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We show that the simple update approach proposed by Jiang et al [H.C. Jiang, Z.Y. Weng, and T. Xiang,
Phys. Rev. Lett.101, 090603 (2008)] is an efficient and accurate method for determining the infinite tree
tensor network states on the Bethe lattice. Ground state properties of the quantum transverse Ising model and
the Heisenberg XXZ model on the Bethe lattice are studied. The transverse Ising model is found to undergo a
second-order quantum phase transition with a diverging magnetic susceptibility but a finite correlation length
which is upper-bounded by 1/ ln(q − 1) even at the transition point (q is the coordinate number of the Bethe
lattice). An intuitive explanation on this peculiar “critical” phenomenon is given. The XXZ model on the Bethe
lattice undergoes a first-order quantum phase transition atthe isotropic point. Furthermore, the simple update
scheme is found to be related with the Bethe approximation. Finally, by applying the simple update to various
tree tensor clusters, we can obtain rather nice and scalableapproximations for two-dimensional lattices.

PACS numbers: 75.40.Mg, 05.10.Cc, 02.70.-c, 75.10.Jm

I. INTRODUCTION

The investigation of quantum lattice models is one of the
central themes in modern condensed matter physics. A cru-
cial step is to develop novel numerical methods to efficiently
simulate the interesting and complex phenomena of quan-
tum many-body systems. In particular, the tensor network
states and the related renormalization group methods, includ-
ing the tree tensor network state (TTN),1–3 the multi-scale en-
tanglement renormalization ansatz,4 the projected entangled
pair state,5 the tensor renormalization group (TRG),6–8 and
the second renormalization group (SRG),9,10 are now under
rapid development. These methods provide promising numer-
ical tools for studying strongly correlated systems, especially
for the frustrated magnetic systems and fermion models, and
can be regarded as an extension of the fruitful density ma-
trix renormalization group (DMRG)11 in two or higher dimen-
sions.

In the study of the tensor network methods, one needs
to first determine the tensor network wavefunction for the
ground state. In Refs. [7,10], a simple update scheme is pro-
posed to determine the ground state tensor network wavefunc-
tion in two dimensions. This scheme is efficient and robust.
It proceeds in three steps: (1) apply the imaginary time pro-
jection operators simultaneously on bonds of the same type,
for example thex directional bonds in Fig.1a, and enlarge
the bond dimension; (2) construct a local evolving block ma-
trix and simulate the environment contribution by the diag-
onal matrices on the external bonds [λy andγz in Fig. 1b];
(3) decompose the evolving block matrix by singular value
decomposition (SVD) and decimate the vector space of the
enlarged geometric bond according to the singular values in
the updated diagonal matrixθ′x. This technique has been com-
bined with the TRG/SRG to evaluate the ground state prop-
erties of two-dimensional (2D) Heisenberg models.8,10,12–14 It
is an accurate numerical method for evaluating local physi-
cal quantities, but it is less accurate in evaluating the long-
range correlation functions.10 This is the major drawback of

this simple update scheme. It results from a mean-field ap-
proximation for the environment tensor. A way to go beyond
this approximation is to enlarge the size of the cluster thatis
used for evaluating the environment tensor. This, as shown by
Wang and Verstraete15, can indeed improve the accuracy for
the long range correlation function.

In this work, we apply the simple update scheme to infinite
TTN (iTTN) states on the Bethe lattice. We will show that
this is a quasi-canonical approach for treating an iTTN. Here
by the word “quasi-canonical” we mean that with increasing
the number of iteration steps and decreasing the Trotter error,
the tree tensor network state obtained by the simple update
scheme would become asymptotically canonical [i.e. the ten-
sors satisfy certain canonical orthonormality conditions, see
Eqs. (3) below]. Thus the simple update scheme provides an
accurate and efficient approach for evaluating the ground state
wavefunction on the Bethe lattice.

