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Fractional power-law behavior and its origin in iron-chalcogenide and ruthenate
superconductors: Insights from first-principles calculations

Z. P. Yin,∗ K. Haule, and G. Kotliar
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854.

We perform realistic first-principles calculations of iron chalcogenides and ruthenate based mate-
rials to identify experimental signatures of Hund’s coupling induced correlations in these systems.
We find that FeTe and KxFe2−yAs2 display unusual orbital dependent fractional powerlaw behavior
in their quasiparticle self energy and optical conductivity, a phenomena first identified in SrRuO3.
Strong incoherence in the paramagnetic state of these materials results in electronic states hidden
to angle-resolved photoemission spectroscopy which reemerge at low temperatures. We identify the
effective low energy Hamiltonian describing these systems and show that these anomalies are not
controlled by the proximity to a quantum critical point but result from coexistence of fast quantum
mechanical orbital fluctuations and slow spin fluctuations.

INTRODUCTION

The study of the Hund’s coupling effects in solids has a
long history. Van der Marel and Sawatsky[1] pointed out
that unlike the Hubbard U which is strongly screened,
the atomic Hund’s JH , persists essentially unrenormal-
ized in the solids and increases the splittings between the
lower and the upper Hubbard bands for a half filled shell,
while decreases it away from half filling. The Hund’s
term was also shown to have important consequences on
the low energy physics of quasiparticles, when a tran-
sition metal impurity is screened in metallic host. The
Hund’s coupling was shown to dramatically reduce the
value of the Kondo temperature[2, 3]. Recent interest in
this problem arose from dynamical mean field theory[4]
(DMFT) investigations of the recently discovered iron
pnictide superconductors. It was proposed that in these
materials strong correlations arise from the Hund’s rule
coupling JH [5] rather than from the Hubbard U , result-
ing in large mass enhancements. These calculations[5]
showed that for a reasonable value of the Hubbard U ,
the mass enhancement due to interactions is very small
when JH=0, whereas it is exponentially enhanced by
the Hund’s rule coupling. Optical spectroscopy studies
have shown that in both iron pnictides and chalcogenides
the optical masses are many times larger than the band
masses[6–9]. The trend in mass enhancements is well
accounted for by DMFT combined with density func-
tional theory (DFT+DMFT) calculations[10]. Since the
strength of correlations in these solids is almost entirely
due to the Hund’s coupling, these materials are dubbed
Hund’s metals[10]. The role of Hund’s coupling in iron
pnictides and chalcogenides has been addressed from dif-
ferent perspectives in the literature. [10–26] Powerlaw be-
havior in quasiparticle self energy of model Hamiltonians
with Hund’s coupling was discovered in Ref. [27] and re-
lated to observations in ruthenates[28, 29]. Many anoma-
lous properties of ruthenates[30] and other 4d compounds
were shown to be governed by Hund’s physics. [31]

While at low energies and low temperatures Hund’s
metals are describable by Fermi liquid theory, the phys-
ical properties in their incoherent regime are anomalous
and surprising. In the iron pnictides and chalcogenides

there is a strong tendency towards orbital differentia-
tion [10], and the large mass enhancement can occur even
though no clear Hubbard band exist in the one particle
spectra of these Hund’s metals [32].

In this article, we use first principles methods and
model Hamiltonians to search for experimental signa-
tures of Hund’s physics in iron chalcogenides and ruthen-
ates which are the subject of current intensive experimen-
tal studies. We show how the incoherence in iron chalco-
genides above the Néel temperature can blur portions of
the Fermi surface rendering them dark to photoemission
spectroscopy. We show that fractional powerlaw behav-
ior in optical conductivity that received significant atten-
tion in the ruthenates also takes place in the FeTe sys-
tem, deepening the analogies between these systems. We
compare the powerlaw exponents in optical conductivity
extracted from first principles DFT+DMFT calculations
with experiments in a broad class of materials, and elu-
cidate the control parameters that govern this behavior.
The fractional powerlaw behavior is characteristic of an
intermediate regime where the orbital degrees of freedom
are quenched but the spin degrees of freedom are not.
This physics is most pronounced at the special valence of
one unit of charge away from the half-filling.

