) (67)

where ρn2n1
(q) has been defined in Eq. 63. The asym-

metry between px and py in Eq. 67 reflects our choice of
the Landau gauge in defining the basis states in Eq. 17.

The corresponding second-quantized operator is

ρe(q) =
∑

p

∑

n1,n2=0,1

a†n2
([p+ q])ρn2n1

(q)an1
(p)eiΦ(q, p)

(68)
where an and a†n are the operators associated with the
basis states |pn〉.

Now for the second step, which carries out the unitary
transformation to the eigenbasis of HI . Let U be the
matrix that diagonalizes HI(p) in Eq. 64 and relates
an to the dn associated with the energy eigenstates as
follows

(

a0(p)
a1(p)

)

=

(

U00 U01

U10 U11

)(

d0(p)
d1(p)

)

(69)

Since HI(p) is topologically trivial, U , like the eigen-
spinors, is globally defined in the Brillouin Zone and pe-
riodic in p. Switching to the new basis and projecting to
the ground state we obtain

ρFCB(Q) =
∑

p

d†0(p
′)d0(p)e

iΦ(Q, p)f(Q,p)

f(Q ,p) = U †
0n′(p

′)ρn′n(Q)Un0(p) (70)

Hereafter the subscript on d0, indicating that it corre-
sponds to the ground state will be dropped.

Thus we have a Chern band, a non-constant B and
a closed expression for the projected density. The final
step before we carry out the CF substitution is to write
this density in terms of ρGMP. Here is an intuitive argu-
ment that this can be done. When V10 = 0, we know

ρFCB = e−q2l2/4ρGMP. As we turn on V10, the perturb-
ing terms are of the form eiG0·re = eiG0·ηeeiG0·Re where
G0 = 2π(exnx + eyny) with only one of nx or ny = ±1.
Given the GMP algebra, the repeated action of this per-
turbation can only be to turn ρGMP(q) into a sum over
ρGMP(q+G), where G is now any reciprocal lattice vec-
tor. So we do expect that in the end, even for an arbitrary
periodic potential

ρFCB(Q) =
∑

G

c(G,Q)ρGMP(Q+G) (71)

Since the bands never touch, perturbation theory
will always converge. However the final result is non-
perturbative and follows simply from the dependence of
HI(p) on eiG0·Re. Given the f(Q,p) of Eq. 70, it is
straightforward to find the coefficients c(G,Q).

The commutators of the projected electron density
ρFCB(Q) can be worked out, if desired. They will be
neither pretty nor universal20, unlike the magnetic trans-
lation algebra21, depending instead on the details of the
lattice via f(Q,p).

Having expressed ρFCB(Q) in terms of ρGMP(Q + G)
we need to do the same for a term in H̄ that is absent
in the usual LLL: the non-constant kinetic energy −ε(p)
of the Chern band. As described earlier, this is a special
case (Q = 0) of the Fourier transform we carried out for
ρFCB(Q).

Note that the phase factor

eiΦ(Q, p) = exp

[

i

2π

(

1

2
QxQy + qxpy − (px +Qx)2πNy

)]

(72)
jumps in p space for a fixed Q. For example if Q = 3ey
and the Brillouin Zone is in the interval [0− 2π] in both
directions, then for any p with py > 2π − 3, adding Q

will take it to the next Brillouin Zone and Ny will have
to jump from 0 to 1 to bring p′ within the Brillouin
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Zone. Luckily, this discontinuous Φ and its jump are
shared by both ρMLLL(Q) and ρGMP(Q+G). This ensures
rapid convergence of the Fourier expansion of the jump-
free part f(Q,p) in Eq. 58.

B. The CF substitution

Now we must switch to CFs. We only sketch the broad
ideas. We first consider the case of ν = 1

3 when the CF

has a charge e∗ = 1
3e and l∗2 = 3l2 = 3

2π . The spatial
unit cell is 3 units long in the x-direction so as to enclose
unit flux as seen by the CF so that the Brillouin Zone of
the CF goes from −π

3 ≤ px ≤ π
3 and is unchanged in the

y-direction. However when we construct the projected
electron density operators we will need to consider Q

that runs over the Brillouin Zone of the electron not the
CF.