The Bethe lattice, as shown in Fig.1a, has a self-similar
structure with an infinite Hausdorff dimension. The size of
the lattice is infinite, hence the boundary effects do not need
to be explicitly considered. The Bethe lattice was first usedin
the study of classical statistical mechanics.16–18 It has attracted
broader interest since a number of chemical compounds with
the Bethe lattice structures, such as the dendrimers,19 have
been synthesized in the laboratory.20

A finite Bethe lattice is called a Cayley tree. Soon af-
ter White’s invention of DMRG,11 the DMRG algorithm for
the quantum lattice models defined on the Cayley tree was
proposed.21,22 Based on the DMRG calculation of local phys-
ical quantities in the central part of the Cayley tree, Otsuka21

claimed that the anisotropic S=1/2 Heisenberg model (i.e. the
XXZ model) on the Bethe lattice should exhibit a first-order
phase transition at the isotropic point. Later Friedman22 pro-
posed an improved DMRG scheme and evaluated the spin-
spin correlations in the ground state. Based on the DMRG
result, he suggested that long-range magnetic order might ex-
ist at the isotropic Heisenberg point. Recently, Kumar et al.
calculated the magnetization with a further improved DMRG
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algorithm,23 and showed that such long-range magnetic order
does exist at that point.

The above DMRG calculations were done on the Cayley
tree lattice, not on the true infinite Bethe lattice. Furthermore,
it should be pointed out that the boundary effect is very strong
on a finite Cayley tree since more than one-half of the total
sites reside on the lattice edge. This may strongly affect the
properties of the system. In some cases, the results obtained
on a Cayley tree lattice can be completely different from those
for the corresponding Bethe lattice. For example, the classical
Ising model shows a phase transition on the Bethe lattice, but
not on the Cayley tree lattice.24

To unambiguously resolve the above problems, it is neces-
sary to calculate the spin models directly on the Bethe lattice.
The recent development of the TTN algorithms1–3 has indeed
made this feasible.25,26 In particular, Nagajet al in Ref. 25
extended the infinite time evolving-block decimation27 tech-
nique to the Bethe lattice and determined the ground state
wavefunction by imaginary time evolution. For the transverse
Ising model on the Bethe lattice, it was found that a second-
order quantum phase transition exists at a critical transverse
field. An interesting result revealed in this calculation isthat
even at the second-order critical point, the correlation length
remains finite. For the Bethe lattice with coordinationq = 3,
the correlation length is shown to be less than 1/ ln 2. How-
ever, in the calculation Nagajet alused a three-site projection
operator to simultaneously evolve the two equivalent incom-
ing legs of the tensors, the computational cost is thus very
high. The computational time scales as O(D8) with D the ten-
sor dimension, which limits the value ofD that can be handled
to D ≤ 8.

Recently, Nagy26 proposed a different algorithm to reduce
the computational cost by making use of theC3 rotational
symmetry ofq = 3 Bethe lattice. This algorithm reduces
the computational cost to O(D4) hence greatly improves the
efficiency. It can be used for studying the spin-1/2 quantum
lattice models. However, the application of this method is re-
stricted to the translation invariant spin-1/2 system.

As will be shown below, the simple update scheme is very
efficient. Its computational costs scale as O(D4), similar as
for the algorithm proposed by Nagy26. But it is much more
flexible. It can be applied to treat arbitrary TTN states, with or
without translation invariance. Here we studied two spin mod-
els defined on the Bethe lattice. One is the transverse Ising
model and the other is the antiferromagnetic XXZ Heisenberg
model. The quantum phase transitions and the ground state
phase diagrams of these models are studied.

The rest of the paper is arranged as follows. An introduc-
tion to the simple update scheme and its relationship with the
Bethe approximation is presented in Sec.II . The study of
the quantum phase transitions of transverse Ising and XXZ
Heisenberg models are presented in Secs. III and IV, respec-
tively. In Sec. V, the present scheme is generalized to larger
tree tensor clusters, in order to provide more accurate approx-
imations for 2D lattices. Finally, Sec VI is devoted to a sum-
mary.

FIG. 1: (Color online) (a) Theq = 3 Bethe lattice. Every site has
3 nearest neighbors, and the three bonds are labeled according to
their directions asx, y, andz, respectively. (b) The two-site cluster
used in the single-bond projection of the simple update scheme. The
diagonal matricesλy andγz on the dangling bonds should be included
in the projection to mimic the entanglement renormalization of the
environment to this two-site system. (c) A minimum cluster that is
used in the Bethe approximation. It consists of one A tensor and
three nearest-neighbor B tensors (or vice versa).