RESULTS

DFT+DMFT results

We first show results of our realistic DFT+DMFT
calculation [33, 34] for three compounds currently un-
der extensive investigations: ruthenates Sr2RuO4, and
iron chalcogenides FeTe and KxFe2−ySe2. In all the
DFT+DMFT calculations, we use the same Coulomb
repulsion U=5.0 eV and Hund’s JH=0.80 eV, as de-
termined from ab initio in Ref. 32, and used in our
previous work [10, 12]. Notice that we include all
the electronic states in a large energy window (-10 eV
to 10 eV) as opposed to 3- or 5-band model calcula-
tions, thus the Hubburd U appropriate for our calcu-
lations is much less screened compared to those stud-
ies. The electronic charge is computed self-consistently
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FIG. 1: (color online) Fractional powerlaw in (a) theoret-
ical self-energy and (b) experimental optical conductivity in
iron chalcogenides and ruthenates. Experimental data are
taken from ref. [42] for FeTe0.91 and FeTe0.7Se0.3, ref. [43]
for Fe1.06Te0.88S0.14, ref. [28] for Sr2RuO4, and ref. [29] for
SrRuO3.

on DFT+DMFT electronic density. The quantum impu-
rity problem is solved by the continuous time quantum
Monte Carlo (CTQMC) method [35, 36], using Slater
form of the Coulomb repulsion in its fully rotational in-
variant form. We use the experimentally determined lat-
tice structures, including the internal positions of the
atoms for Sr2RuO4 [37], FeTe [38], KxFe2−ySe2 [39], and
FeSe [40].

We show in Fig.1(a) the imaginary part of the
self-energy of the t2g orbitals in Sr2RuO4, FeTe and
KxFe2−ySe2 on the imaginary axis, plotted in log10 scale.
In the intermediate energy range from a low energy cut-
off ∼0.1 eV, below which the materials gain coherence,
to roughly Hund’s JH∼0.8 eV, the imaginary part of the
self-energy clearly shows a fractional powerlaw behavior,
i.e., ImΣ(iωn) ∝ −ωαn . For the normal Fermi liquid, this
exponent is unity, and at finite temperature correlated
materials have additional constant scattering rate. The

fractional powerlaws are however very uncommon.

From the quantum chemistry perspective, both iron
chalchogenides and ruthenates share a common theme:
they contain correlated electrons with the d valence of
one unit charge away from half-filling. In iron pnic-
tides/chalcogenides, the Fe-ion is surrounded by a tetra-
hedron of pnictogen/chalcogen, and the resulting crystal
field splittings are very small compared to Fe-pnictogen
hybridization [5] hence all 5 Fe 3d orbitals are active.
Their average occupancy is close to d6, one unit of charge
away from the half-filled d5. For the ruthenates, the coor-
dination of the Ru is octahedral, and the oxygen ligands
induce a large t2g-eg splitting, with only the t2g orbitals
active, containing approximately 4 electrons in three t2g
orbitals, one electron more than the half filled shell.

The values of the apparent powerlaw exponents differ
from material to material and deviate even for different
orbitals of the same material, which is connected to the
orbital occupancy. As shown in Fig. 1(a), the xz/yz or-
bitals of Sr2RuO4 show an exponent of 0.5, while the
more correlated xy orbital, which is closer to half-filling,
show a smaller exponent of 0.42 . In iron pnictides and
chalcogenides, the average occupancy per orbital is even
closer to half-filling (only 1/5 away, as opposed to 1/3 in
ruthenates). As we will show below by a model study,
one expects stronger electronic correlations in this case
and a smaller powerlaw exponent. Indeed, the xz/yz
orbitals in FeTe show exponent of ≈ 0.36 whereas for
the more strongly correlated xy orbital, the exponent is
only ≈ 0.24. Iron vacancies in the KxFe2−ySe2 makes the
compound even more correlated than FeTe, and the pow-
erlaw exponent is further reduced to 0.27 for the xz/yz
orbital, and only 0.07 for the xy orbital.

The powerlaw behavior of the self-energy manifests it-
self in optical conductivity studies. In a simplified treat-
ment, the optical conductivity can be approximated by
σ(ω) ∝ Re(1/(ω + iΣ′′(ω) + Σ′(ω)−Σ′(ω = 0))) [41]. In
Fig. 1(b), we present experimental data on FeTe0.91[42],
FeTe0.7Se0.3[42], Fe1.06Te0.88S0.14[43], Sr2RuO4[28], and
SrRuO3[29]. As can be seen in Fig. 1(b), the optical con-
ductivity in these materials can be roughly approximated
by σ1(ω) ∼ Bω−α in about the same energy range as in
the theoretical self-energy. The experimental exponents
obtained from optical conductivity are very similar to
the theoretical exponents for the self-energy, as expected
from the simplified relation between optical conductivity
and self-energy.