Consider ρGMP(Q) which was eiQ·Re in first quantiza-
tion and which we repeat here for convenience

ρGMP(Q)=
∑

p∈BZe

d†(p′)d(p)

×exp

[

i

2π

(

QxQy

2
+Qxpy−(px +Qx)2πNy

)]

(73)

in second quantization. To go to the CF representation
means to write

eiQ·Re = eiQ·(R+ηc) (74)

in first quantization and the following representation
in terms of CF operatorsC and C† in second quantization

ρGMP(Q)

=
∑

p∈BZCF

C†
n′(p

′)Cn(p)ρn′n(Q → cQ, l → l∗)

× exp

[

3i

2π

(

1

2
QxQy +Qxpy − (px +Qx)2πNy

)]

(75)

where Cn(p) is the canonical CF destruction operator
in the CF BZ in the nth CF-Landau level, the 3 is due to
l∗2 = 3l2 = 3

2π , and the argument of ρn′n is Qc because
the c in ηc may be lumped with q (see Eq. 42 and Eq.
63). Note that all CF-LLs (n = 0, 1, . . . ) appear in the
density, a result of the enlarged Hilbert space in which
we are representing the problem.

With the Hamiltonian expressed in terms of CF oper-
ators, we move to the Hartree-Fock calculation. We set
ω = 10 (the gap between the two electronic LLs ) and

choose the periodic potential to be VPP = V10e
− 1

2
π = 1.

We keep 3 CF-LLs which get mixed by the periodic po-
tential and interaction. We end up with three bands
which are fairly well separated. Unlike in the continuum
where the CF-LLs were uniformly filled, the occupation
number here varies with p (due to the periodic potential)
and has to be found self-consistently. Figure 3 shows the

FIG. 3: The results of our Hartree-Fock calculation at ν = 1

3

and ω = 10, for the Coulomb interaction 2πVee

Q
. The three

bands resulting from three CF-LLs which get mixed and mod-
ulated by the periodic potential VPPP = 1.

FIG. 4: The occupation numbers in CF-LLs 0,1,and 2 at
Vee = 10,VPP = 1, ω = 10. Notice that the n = 0, 1 levels
(bottom two) saturate the occupancy while the n = 2 (top)
level is practically empty, validating the truncation at three
CF-LLs and establishing CF theory as a good low-energy de-
scription. The plots repeat three times in the py direction
because Tx and T 2

x commute with H , but do not commute
with Ty and add 2π

3
and 4π

3
to py, respectively.

results of our calculation for the Coulomb interaction of
strength 2πVee

Q . We see a clear gap separating the low-

est band which is fully occupied from the others, even at
very small values of Vee.

This is puzzling since one expects the CF-picture to
break down for Vee ≪ V PP. Upon further investigation
we found two signals that point to the breakdown of the
CF picture, one internal to the Hartree-Fock approxima-
tion and one external.

The internal signal involves the occupation numbers of
the CF-LLs in the ground state at each p. Figure 4 shows
that at Vee = 10, nCF = 0, 1 are robustly occupied while
nCF = 2 has negligible occupancy. Thus our truncation
with three CF-LLs is safe, since the n = 2 level is not



10

FIG. 5: The occupation numbers in CF-LLs 0,1,and 2 at
Vee = 0.5, VPP = 1, ω = 10. Notice that the particles are
levitating towards the n = 2 level (top) and moving away
from n = 0, which calls the truncation at three CF-LLs into
question. The plots repeat three times in the py direction be-
cause Tx and T 2

x which do not commute with Ty add 2π
3

and
4π
3

to py, respectively, commute with H .

called into play. By contrast at Vee = 0.5 we see in
Figure 5 that occupation of nCF = 2 can be substantial.
The levitation of the fermions to the upper CF-LLs is a
clear indication that CF theory is failing as a good low-
energy theory.