II. THE CANONICAL FORM AND THE SIMPLE UPDATE
SCHEME

The iTTN state on the Bethe lattice comprises 4-indexed
tensorsAm

x,y,z and Bm
x,y,z defined on the vertices, and the di-

agonal matricesθ, λ, γ defined on the bonds along thex, y,
andz directions as shown in Fig.1a, respectively. The bond
indices represent the quantum numbers of the virtual basis
states. The physical indexm runs over thed basis states of
the local Hilbert space at each lattice site. The diagonal matri-
ces store the entanglement information, and play an important
role in the simple update scheme.

In order to determine the ground state wavefunction, the
imaginary time evolving operatorsU(τ) = exp (−τhi, j) are ap-
plied to the iTTN iteratively. At each step, the dimension of
the evolved bond is increased by a factor ofd2. Thus the
tensor dimensions will proliferate exponentially with thein-
creasing number of projection steps. In order to sustain the
projections until the iTTN converges to the true ground state
wavefunction, one needs to truncate the bond dimension after
each projection step. This needs a proper consideration of the
renormalization effect of the environment tensor.

An accurate and full determination of the environment ten-
sor is computationally costly. This limits generally the tensor
dimensionD that can be handled to a rather small value, say
D ≤ 6. The simple update scheme7,9,10, on the other hand,
takes the product of the dangling bond matrices as a mean
field approximation to the environment tensor. It converts
the complicated global optimization problem into a local one,
and hence greatly simplifies the calculation. On the regular
2D lattice, the bond matrix is an approximate measure of the
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entanglement between the system and environment tensors.
However, as will be shown later, the square of the diagonal
bond matrix on the Bethe lattice is the eigenvalue of the re-
duced density matrix if the iTTN is canonicalized, i.e., if the
tensors in the network are always kept in canonical form by
some transformations. Thus the simple update scheme is an
accurate treatment for the renormalization of the iTTN on the
Bethe lattice.

The simple update scheme is also closely related to the fa-
mous Bethe approximation.16–18 To understand this, we show
in Fig. 1c a 4-site cluster, which contains one A tensor and
three B tensors. In the simple update calculation, the two lo-
cal tensors, A and B, and the three inner bond matrices (θx,
λy, γz) should be evaluated and updated iteratively. After each
single projection step on the inner bonds, to keep the scheme
self-consistent, one should also update all the dangling bonds
of the cluster, by replacing the bond matrices with the corre-
sponding ones on the inner bonds.

This cluster structure and the self-consistent scheme is in
fact the Bethe approximation that was first proposed by Bethe
in 1930’s, in the context of statistical mechanics.16 The key
idea is to treat the correlations between the central spin and its
nearest neighbors in the cluster exactly, and to use an effective
mean field to approximate the interactions between the cluster
and the rest lattice spins. By solving this simple cluster prob-
lem, and assuming that all the spins in the cluster have exactly
the same local magnetization, one can determine the sponta-
neous magnetization self-consistently. For the quantum cases,
the six diagonal matrices on the dangling bonds of the cluster
are taken as the mean fields acting on the inner block. The
self-consistent condition requires that the matricesθ, λ, andγ
on dangling bonds are equal to the corresponding matrices on
the inner bonds between A and B tensors (see Fig.1c).

A tensor network state contains redundant gauge degrees of
freedom on each bond. It is invariant if one inserts a product
of two reciprocal matrices on a bond and absorbs separately
each of them to a local tensor at the two ends of the bond.
This gauge invariance of a tensor network state can be used
to simplify the calculation of local tensors, especially for the
iTTN states on the Bethe lattice, where a special gauge, called
canonical form, can be introduced.