Hunds metals have a very low temperature scale,
called the coherence temperature, below which a Fermi
liquid-like coherence regime is reached. This phenom-
ena has been discussed in other contexts such as heavy
fermions[44, 45] and transition metal oxides[46] and can
be fruitfully probed by photoemission spectroscopy. At
finite temperatures, some electronic states can be very
incoherent and coherence in different electronic states is
usually not reached simultaneously. Due to the strong
orbital differentiation discussed in Ref. [10], the t2g or-
bitals have lower coherence temperature than the eg or-
bitals in the iron-based superconductors. Within the t2g
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shell, the xy orbital has the lowest coherence temper-
ature. In Fig. 2 we show the gradual evolution of the
Fe t2g orbitals from very incoherent state at high tem-
perature to partially coherent state at lower temperature
in paramagnetic (PM) state of FeTe. We display the
momentum/orbital resolved density of electronic states
at temperatures of 387 K, 232 K, 116 K and 58 K.
For comparison, we also show momentum resolved den-
sity of state of PM FeSe at 116 K, where all electronic
states are quite coherent. The buildup of coherence in
orbitally resolved spectra of FeTe is seen as a gradual
buildup of the quasiparticle peak from a broad hump at
elevated temperature to sharper peak at lower tempera-
ture in Figs. 2(e-f). In momentum space, the coherence is
achieved more unevenly. While some bands can be iden-
tified at 116K, and become pretty sharp at 58K, other
bands are barely noticable even at 58K. In particular,
the band of primarily xy character circled by blue el-
lipse, has enormous scattering rate at 58K and should be
hard to be detected by ARPES. The missing Fermi sur-
face is drawn in Fig. 2g as large red pocket centered at
Γ point, which is very incoherent above TN , hence miss-
ing in the photoemission of the paramagnetic FeTe, in
strong contrast to paramagnetic FeSe (Fig. 2h, see also
Ref. [47]). Our calculation shows that K-intercalated
FeSe (KxFe2−ySe2) is even more correlated than FeTe,
has smaller powerlaw exponents, and lower coherence
temperature than FeTe. This is in agreement with recent
angle-resolved photoemission spectroscopy (ARPES) ex-
periments on AxFe2−ySe2 compounds (A=K, Rb, Cs)
where orbital dependent incoherence-coherence crossover
was observed by Yi, Shen and collaborators[48].

Low energy Hamiltonian

To gain some understanding of the Hund’s physics in
these systems, we derive below a low energy Hamiltonian
of the three band Hubbard model, the simplest model
which shows powerlaw behavior of the self-energy. The
starting Hubbard Hamiltonian is H = Ht+HU , with the
hopping term Ht =

∑
ijσ,a,b t

ij
abf
†
iaσfjbσ and Coulomb

term HU = 1
2

∑
iσ,abcd U [a, b, c, d]f†iaσf

†
ibσ′ficσ′fidσ. Here

a, b, c, d (i, j) are orbital (site) indices, and σ stands
for the spin. The hopping term is taken to be locally
SU(6) symmetric (no crystal fields), while the Coulomb
interaction is set to U [a, b, c, d] = Uδadδbc + Jδacδbd,
which reduces the symmetry to SU(3)×SU(2). Within
DMFT, this model maps to a SU(3)×SU(2) impurity
Hamiltonian. To understand why the Hund’s rule
coupling has such a dramatic effect on the physical
properties, we first perform Schrieffer-Wolff trans-
formation (for derivation see appendix) to obtain
Kondo-like Hamiltonian, of the form HKondo

eff =
H0 + H1 + H2 + H3, with the potential scattering term
H0 = Jp

∑
aσ ψ

†
aσ(0)ψaσ(0), the spin-spin Kondo part

H1 = J1

∑
α S

α
∑
aσσ′ ψ†aσ(0)σασσ′ψaσ′(0), the orbital-

Kondo part, H2 = J2

∑
α T

α
∑
abσ ψ

†
aσ(0)λαabψbσ(0),

and the coupled spin-orbital part H3 =

FIG. 2: (color online) Incoherence-coherence crossover in
FeTe. A(k, ω) of along the path Γ → X → M → Γ → Z →
R → A → Z for FeTe at (a) 232 K, (b) 116 K, and (c) 58 K
and for (d) FeSe at 116 K in the PM states. (e) and (f) A(ω)
for Fe 3d xy and xz/yz orbital at 387 K, 232 K, 116 K and
58 K in PM FeTe. (g) and (h) color-coded Fermi surface in
the Γ plane for PM FeTe and FeSe, respectively. Red, green
and blue color correspond to xy, xz and yz orbital character,
respectively. Due to the incoherent nature of the xy orbital
above TN , the outer hole pocket around Γ is not easy to be
detected in ARPES experiment.