Let us observe an interesting three-fold symmetry in
the occupations as a function of py, which is also reflected
in the energy bands. This is a consequence of the x-
translation symmetry of the effective CF Hamiltonian35,
which, as we recall, has one unit of effective flux per three
original (electronic) unit cells. Recall that Tx commutes
with the Hamiltonian, but not with Ty. It can be easily
shown that

Tx|px, py, n〉 = eiφ(p)|px, py −
2π

3
, n〉 (76)

This symmetry is also possessed by the Hartree-Fock
Hamiltonian

T †
xHHF (px, py)Tx = HHF (px, py −

2π

3
) (77)

and thus by the energy bands and the occupations.
Now we turn to the external test that signals the

breakdown of the CF state and is sharper than the one
based on occupation numbers. It involves the compar-
ison of the variational energy per particle in the frac-
tional Chern insulator state and the electronic Fermi liq-
uid state.

As mentioned at the end of Section III, despite the
fact that we are working in an enlarged space, the ground
state energy is variational. Fig. 6 shows the the Hartree-
Fock energy per particle of the Fermi liquid (smaller
dots) versus to 1

3 fractional Chern insulator state (larger
dots). We see that the Fermi liquid yields to the frac-
tional Chern insulator state at Vee ≃ 2.5. We caution
the reader that this does not mean that the fractional

V
ee

 

FIG. 6: Comparison of the Hartree-Fock energy per parti-
cle of the electronic Fermi liquid (smaller dots) versus the 1

3

Fractional Chern Insulator state (larger dots). We see that
the Fermi liquid, which wins at small interaction strength
Vee yields to the fractional Chern insulator state around
Vee = 2.5.

Chern insulator state unequivocally wins. It is possible
that there are correlated electronic states with an even
lower energy than our CF-state.

To summarize, we produced a non-trivial Chern band
by transferring the topology to the basis functions in p

space. These functions arose from two electronic LLs
mixed by a periodic potential. The projected charge den-
sity at momentum Q was then written as a computable
sum over G of GMP densities at Q + G. The GMP
densities were treated in the Hamiltonian method by the
replacement Re = R+ηc. Finally a Hartree-Fock calcu-
lation was carried out using a gapped CF ground state.
We see that although a fractional Chern insulator state
always exists, even for very weak interactions Vee, the
occupations of the higher CF-LLs becomes smaller with
increasing Vee, providing an internal signal of its stability.
A sharper limit for the goodness of the fractional Chern
insulator state is provided by the comparison to the vari-
ational energy of the electronic Fermi liquid state, which
wins for Vee < 2.5, but gets bested by the fractional
Chern insulator state for larger Vee.

C. A digression on LL based bands

A natural extension of the above example is to impose
more complicated periodic potentials to get more compli-
cated B(p)s. Earlier in our exploration42 we pursued this
line of thought so as to reproduce the B(p) of some spe-
cific lattice model, say the lattice Dirac model. (We see
in Fig. 2 that the B(p) of our Landau level based Chern
band with just one harmonic is already not too different
from that of the lattice Dirac model.) Our motivation
was as follows. Let us take the view that the FCB prob-
lem is defined by (i) B(p) and (ii) the interaction written
in terms of the projected density ρFCB(q). The logic be-
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hind (i) is that the projected electron coordinate

(

RFCB
µ

)

pp′
=
(

i
∂

∂pµ
+Aµ(p)

)

δ2(p− p′) (78)

has commutators defined by B:

[

RFCB
x , RFCB

y

]

pp′
= iB(p)δ2(p− p′) (79)

It follows that if we can construct a surrogate band
with the same B(p) as in a given FCB, then any function
of the projected electron coordinates will be algebraically
the same in the two problems.