To be specific, the local tensors of canonical iTTN states
satisfy the following orthonormality conditions

∑

m

∑

x,y

θ2xλ
2
y(Tm

x,y,z′)
∗Tm

x,y,z = δz′,z, (1)

∑

m

∑

y,z

λ2
yγ

2
z(Tm

x′,y,z)
∗Tm

x,y,z = δx′,x, (2)

∑

m

∑

z,x

γ2
zθ

2
x(T

m
x,y′,z)

∗Tm
x,y,z = δy′,y, (3)

where T represents the A or B tensor. If we cut an arbitrary
bond to divide the Bethe lattice into two parts, denoted as a
system and an environment subblock, one can then define the
reduced density matrix of the system block by integrating out
all the degrees of freedom of the environment block. For the
tensors that satisfy Eqs. (1-3), the square of the diagonal bond
matrices are the eigenvalues, and the renormalized bond bases

FIG. 2: (Color online) One iteration step in the simple update
scheme: (a) A and B tensors are connected by the bondx, which will
be involved in the following projection steps. There are diagonal ma-
trices on the dangling bonds (y andz bonds) of A and B tensors. (b)
Absorb the four dangling matrices into A and B, and define the block
matrix Ma(b). Then take the QR decomposition forMa(b), obtaining
Qa(b) andRa(b) matrices. (c) ProjectU(τ) onto the bond by contrac-
tions, and obtain the block matrixG [see Eq. (7)]. (d) Take singular
value decomposition ofG to find the unitary matricesU andVT , and
the new diagonal matrixθ′. (e) Truncate thex-bond dimension toD
according to the diagonal values ofθ′. MergeU (VT), γ−1

y , andλ−1
z

together intoQa(b), finally we arrive at the updatedA′(B′) tensors.

are the eigenvectors of the corresponding reduced density ma-
trix, which are orthonormal to each other. Thus, in terms of
the Schmidt decomposition, the square of the diagonal ma-
trix elements represent the probability amplitudes of the cor-
responding eigenvectors appearing in the wavefunction.

The existence of this simple canonical form of the iTTN,
i.e. Eqs. (1-3), is very useful in the calculations. First, the di-
agonal bond matrix describes the entanglement spectrum be-
tween the system and environment subblocks. Thus to select
the virtual bond basis states according to the values of these
diagonal matrix elements provides an optimal scheme to trun-
cate the bond dimension. Second, the contribution of the en-
vironment tensors can be faithfully represented by the 4 diag-
onal matrices on the dangling bonds surrounding the central
bond under projection (see Fig.2a). It means that the imagi-
nary time evolution on each bond can be done rigorously and
locally. Furthermore, we can also evaluate the expectation
value of a local operator simply by contracting a small cluster
comprising those tensors and bond matrices on which the op-
erator acts. This significantly reduces the computational cost.

Bearing in mind the benefits of the canonical iTTN states,
one can perform explicitly the canonical transformations dur-
ing the projection processes. However, to further save com-
putational costs, in practical calculations we choose to carry
out the imaginary time evolution just using the simple update
scheme, and gradually reduce the Trotter stepτ, which would
bring the iTTN states into its canonical form step by step. This
scheme works because the diagonal bond matrix provides an
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approximate measure for the entanglement between the two
sides of the bond and can be used to substitute approximately
the environment tensor. Therefore, it can stabilize the algo-
rithm of the imaginary time evolution, provided that the Trot-
ter stepτ is small enough so that the bond projection oper-
atorU(r) is nearly unitary.27 This near unitary evolution can
modify the wavefunction and reshape it in order to satisfy the
canonical conditions. The simple update scheme hence pro-
vides a quasi-canonical evolution of the iTTN state, which
will finally converge to the ground state and become canoni-
cal in the limit τ → 0. In practical calculations, the Trotter
stepτ is gradually decreased from 10−1 to 10−4, and the total
number of projections steps varies from 20000 to 200000.

Now let us consider how to implement the simple update
scheme efficiently. A simple approach is to do directly the
singular value decomposition the evolving block tensor, which
is a matrix ofD2 × D2. The computational cost for doing this
singular value decomposition is high, since it scales asO(D6).
This cost can in fact be reduced toO(D4) if we carry out this
singular value decomposition in the following steps (again,
projection onx bond is taken as an example):

(1) Define the following twoD2 × Dd block matrices (Fig.
2b)

(Ma)y,z;x,m = λyγzA
m
xyz, (4)

(Mb)y,z;x,m = λyγzB
m
xyz, (5)

by absorbing the diagonal matricesλy andγz into the tensors
A and B, and calculate their QR decomposition

(Mα)y,z;x,m =
∑

k

Qαy,z;kR
α
k;m,x, (6)

whereα = a or b. Qα is aD2×Dd column orthonormal matrix.
Rα is aDd× Dd upper diagonal matrix.