J3

∑
αβ T

αSβ
∑
abσ ψ

†
aσ(0)λαabσ

β
σσ′ψbσ′(0). Here

Sα =
∑
aσσ′ f†aσ

1
2σ

α
σσ′faσ′ and T β =

∑
abσ f

†
aσλ

β
abfbσ′

are spin, and SU(3) orbital operators acting on the
impurity site, ψ(0) are field operators of the conduction
electrons coupled to the impurity, while σασσ′ and λαab
are Pauli matrices and the Gell-Mann 3 × 3 matrices of
the SU(3) group, respectively.

Notice that in our picture the same electrons carry
both orbital and spin degrees of freedom, in contrast to
the point of view of Ref. 49, which emphasizes the spin
and orbital degrees of freedom being carried by different
type of electrons, i.e., t2g the spin, and eg the orbital.

While the form of the low energy impurity model is
dictated by symmetry considerations, the exchange cou-
plings J1, J2, J3 depend crucially on the impurity valence
and Hund’s coupling JH . For the half-filled shell and
large JH , only the spin-spin term J1 survives, and a well
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known reduction of the J1 Kondo coupling for a factor
of (2l+ 1) was derived in Refs. 2, 3 compared to a corre-
sponding one band model. Consequently, a huge reduc-
tion of the Kondo temperature for a factor of (2l + 1)2

in the exponent was derived in Ref. 3. This regime is
relevant for half-filled d5 shell realized in the Hund’s in-
sulators LaMnPO [50].

For the above Hund’s metals, the relevant valence of
transition metal ion is one unit of charge away from half-
filling. When JH is negligible, the Hamiltonian is SU(6)
symmetric, and all three Kondo couplings J1, J2, J3 are
positive (antiferromagnetic). For the valence nimp = 2
(or nimp = 4), their numerical values are J1 = J0/3,
J2 = J0/4, and J3 = J0/2, where J0 = V 2/(2U + εf )
(or J0 = V 2/(3U + εf )) is a positive number, which de-
pends on the corresponding Anderson impurity model
parameters, i.e., hybridization V and impurity level εf .
The ground state is a Fermi liquid, because antiferro-
magnetic couplings between conduction electrons and
impurity degrees of freedom ensure complete quenching
of both the orbital and spin moments. On the other
hand, when JH is large, the spin-spin Kondo coupling
J1 changes sign to ferromagnetic, while the orbit J2

and spin-orbit J3 remain positive. In the three band
SU(2)×SU(3) model and large JH , their numerical values
are J1 = −J0/9, J2 = J0/3, and J3 = J0/3, where J0 =
V 2/(2U−2JH+εf ) > 0 (or J0 = V 2/(3U+JH+εf ) > 0)
for valence nimp = 2 (or nimp = 4). This change of sign
is due to the orbital blocking mechanism [10], that allows
only those virtual charge excitations which go through or-
bital singlet intermediate state (see appendix). We note
that for valence d6 in iron pnictides/chalcogenides, the
correct low energy Hamiltonian has three terms, but not
just spin-spin term, as proposed earlier [51]. It is how-
ever the spin-spin J1 term that changes sign in the limit
of large JH , and impedes quenching of the spin degrees
of freedom (termed spin freezing in Ref. 27). This sub-
stantially reduces coherence temperature, however, the
J3 term, which couples spin and orbital, is positive and
gives rise to the Fermi liquid state at very low tempera-
ture.

Model Hamiltonian calculations

To demonstrate the above picture, we numerically
solve a simplified three band model with the nearest
neighbor diagonal hopping tαα = 0.4, and the next
nearest neighbor hopping t′αα = 0.4 and t′α6=β = 0.2,
which gives a total bandwidth of the tight banding model
W ≈ 3.5. We take U = 6 and large Hund’s coupling
JH=2 and JH = 1 for powerlaw to extend over a larger
frequency range.