Let us review where this line of thought leads in the
continuum FQH problem. There we represent the elec-
tron’s projected coordinate Re in terms of CF variables
R and η. Getting the algebra of Re correctly also means
getting the algebra of ρLLL, the projected density right,
up to a known prefactor. Thus, if 〈· · · 〉 denotes averages
in the target band, which here is the LLL,

re = Re + ηe which implies (80)

〈re〉 = Re while (81)

〈eiq·re〉 = 〈eiq·(Re+ηe
)〉 (82)

= 〈eiq·ηe〉eiq·Re (83)

= e−q2l2/4eiq·〈re〉 (84)

In other words, the projection of the exponential of re
is, up to a known prefactor e−q2l2/4, the same as the ex-
ponential of the projection because ηe and Re commute.
This is why if the projected coordinate is faithfully rep-
resented, so is the projected density. We go over these
well known facts to highlight the unusual simplicity of
projecting to the LLL.

Unfortunately, in the generic FCB problem this is no
longer true. Let us define two different projected densi-
ties in the FCB. One is the usual one:

ρFCB(q) = 〈FCB|eiq·re |FCB〉 (85)

This is the projected density which enters the interacting
Hamiltonian in the FCB.

The other is the analogue of the guiding center density:

ρ̄FCB(q) = eiq·R
FCB

e (86)

In the FCB problem

ρFCB(q) 6= C(q)ρ̄FCB(q) (87)

because the “guiding center” coordinates RFCB do
not commute with the analogue of the cyclotron coor-
dinates. Thus, B(p) is not enough to specify the inter-
acting Hamiltonian in the FCB completely. One needs
the expression for ρFCB(Q) as well.

However, to lowest order in q and q′ we have, in first
quantization and in p-space,

[ρFCB(q), ρFCB(q
′)] = −i [q× q′]B(p)+higher order terms

(88)
as pointed out by Parameswaran at al20.

So if the Chern flux density B(p) of the surrogate band
matches that of the lattice FCB, ρFCB(Q) and ρ̄FCB(Q)
will bear a close resemblance to each other but not be
equal in all respects. Since these are both models any-
way, one may argue that it is sufficient to get a surrogate
that approximates the original lattice model and is yet
amenable to analytic treatment. However we will not
pursue this approach further since there is a more direct
way to obtain ρFCB(Q) in terms of ρGMP(q = Q + G)
for an arbitrary lattice model, Eq. 54, one of the central
claims of this paper.

D. Lattice Chern bands

In the previous section we showed how to carry out the
CF substitution in LL-based models with nonconstant
B(p). In this section we consider the lattice Dirac model
with some interaction Vee.

Here are the concrete set of steps we follow:

• Construct ρFCB(Q), the projected density operator
in terms of the eigenfunctions of noninteracting lat-
tice Dirac model Hamiltonian H(p) and the oper-
ators d and d† associated with the Chern band at
each p.

• Construct operators obeying the algebra of
ρGMP(Q + G) using d and d† as per Eq. 53. As
noted immediately after that equation, this can al-
ways be done. To get the best possible results this
must be done in Ay = 0 gauge.

• Expand as before, using the complete set of N4

operators ρGMP(Q+G):

ρFCB(Q) =
∑

G

c(G,Q)ρGMP(Q+G). (89)

This will be just a Fourier expansion in
eipxny−ipynx .

• Carry out the CF substitution in ρGMP and go on
to the Hartree-Fock approximation.

We illustrate the above steps with the lattice Dirac
model at M = 1:

H(p) = σ1 sin px+σ2 sin py+σ3(1−cos px−cos py) (90)

with ground-state energy

−ε(p) = −
√

1 + 2(1− cos px)(1 − cos py). (91)

The generic formula for the projected charge density
is
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ρFCB(Q) =
∑

p

d†([p+Q])d(p)〈[p+Q] |p〉 (92)

where d† , d create and destroy the ground state and
|p〉 is the corresponding Bloch spinor. However |p〉 is
not globally defined41 over the Brillouin Zone because
C = −1. Here are two choices that work in two different
patches:

|p〉01 =

(

sin θ(p)
2

− cos θ(p)
2 eiφ(p)

)

(93)

|p〉02 =

(

sin θ(p)
2 e−iφ(p)

− cos θ(p)
2

)

(94)

where

cos θ(p) =
1− cos px − cos py

ε(p)
(95)

eiφ(p) =
sin px + i sin py
√

sin2 px + sin2 py

(96)

The superscript 0 on the kets reminds us that these
are going to be transformed to a more appropriate gauge
later.