(2) Apply the bond projection operatorU(τ) to the system
and define the gate matrix (Fig.2c)

Gm1k1;m2k2 =
∑

x,m′1,m
′
2

〈m1m2|U(τ)|m′1m
′
2〉R

a
k1;m′1xθxR

b
k2;m′2x (7)

(3) Take the singular value decomposition for this matrix (Fig.
2d),

Gm1k1;m2k2 = Um1k1;lθ
′
l Vm2k2;l , (8)

whereU andV are twoDd× Dd unitary matrices, andθ′ is a
semi-positive defined matrix.

(4) Truncate the inner bond dimension by keeping the
largestD matrix elements ofθ′, and update the local tensors
by the formula (Fig.2e)

A′mxyz =
∑

k

λ−1
y γ
−1
z Qa

y,z;kUm,k;x, (9)

B′mxyz =
∑

k

λ−1
y γ
−1
z Qb

y,z;kVm,k;x. (10)

Combining this efficient simple update scheme and the lo-
cal determination of physical observables using the canonical
form, we can keep the computational cost in a low level. In
practice, this allows us to keep a relative large bond dimen-
sion.
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FIG. 3: (Color online) (a) The longitudinal and transverse magne-
tizationsmz andmx versus the transverse fieldshx. The transverse
magnetizationmx increases monotonously withhx, while the lon-
gitudinal magnetizationmz decreases and vanishes at the transition
point. (b) The second-order derivative of the ground state energy per
sitee with respect tohx, d2e/dh2

x, obtained by taking the first-order
derivative ofmx, dmx/dhx.

III. THE TRANSVERSE ISING MODEL

The transverse Ising model is defined by the Hamiltonian

HTI = −
∑

<i, j>

JSz
i S

z
j −
∑

i

hxS
x
i −
∑

i

hzS
z
i , (11)

where the spin-spin exchange constantJ is set as the energy
scale (J = 1, ferromagnetic coupling). The second term repre-
sents the transverse-field alongSx direction, and the last term
is the longitudinal-field alongSz direction.

Figure3a shows the longitudinal and transverse magnetiza-
tions,mz = 〈Sz〉 andmx = 〈Sx〉, as a function of the transverse
field hx. A continuous order-disorder phase transition is found
athc. Forhx < hc, the ground states undergo a spontaneousZ2

symmetry breaking with a finite longitudinal magnetization
mz, which decreases with increasinghx and vanishes at the
critical field. By utilizing the Hellmann-Feynman theorem,
the second-order derivative of the ground state energy can be
calculated byd2e/dh2

x = −dmx/dhx. As shown in Fig. 3b,
d2e/dh2

x exhibits a discontinuity athc, indicating thathc is a
second-order phase transition point. The critical field is found
to behc ≃ 1.115, in agreement with previous calculations.25,26

It is also close to the critical fieldhc = 1.06625(2) for the
transverse Ising model on the honeycomb lattice.28

Figure4 shows the bipartite entanglement entropySE

SE = −Tr[Λ2 log2(Λ2)], (12)
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FIG. 4: (Color online) (a) The entanglement entropySE of the
ground state for the transverse Ising model. The cusp athc ≃ 1.115
corresponds to the second-order phase transition point. (b) The cor-
relation lengthξ of the ground state, which also shows a cusp at the
transition point.

and the correlation lengthξ for the ground state. In Eq. (12),
Λ = θ, λ or γ is a diagonal matrix that satisfies the canonical
condition. SE shown in Fig. 4a is obtained by taking the
average over the three bonds.

The correlation lengthξ is evaluated from the ratio of the
the largest (a0) and the second largest eigenvalue (a1) of the
transfer-matrix for the iTTN state,

ξ = 1/ ln
a0

a1
. (13)

For theq = 3 Bethe lattice, there are six kinds of transfer-
matrices, depending on the site and the bond direction. For
example the transfer matrix along theyz-direction is defined
by (for A sublattice site)

Ta
y,z;y′,z′ =

∑

m,x

√

λyγz(Am
x,y,z)

∗θ2xAm
x,y′,z′
√

λy′γz′ . (14)

The other five transfer matrices includingTb
y,z;y′,z′ , Ta,b

z,x;z′,x′ , and

Ta,b
x,y;x′,y′ can be similarly defined. The results of the correlation

length shown in Fig.4b are evaluated from the product of the
six transfer matrices along a specific path.