In Fig. 3a, we show the imaginary part of the quasi-
particle self energies for JH=2. At the intermediate tem-
perature T=0.01, the self energies of nd=2.00 and 2.26
display finite values at zero frequency by extrapolation,
which suggests incoherent properties at this temperature.
However, at a lower temperature T=0.00125, the corre-

FIG. 3: (color online) Quasiparticle self energies for a three
band model with JH = 2.0 at different filling nd=1.75, 2.00,
and 2.26. (a) The self energies at two temperatures T=0.01
and 0.00125 show the incoherence-coherence crossover with
decreasing temperature. (b) The self energies plotted in log10

scale display fractional powerlaw behavior in the intermediate
frequency range from ε∗0 to ε∗1 as indicated by arrows.

sponding self energies clearly display Fermi liquid behav-
ior at low frequencies. Therefore there is an incoherence-
coherence crossover with decreasing temperature. We
determine the coherence temperature as the tempera-
ture at which the renormalized scattering rate is equal
to the temperature, i.e., −zImΣ(iω = i0+, T ∗) = kBT

∗,
where 1/z = 1 − ∂ImΣ(iω = i0+, T ∗)/∂ω and kB is the
Boltzmann constant. We show the coherent temperature
in Fig. 4a as a function of electron occupation nd. We
reached 8-times lower temperature than previous stud-
ies [27] to access the Fermi liquid state at filling far be-
yond nd = 2, and map out the coherence incoherence
crossover temperature T ∗.

A good powerlaw fit to the self-energy, as shown in
Fig. 3b, is obtained only in a limited range of frequency
between the low energy cutoff proportional to the Fermi
liquid scale (ε∗0 in Fig. 3b), and the high energy cutoff
(ε∗1), which is always smaller than the Hund’s coupling.
The range of frequencies at which the powerlaw is valid
(ε∗0 < ωn < ε∗1, as indicated by arrows in Fig. 3b) is
largest at valence nd = 2, where the exponent is close
to 1/2, as previously reported in Ref. [27]. Much lower
temperature reached in this work show that exponent α
decreases monotonically with increasing nd (see Fig. 3b
and Figs. 5 and 6 in appendix), in contrast to Ref. [27],
hence stronger correlations approaching the Mott state
at nd = 3 lead to smaller exponent at low temperature,
in qualitative agreement with our realistic calculations
for Fe and Ru compounds. Most importantly, there is
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FIG. 4: (color online) (a) The coherent temperature; and (b)
the spin and orbital susceptibility, as a functional of nd for a
three band model with JH = 2.0 (solid lines) and JH = 1.0
(dash lines).

no signature of quantum phase transition to non-Fermi
liquid spin-frozen state around valence nd = 2, where
the powerlaw exponents are found, and the crossover
temperature scale does not follow the powerlaw behavior
T ∗ ∼ (x− xc)zν expected in a quantum critical scenario.
Hence we can exclude the possibility that the exponents
are due to the proximity to the quantum phase transition,
as proposed in Ref. [27, 52].

DISCUSSIONS

The powerlaw exponents are found in the temperature
and frequency regime where the spin degrees of freedom
are very slow and unquenched (spin susceptibility has
Curie-Weiss form and large static value) while the orbital
degrees of freedom are very fast and quenched (orbital
susceptibility is Pauli-like, but enhanced).(see Fig. 4b
and Fig. 7 in appendix) This is a novel regime in which
two degrees of freedom behave in different ways , one
fluctuates very fast (positive J2), the other one fluctuates
very slowly (negative J1), and both coupled by a third an-
tiferromagnetic coupling J3. This situation is similar to
the intermediate phase of the extended Hubbard model
study of Ref. [53], where similar continuously varying ex-
ponents were shown to exists in the metallic non-Fermi
liquid phase in which there was a quenched spin-degree
of freedom and an unquenched charge degree of freedom.
Notice that at nd = 3 only the large spin state is pos-
sible, hence the orbital degrees of freedom are gapped,
and exponents disappear, while the effect is maximal one
unit of charge away from half-filling, i.e., nd = 2.

CONCLUSIONS

In conclusions, we have shown in this paper that the
Hund’s rule coupling has a strong impact on the elec-
tronic states in valence of one unit of charge away from
half-filling. The strongly correlated state in such mate-
rials can have very low coherence temperature, and the
self-energy and optical conductivity show fractional pow-
erlaw at intermediate energy. We have derived the ef-
fective low energy Hamiltonian describing these systems
and identified a negative Kondo coupling in the spin-spin
part of the corresponding low energy Kondo model. We
have shown that these anomalies are not controlled by the
proximity to a quantum critical point but result from co-
existence of fast quantum mechanical orbital fluctuations
and slow spin fluctuations. This is relevant for ruthenates
and iron chalcogenides, as well as many other materials
with similar valence and sizable Hund’s coupling.
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APPENDIX

Schrieffer-Wolff transformation

We start our discussion with the three band Hubbard
model H = Ht +HU , with the hopping term

Ht =
∑
ijσ,a,b

tijabf
†
iaσfjbσ (1)

and the Coulomb repulsion term

HU =
1

2

∑
iσ,abcd

U [a, b, c, d]f†iaσf
†
ibσ′ficσ′fidσ. (2)

Here index a runs over the three orbitals, i, j over lattice
sites, and σ over spin. The hopping term is taken to be
locally SU(6) symmetric, while the Coulomb interaction
is set to U [a, b, c, d] = Uδadδbc + Jδacδbd, which reduces
the symmetry to SU(3)×SU(2).