The angle φ(p) is ill defined at θ(p) = 0, π. At
θ(p) = 0, choice |p〉02 is good because the component

sin θ(p)
2 e−iφ(p) vanishes. In a patch where θ(p) = π, the

choice |p〉01 is good. Figure 7 shows that there are four
trouble spots: (0, 0) where the spinor is at the south pole
θ = π, and points (0, π), (π, π) and (π, 0) where it is at
the north pole θ = 0. We pick the Brillouin Zone in the
range

[

−π
2 ,

3π
2

]

so that the trouble spots are not at the
edges. Patch 1 is indicated by the solid right triangle and
patch 2 is the rest.

The corresponding Berry connections are

A0
1(p) = −1

2
(1 + cos θ(p))∇φ (97)

A0
2(p) =

1

2
(1− cos θ(p))∇φ (98)

Once again the superscript 0 on the A0’s above signals
that this is not yet the final gauge.

If we imagine the edges of the Brillouin Zone parallel
to ey glued together to form a cylinder and then the top
and bottom sewn together to form the torus, this dark
line will mark the boundary between the two regions.
The difference between the two connections is −∇φ, and
the integral around the boundary of − 1

2π∇φ will yield
C = −1.

We now reach the final gauge Ay = 0 as follows. Let

us define

Λ1(px, py) =

∫ py

− 1

2
π

A0
1y(px, py

′)dp
′

y (99)

Λ2(px, py) = Λ1(px,
π

4
− px

2
) +

∫ py

π
4
− px

2

A0
2y(px, py

′)dp
′

y

(100)

χ(px) = φ(px,
π

4
− px

2
) (101)

and the following final kets in the two patches

|p〉1 = eiΛ1 |p〉01 (102)

|p〉2 = eiΛ2+iχ|p〉02 (103)

In this final gauge, not only is Ay = 0, the two ex-
pressions above, |p〉1 and |p〉2, merge seamlessly along
the sloped line py = π

4 − px

2 separating the patches and
on the vertical boundaries of the Brillouin Zone, which
may be glued to form a cylinder. However between the
lines py = −π

2 and py = 3π
2 there is a phase mismatch

so that we cannot roll the cylindrical Brillouin Zone to a
torus without a discontinuity at the seam. This had to
be so, for otherwise we would have a fully periodic Bloch
function and C would vanish by Stokes’ Theorem41.

A salient feature of this gauge is that ρFCB(Q) in Eq.
92 also has jumps in the sum over p exactly where the
ρGMP(Q +G)’s do, rendering this the optimal gauge for
rapid convergence of the Fourier expansion.

Figure 8 gives a taste of how the Fourier expansion
works at a generic value of Q = 3ex + 3ey. It com-
pares, at fixed px = −π

2 + 5, the imaginary part of the

FIG. 7: In patch 1, we have the south pole at (0, 0) and spinor
|p〉1 is well defined while in patch 2, spinor |p〉2 is well defined
at the north pole reached at the points (0, π), (π, 0), (π, π).
The patches meet on the right triangle. In the final Ay =
0 gauge the wavefunction is seamless across the hypotenuse
py = π

4
− px

2
and periodic in px. However the top and bottom

edges differ by a phase and the Chern number is resident in
that difference.
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FIG. 8: Here we compare, at fixed px = −π
2
+5, the imaginary

part of the coefficient of d†([p+Q])d(p) in ρFCB(Q) to the
approximation in which the Fourier sum over G is truncated
after 50 harmonics in the py direction (from −25 to 25) and
20 in the px direction.

coefficient of d†([p+Q])d(p) in ρFCB(Q) to the approx-
imation in which the Fourier sum over G is truncated
after 50 harmonics (from −25 to 25) in the py direction
and 20 in the px direction. Note that even though q has
components in both directions, the jump occurs only in
the py direction due to the periodicity in the px direction.