A distinctive feature revealed by Fig.4 is that the correla-
tion lengthξ, as well as the entanglementSE, does not diverge
at the critical point.ξ is found to be upper bounded by 1/ ln 2,
in agreement with the published results25,26. This peculiar be-
havior is not observed in the ordinary continuous phase transi-
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FIG. 5: (Color online) The field dependence of the longitudinal sus-
ceptibility χz. It shows a divergent peak at the transition pointhc ≃

1.116. The susceptibility is calculated byχz = [mz(hz) − m(0)]/δh
with hz = 10−4.

tion systems, where the correlation length is always divergent
at the critical point.

We will now show that this non-critical behavior of the cor-
relation length at the critical point is due to the peculiar ge-
ometry of the Bethe lattice. For the Bethe lattice, the num-
ber of sites on the boundary of a finite connected region is
roughly equal to the number of internal sites within that re-
gion. It means that the lattice sites are highly non-uniformly
distributed as a function of lattice distance away from a given
center. This is a feature of the Bethe lattice that differs from a
regular lattice.

In order to understand why the correlation length is finite at
the critical point, let us take a scaling transformation to con-
vert the Bethe lattice to a “regular” 2D lattice whose lattice
sites are uniformly distributed in space. To do this, we first
choose an arbitrary site, to be viewed as “center” of the lat-
tice, and define the distanceR for a given layerr to the center
as

R∝

√

N(r)
π
∼

√

(q− 1)r

π
(15)

whereN(r) ∝ (q− 1)r is the number of sites enclosed by the
r layer. In this rescaled lattice,r ∼ 2 lnR+ const, and the ex-
ponentially decaying correlation functionC(r) ∼ exp(−r/ξ) in
the original Bethe lattice corresponds to a power-law decaying
function ofR

C(R) ∼ R−2/ξ. (16)

The algebraic decay of this correlation function suggests the
spins on the Bethe lattice are actually long range correlated
in the rescaled framework, even away from the critical point.
This is the reason why the system can undergo a phase tran-
sition without exhibiting a divergent correlation length at the
critical point in the original Bethe lattice.
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To understand why the correlation length is upper bounded,
let us consider the longitudinal magnetic susceptibilityχz of
the ground state (Fig.5)

χz =
dmz

dhz
=
∑

i

〈Sz
0Sz

i 〉GS− 〈S
z
0〉GS〈S

z
i 〉GS, (17)

whereSz
0 is the spin at a reference center,i runs over all the

sites on the lattice.〈Ô〉GS is the expectation value of opera-
tor Ô in the ground state. Exploiting theC3 rotational sym-
metry of the Bethe lattice, we defineCz(r) = 〈Sz

0Sz
i 〉GS −

〈Sz
0〉GS〈S

z
i 〉GS, with r the layer number where sitei resides.

Thusχz can be rewritten as

χz =
∑

r

n(r)Cz(r), (18)

wheren(r) is the number of spins on layerr. On a regu-
lar lattice, n(r) ∝ rν−1, whereν is the spatial dimension of
the lattice, the susceptibility is always finite if the spin-spin
correlation functionCz(r) decays exponentially. However,
in the Bethe lattice,n(r) ∝ (q − 1)r−1. Now if we assume
Cz(r) ∝ exp(−r/ξ), then

χz ∝
∑

r

(q− 1)re−r/ξ =
∑

r

er[ ln(q−1)−1/ξ] , (19)

which diverges ifξ approaches the threshold value 1/ ln(q−1).
This shows that the susceptibility can diverge even ifCz(r)
decays exponentially withr. The critical point occurs when
ξ = 1/ ln(q−1), and the correlation lengthξ is therefore upper-
bounded by 1/ ln(q− 1) on the Bethe lattice.29

IV. ANISOTROPIC HEISENBERG MODEL

The anistropic Heisenberg model, i.e. the XXZ model, is
defined by the Hamiltonian