Within the Dynamical Mean Field Theory, this model
maps to the SU(3)×SU(2) impurity Hamiltonian of the
form Himp = Hbath +Hhyb +Hlocal

Hbath =
∑
kaσ

εkaψ
†
kaσψkaσ (3)

Hhyb =
∑
kaσ

Vkaψ
†
kaσfaσ + h.c. (4)

Hlocal =
∑
aσ

εff
†
aσfaσ +HU (5)
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To gain further insights into the low energy degrees of
freedom of this Hamiltonian, we perform the Schrieffer-
Wolff transformation, which takes the form

Heff = PnHhyb
Pn±1

∆E
HhybPn, (6)

where Pn is the projector to the impurity ground state
multiplet, and ∆E is the energy cost for the charge exci-
tation from the ground state multiplet to the n±1 lowest
energy multiplet states, and is always negative.

Here we will limit our discussion to the case of a ground
state valence nf = 2 and virtual charge excitations into
valence nf = 3. A direct way of evaluating this effec-
tive Hamiltonian is to perform exact diagonalization of
Hlocal, then expressing matrix elements of faσ operators
in terms of atomic eigenstates (F †aσ)m1m2

= 〈m1|f†aσ|m2〉,
and finally evaluating all terms which appear in the sum

Heff =
∑

kk′abσσ′

VkaV
∗
k′b

∆E
ψ†kaσψk′bσ′ ×∑

m1m2m3

(Faσ)m1m2
(F †bσ′)m2m3 |m1〉〈m3|. (7)

Here m2 runs over the ground state multiplet at valence
n+ 1, while m1 and m3 run over ground state multiplet
at valence n. Finally we need to express the impurity
degrees of freedom in terms of the impurity operators
such as is the total spin S and the orbital isospin operator
T .

This tedious derivation can be circumvented by a trick.
We Fourier transform the bath operators V 2ψ†aσ(0) =∑

k Vkaψ
†
kaσ and introduce the combined spin-orbit index

i ≡ (aσ). We can then rewrite the effective Hamiltonian
for charge excitations from valence n to valence n+ 1 as

Heff =
∑
ijkl

V 2

∆E
ψ†i (0)ψj(0)PnfkPn+1f

†
l Pn δ(i, k)δ(j, l)(8)

We next find a complete orthonormal basis in the space
of spin and orbit degrees of freedom (Tr(IαIβ†) = δαβ),
in which the completeness relation takes the form

δ(i, k)δ(j, l) =
∑
α

(Iα∗)ij(I
α)kl. (9)

Here matrices Iα form a complete basis for the
SU(3)×SU(2) group. For the SU(2) and SU(3) group
we use Pauli 2 × 2 matrices σα, and Gell-Mann 3 × 3
matrices λα. In terms of these, the complete basis Iα is

Iα =


1√
3
1⊗ 1 1√

2
1√
3
1⊗ σ 1√

2
1√
2
λ⊗ 1 1√

2
1√
2
λ⊗ σ 1√

2

(10)

The normalization factors come from the fact that
Tr(σασβ) = 2δ(α, β) and Tr(λαλβ) = 2δ(α, β). We can
then simplify the low energy Hamiltonian by

Heff =
∑
ijkl,α

V 2

∆E
(Iα)kl PnfkPn+1f

†
l Pn ψ

†
i (0)(Iα∗)ijψj(0)(11)

Next we realize that even in the presence of an arbitrary
projector, the local operators keep the same form of the
expansion in terms of the electron field operator∑

kl

(1⊗ σα)kl PnfkPn+1f
†
l Pn ∝ −S

α (12)∑
kl

(λα ⊗ 1)kl PnfkPn+1f
†
l Pn ∝ −T

α (13)∑
kl

(λα ⊗ σβ)kl PnfkPn+1f
†
l Pn ∝ −T

α ⊗ Sβ , (14)

but the proportionality constants need to be determined
by an explicit calculation. Notice that just like in the
Wigner-Eckart theorem, we only need to consider one
matrix element to determine proportionality constant,
which greatly simplifies this derivation.