Figure 9 shows the full landscape of the the real part of
the coefficient of d†([p+Q])d(p) in ρFCB(Q) versus the
approximation in which 50 harmonics (from −25 to 25)
are kept in the py direction and 20 in the px direction.

Having expressed everything in terms of ρGMP(Q), the
the CF substitution and Hartree-Fock analysis can be
carried out just as before and we do not discuss it further.

A central message of this work is that since in a prob-
lem with C 6= 0, one cannot work with periodic Bloch
functions, the expression for ρFCB(Q) in theAy = 0 gauge
will necessarily have a jump beyond some py depending
on qy when we retract from a point p+Q which lies out-
side the Brillouin Zone to a point p′ = [p+Q] within.
The GMP density ρGMP(q), has a jump at exactly that
line and is the right basis to use. When the Chern band
supports an fractional Chern insulator, CF coordinates
are the natural variables in terms of which the system
can be understood in the simplest way.

VI. THE CASE OF TRIVIAL BANDS

Let us ask if we have achieved “too much”. Consider a
topologically trivial band with Chern number zero. tak-
ing for definiteness the Lattice Dirac Model with M = 0.
Nothing prevents us from representing its projected den-
sity in terms of ρGMP(Q+G)

ρ̄(Q) =
∑

G

c(G)ρGMP(Q+G), (104)

and carrying out the CF substitution. So, are there
fractional Chern insulators in topologically trivial bands?

FIG. 9: The upper half shows the full landscape of the real
part of the coefficient of d†([p+Q])d(p) in ρFCB(Q) in the
approximation with 50 harmonics (from −25 to + 25) in the
py direction and 20 in the px direction. The lower one shows
the actual values.

FIG. 10: Comparison, in the case with C = 0 (M = 3 in
the Lattice Dirac Model), of imaginary parts of exact and
approximate densities at px = −π

2
+ 1 and px = −π

2
+6 with

the approximation truncated after 50 harmonics (+25 to −25)
in the py direction.

This appears to be a subtle issue. On the face of it,
since the Bloch spinor can now be globally defined as a
periodic function in the Brillouin Zone, so can ρFCB, and
its expansion in terms of ρGMP, which has a jump in the
Brillouin Zone, seems ill fated. Although completeness
assures us that with infinite number of terms we can do
it, in order to give the expansion the best chance, we
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V
PP

 

FIG. 11: The highest and lowest energies of the three sub-
bands for the exotic fraction 1

5
as a function of the parameter

VPP . The bandwidths grows with the strength of the periodic
potential but are still less than the sub-band gaps. The other
parameters are Vee = 1, ω = 1.

must first transform the spinor to the gauge Ay = 0, just
like the functions entering ρGMP. This makes Ax(px, py+
2π) 6= Ax(px, py) and causes the familiar jump.

A jump of this sort is inevitable if B(p) is non-
constant, because in this gauge

Ax(px, py) = −
∫ py

−π
2

B(px, p
′

y)dp
′

y (105)

and this integral need not vanish at any fixed px.
The Fourier expansion, while not so successful as in

the case C 6= 0, is still promising, as shown see Fig. 10
for two slices at px = −π

2 + 1 and px = −π
2 + 6. The

key feature is that the smaller the jump (i.e. the smaller
the magnitude of B(p)) the more Fourier components it
takes to approximate it to a given accuracy.

The bottom line is that, under certain conditions, even
a band with C = 0 could exhibit FQHE under partial
filling, an issue we are actively pursuing.

So far we have ben able to rule out the following com-
pletely trivial case: a band in which B(p) ≡ 0 with no
band dispersion, in which the electrons interact via the
Coulomb interaction. The energy is all potential and pro-
portional to Vee. Although an fractional Chern insulator
state exists at ν = 1

3 , its energy is always higher (by
a factor of roughly 2) than the energy of the electronic
Fermi liquid. Thus, in this case at least, FQHE does not
appear to be favoured.