Now we can recognize that the first term in Eq. (10)
gives rise to potential scattering of the form

H0 = Jp
∑
aσ

ψ†aσ(0)ψaσ(0) (15)

the second term in Eq. (10) gives the spin-Kondo part

H1 = J1

∑
α

Sα
∑
aσσ′

ψ†aσ(0)σασσ′ψaσ′(0), (16)

the third gives orbital-Kondo part

H2 = J2

∑
a

T a
∑
ασβ

ψ(0)†ασλ
a
α,βψ(0)βσ (17)

and the last gives spin-orbit Kondo part

H3 = J3

∑
a,b

T a ⊗ Sb
∑
ασβ

ψ(0)†ασλ
a
α,βσ

b
σ,σ′ψ(0)βσ′

(18)
The Kondo-couplings J1, J2, J3 depend on the valence

nf and type of the projector P . We first consider the
SU(6) symmetric case, which is realized in the absence
of Hund’s rule coupling. In this case, the projector P
is irrelevant, since all states at some valence have equal
energy. The local operators are then simply given by∑

aσσ′

faσσ
α
σσ′f

†
aσ′ = −2Sα∑

abσ

faσλ
α
abf
†
bσ′ = −Tα∑

abσσ′

faσλ
α
abσ

β
σσ′f

†
bσ′ = −2TαSβ ,

and the Kondo couplings become J1 = 2/6 J0 = J0/3,

J2 = J0/4 and J3 = 2/4 J0, where J0 = V 2

2U+εf
> 0.

Notice that all Kondo-couplings are positive (minus sign
comes from ∆E and from the proportionality constant)
and hence antiferromagnetic couplings ensures complete
quenching of the spin and orbital moment. The ground
state is thus Fermi liquid.

In the limit of large Hund’s coupling, the projector
Pn+1 projects to the subspace of high-spin states only,
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which in the case of the three band model and nf = 3,
take the following form

|1〉 ≡ | ↓↓↓〉 (19)

|2〉 ≡ 1√
3

(| ↓↓↑〉+ | ↓↑↓〉+ | ↑↓↓〉) (20)

|3〉 ≡ 1√
3

(| ↓↑↑〉+ | ↑↓↑〉+ | ↑↑↓〉) (21)

|4〉 ≡ | ↑↑↑〉 (22)

Projection to the ground state multiplet Pn is achieved
by projecting to the following states

|5〉 ≡ | ↓ 0 ↓〉 (23)

|6〉 ≡ |0 ↓↓〉 (24)

|7〉 ≡ | ↓↓ 0〉 (25)

|8〉 ≡ 1√
2

(| ↓ 0 ↑〉+ | ↑ 0 ↓〉) (26)

|9〉 ≡ 1√
2

(|0 ↓↑〉+ |0 ↑↓〉) (27)

|10〉 ≡ 1√
2

(| ↓↑ 0〉+ | ↑↓ 0〉) (28)

|11〉 ≡ | ↑ 0 ↑〉 (29)

|12〉 ≡ |0 ↑↑〉 (30)

|13〉 ≡ | ↑↑ 0〉 (31)

An explicit calculation can be used to determine pro-
portionality constants∑

aσσ′

Pnfaσσ
α
σσ′Pn+1f

†
aσ′Pn =

2

3
Sα

∑
abσ

Pnfaσλ
α
abPn+1f

†
bσ′Pn = −4

3
Tα

∑
abσσ′

Pnfaσλ
α
abσ

β
σσ′Pn+1f

†
bσ′Pn = −4

3
TαSβ

We can finally determine the Kondo couplings in the limit
of large Hund’s coupling. Their value is J1 = −2/3 ∗
1/6J0 = −J0/9, J2 = 4/3 ∗ 1/4J0 = J0/3 and J3 =

4/3 ∗ 1/4J0 = J0/3. Here J0 = V 2

2U−2JH+εf
> 0.

The crucial result of this calculation is that the spin-
spin Kondo coupling J1 changes sign when Hund’s
coupling is strong. This comes from the fact
that the spin operator in the projected subspace∑
aσσ′ Pnfaσσ

α
σσ′Pn+1f

†
aσ′Pn = 2

3S
α has very different

expansion in terms of electron field operator than in non-
projected case

∑
aσσ′ faσσ

α
σσ′f

†
aσ′ = −2Sα. The origin of

this sign change is in the orbital blocking mechanism,
which ensures that the intermediate state at nf = 3 is
a high spin-state (in this case S = 1) but is orbitally a
singlet state, such as states 19-22. Orbital blocking is
a restriction in the Hilbert space imposed by the large
Hund’s rule coupling. It modifies the Kondo couplings
away from their SU(N) symmetric values (J1 = J0/3,
J2 = J0/4, J3 = J0/2). This blocking results in different
Kondo couplings in different valences. For the half-filled
shell (relevant for Mn2+) it results in J2 = 0, J3 = 0,

and a strong reduction of the value of J1, first recognized
by Schrieffer [2]. For the valence of one unit of charge
away from half-filling (relevant for Fe2+ and Ru4+), or-
bital blocking results in the sign reversal of J1.

Results for the three band Hubbard Model

FIG. 5: (color online) Quasiparticle self energy for
JH=2.0. The imaginary part of the quasiparticle self en-
ergy in log10-log10 scale as a function of electron occupation
nd for U=6.0 and JH=2.0. Note the data are shifted along the
y-axis for better illustration. The linear dispersion of the self
energy in the plot indicates the powerlaw behavior exists in
the intermediate frequency region as indicated by the arrows.

Using our numerical methods of quantum Monte Carlo,
we can not obtain high precision real axis self-energy,
however, we can infer its analytic properties from imag-
inary axis analogs. The fractional exponent in scat-
tering rate on the real axis (ImΣ(ω) ∝ ωα) leads to
the same powerlaw on imaginary axis for the imaginary
part (ImΣ(iωn) ∝ −ωαn). The real part, on the other
hand, shows the powerlaw only when scattering rate is
very asymmetric around zero frequency. For example,
Σ′′(ω > 0) = A|x|α and Σ′′(ω < 0) = B|x|α, the real part

on imaginary axis is ReΣ(iωn) ∝ (A−B)
∫ Λ

0
x|x|α/(x2 +

ω2
n)dx (where Λ is the upper cutoff for the powerlaw),

and does not show powerlaw in the symmetric A = B
case. Our calculation shows that the real part does not
show very clear powerlaw on imaginary axis, hence we
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FIG. 6: (color online) Quasiparticle self energy for
JH=1.0. The imaginary part of the quasiparticle self en-
ergy in log10-log10 scale as a function of electron occupation
nd for U=6.0 and JH=1.0. Note the data are shifted along the
y-axis for better illustration. The linear dispersion of the self
energy in the plot indicates the powerlaw behavior exists in
the intermediate frequency region as indicated by the arrows.

infer that the scattering rate is quite symmetric at low
frequency on real axis.

Figure 5 and 6 show the imaginary part of the quasi-
particle self energy in log10-log10 scale as a function of
electron occupation nd for U=6.0 and JH=2.0 and 1.0,
respectively. The linear dispersion of the self energy in
the plots indicates the powerlaw behavior exists in the
intermediate frequency region as indicated by the ar-
rows. For both values of JH , the powerlaw exponent
α decreases monotonically with increasing nd towards
half filling, i.e., nd=3. The upper energy cutoff ε∗1 drops
rapidly for nd >2.0, suggesting the powerlaw behavior
is vanishing quickly when nd goes away from 2 to half
filling. Compared to JH=2.0, the powerlaw behavior for
JH=1.0 is valid in a smaller frequency region and the cor-
responding powerlaw exponent is larger, suggesting the
important role of Hund’s coupling in giving rise to the
powerlaw behavior. Therefore the powerlaw behavior is
most visible at electron occupation one unit of charge
away from half-filling, in this case, nd = 2

Figure 7 shows the local spin, orbital and charge sus-
ceptibility at zero frequency as a function of temperature
for nd=1.75, 2.00, 2.26 and U=6.0, JH=2.0. The spin

FIG. 7: (color online) Local spin, orbital, and charge
susceptibility The local spin, orbital and charge susceptibil-
ity at zero frequency as a function of temperature for nd=1.75,
2.00, 2.26 and U=6.0, JH=2.0. The spin susceptibility has
large static values and takes the Curie-Weiss form while the
orbital susceptibility is Pauli-like and enhanced at interme-
diate temperature and around nd=2.0. Note the charge sus-
ceptibility is two orders of magnitude smaller than the orbital
susceptibility thus doesn’t play an important role.

susceptibility has large static values and takes the Curie-
Weiss form while the orbital susceptibility is Pauli-like
and enhanced at intermediate temperature and around
nd=2.0. Note the charge susceptibility is two orders of
magnitude smaller than the orbital susceptibility thus
doesn’t play an important role.
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