VII. FRACTIONS WHERE ν 6= σxy

In the presence of a periodic potential, the equality
ν = σxy is not mandatory, since Galilean invariance is
explicitly broken. Exotic states whose very existence
depends on an interplay of interactions and the lattice
potential are possible33. There is suggestive numerical

py 

py 

py 

FIG. 12: From the top, the occupation numbers of the three
CF-LLL- sub-bands, s=0,1,2, for the exotic fraction ν = 1

5
.

The action of T 1

x , T
2

x , T
3

x , T
4

x is to change py by multiples of
6π
5

and change the sub-band index by 1 whenever py changes
by 2π. If the pictures of the three sub-bands are glued to
together in the order 0, 1, 2, we see 5 oscillations altogether.

evidence for such states in a problem of lattice hard-core
bosons in an external field44,45.

Since we have expressed the FCB Hamiltonian in CF
language, it is natural for such states to be realized in
FCBs under suitable conditions.

Consider a case with ν = 1
5 . Each electron

sees 5 flux quanta. In the continuum, the standard
Laughlin/Jain9,24 construction involves “attaching” 4
flux quanta per electron, resulting in the CF seeing one
unit of effective flux per particle, and filling one CF-LL.
Instead, we attach 2 flux quanta to each electron to form
CFs. Each CF now sees 3 quanta of effective flux and
ν∗ = 1

3 . In the continuum this partially filled CF-LLL
is gapless, and thus not stable. However, as we will now
show, such a state is generically gapped in the presence
of a periodic potential. Since e∗/e = 3/5, the CF sees 3

5
flux quanta in the electronic unit cell. So we must take 5
times the electronic cell (say in the x-direction) to form
a CF unit cell that encloses integer flux (3) and ensures
that the CF translation operators T 5

x and Ty commute.
In general if there are p/q quanta of effective flux per unit
cell, each CF-LL will split into p sub-bands3. Thus, in
our example each CF-LL will spilt into three sub-bands,
numbered s = 0, 1, 2. If the lowest of these three sub-
bands, when filled, is separated from the others by a gap,
we obtain an fractional Chern insulator.

Our numerical work fully corroborates this picture.
We work to linear order in the periodic potential VPP ,
and keep only the lowest CF-LL. Note that the treatment
is not perturbative in the interaction strength. Fig. 11
shows the three sub-bands whose widths grow with the
strength of the periodic potential while the gaps grow
even faster. Figure 12 is very interesting. Once again
T 1
x , T

2
x , T

3
x , T

4
x commute with H but not Ty. Each power

of Tx changes py by 6π
5 . Starting with py = −π of the

sub-band s = 0, if we act with these powers of Tx, we
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move to s = 1 when the momentum change is > 2π, and
to s = 2 when the momentum change is > 4π. If the
three pictures are glued end to end, we see 5 full oscil-
lations. (Compare this to the ν = 1

3 case where three
periods occurred within the same CF-LL whereas here
the 5 oscillations are spread over 3 sub-bands.)

What will be the Hall conductance of this state? We
know from Kol and Read33 that

σxy =
σCF

1 + 2σCF

(106)

where σCF, the dimensionless CF Hall conductance of
the filled sub-band could be any integer. (When a LL
splits into sub-bands we only know that the sum of the
Chern numbers of the sub-bands equals that of the origi-
nal LL. ) But no matter what this integer is, the possible
values of σxy = 1

3 ,
2
5 ,

3
7 .. do not include 1

5 . The actual

value happens to be 2
5 because σCF = 2.

It is interesting to put these states in the context of
what is known previously in the QH regime. It has long
been known that in a noninteracting electron problem
in a uniform external magnetic flux, with a periodic po-
tential such that a rational number p/q quanta of flux
penetrate each unit cell, each band α is characterized by
two Chern indices3,43 σxy,α, mα which satisfy a Diophan-
tine equation pσxy,α+ qmα = 1. Here σxy,α is the Chern
number of the band (also the dimensionless Hall conduc-
tance). The sum M =

∑

α mα is the charge transported
per unit cell34,43 when the lattice potential adiabatically
“dragged” by one lattice unit. States with both σxy and
M nonzero are dubbed Hall Crystals34. Turning on inter-
actions and going to the FQH regime, such states were
investigated in the context of anyon superfluid ground
states of two-dimensional quantum antiferromagnets on
a lattice31,32, and by Kol and Read33 in the context of
the FQH states in a periodic potential. Both the latter
used the Chern-Simons approach.

One can think of the states for which the Hall conduc-
tivity and filling are unequal as resulting from the stabi-
lization of (fractional) Hall crystals by the lattice poten-
tial. Numerically, there is some suggestive evidence44 for
such ground states in the problem of hard-core bosons on
a lattice in an external magnetic field45.

VIII. SUMMARY AND OUTLOOK

We have demonstrated here that the Hamiltonian the-
ory of the FQHE22, which was very useful in the con-
tinuum, is also effective in describing fractionally filled
Chern bands (FCB) that exhibit FQH-like effects. The
Hamiltonian theory relies on an exact algebraic mapping
that expresses the projected density of the Chern band
ρFCB(q) in terms of CFs in two steps. First, we express
ρFCB as a linear combination of operators ρGMP satisfying
the magnetic translation algebra21. These ρGMP opera-
tors can be constructed solely from the canonical fermion
operators of the given band, with no reference to any

Landau levels. Second, we perform the CF substitution
in ρGMP exactly as we did in the continuum theory22.
These mappings of operator algebras can be carried out
for arbitrary lattice models.

We have illustrated our approach by solving two mod-
els. The first model is a ν = 1

3 fractional Chern insulator
and is adiabatically connected to the continuum Laugh-
lin state at the same filling. The second is a more ex-
otic, ν = 1

5 fractional Chern insulator relying on the lat-

tice potential for its very existence33. Its dimensionless
Hall conductance is 2

5 and not 1
5 as would be expected in

Galilean invariant state. In both cases we have computed
the band structure of CFs in the Hartree-Fock approxi-
mation.

There are many interesting directions which we intend
to pursue in future work. Collective excitations for frac-
tionally filled Chern bands can be computed in a con-
serving approximation in our approach22,29,30,37, as can
finite temperature effects22,38.

A specially interesting case is at ν = 1
2 in a FCB. One

expects an electronic Fermi liquid at weak coupling and
a CF-Fermi liquid28–30 at strong coupling. This transi-
tion, which we propose to study by our operator-based
method, has already been explored in the parton formu-
lation recently46.

Let us turn to quasiparticle excitations. In addition to
Laughlin-type quasiparticles with fractional charge and
statistics, the lattice allows us to consider excitations not
conceivable in the continuum, such as those associated
with lattice vacancies or dislocations47.

As stated in the introduction, fractionally filled 2D
time-reversal invariant TIs5,13 can be treated by labelling
the pair of Chern bands making up the noninteracting
TI (with equal and opposite Chern index) by a pseu-
dospin index. There is no requirement of Sz conserva-
tion, and the interactions can produce states which can
spontaneously break time-reversal, and/or states of the
Kol-Read type33. In fact, in a numerical diagonalization
on a small system Neupert et al13 find a time-reversal-
symmetric state in a regime of parameters which has a
filling of 2

3 but a degeneracy of 3 (rather than the degen-
eracy of 3 × 3 = 9 one would expect for “independent”
ν = 1

3 for each pseudospin) on the torus, suggesting that

it could be a Kol-Read33 type state.
Recently, we noticed the work of Grushin et al48, who

have examined the conditions for the stability of the Frac-
tional Chern insulator, and the work of Chamon and
Mudry49 which generalizes our central claim, Eq. 54, to
arbitrary dimensions, and show that they are a complete
set in any even dimension.
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