HXXZ =
∑

<i, j>

(Sx
i Sx

j + Sy
i S

y
j + δS

z
i S

z
j), (20)

whereδ is the anisotropy parameter.
The above model has been intensively studied on the hon-

eycomb and square lattices by different numerical meth-
ods, which include exact diagonalization,30 quantum Monte
Carlo,30,31 coupled cluster methods,32,33 and tensor network
algorithms.12,34 It is found that the system possesses magnetic
long-range orders for all values ofδ. The antiferromagnetic
ordering vector points within the easyxy-plane forδ < 1 or
along thez-axis forδ > 1. There is a first-order phase transi-
tion atδ = 1, the Heisenberg point.35

This model was also studied on the Bethe lattice (more pre-
cisely, on the Cayley tree lattice) by DMRG,21–23,36. It was
found that there exists a long-range magnetic order at the
isotropic pointδ = 1. It was also suggested that a quantum
phase transition occurs at this point. However, the properties
of this transition and the phases on the two sides of the critical
point have not been clarified.
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FIG. 6: (Color online) (a) The ground state energy and (b) thebipar-
tite entanglement entropy as a function ofδ for the XXZ model. The
appearance of the cusp in the energy,as well as the discontinuity in
the first-order energy derivative [inset in (a)], suggests that this is a
first-order phase transition point.
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FIG. 7: (Color online) The staggered magnetization along the z-axis
(ms

z) andx-axis (ms
x). The spin orientations flip suddenly at the transi-

tion pointδ = 1. Forδ < 1, the spins are ordered within thexy-plain,
while for δ > 1, the ordering is along thez-axis.

Figure6 shows theδ-dependence of the ground state energy
per bond and the entanglement entropy for the XXZ model. A
clear first order quantum phase transition is observed atδ = 1.
The energy per bond shows a change of slope atδ = 1 (the
first-order energy derivative is shown in the inset), which sug-
gests that there is an energy level crossing. The entanglement
entropy varies continuously across the transition point, but ex-
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FIG. 8: (Color online) The one-ring cluster with 12 sites. The diag-
onal matricesΛ are defined on the dangling bonds. The dashed lines
represent removed bonds (the physical couplings on the dashed line
still exist).

hibits a cusp.
Figure 7 shows the staggered magnetizationms

x and ms
z

around the critical point. The ground state is found to possess
in-plane antiferromagnetic order with a finitems

x for δ < 1,
andz-axis antiferromagnetic order with a finitems

z for δ > 1.
At the transition point, the two order parameters change sud-
denly, displaying a spin flip transition. This result verifies the
conjecture made by Otsuka.21

At the transition point, we find that the ground state en-
ergy per bond has the valueeb = −0.359817(3) and the spon-
taneous magnetization has the valuems = 0.34736(1) for
D = 40. The errors in the parentheses are estimated by com-
paring the results for different bond dimensionD and differ-
ent Trotter slicesτ. Our results agree well with the DMRG
data published in Ref. [23], where the local magnetization is
found to bem = 0.347 on the central lattice site and the bond
energy between the central spin and a spin on the first layer
is e = −0.359. This satisfactory agreement suggests that by
calculating the Bethe lattice, we can reproduce the resultsof
local properties in the very center of a large Cayley tree.

V. CLUSTER UPDATE SCHEME

In the previous sections, the simple update has been ap-
plied to study the quantum spin models on the Bethe lattice,
leading to very accurate results. What is more, in terms of
the Bethe approximation, these results can also be regarded
as approximations for the corresponding 2D lattice models.
Actually, the simple update scheme has already been used to
study regular 2D lattices, such as the honeycomb or square lat-
tices. Combined with the TRG/SRG techniques, it can achieve
rather accurate results.7,9,10 Nevertheless, in this section, we
would provide a different way of using the simple update to
calculate 2D lattices. Inspired by the generalization of the

FIG. 9: (Color online) The 4-ring cluster with 26 sites. The inequiv-
alent lattice sites are numbered from 1 to 16.Λi, j labels the diagonal
matrix on the bond linking sitesi and j.
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FIG. 10: (Color online) The ground state energy per site for the
Heisenberg model on the honeycomb lattice. The results are eval-
uated in the central area of the clusters. The dashed line is the re-
cent quantum Monte Carlo result.37 The number of hexagonal rings
is used to label the cluster size.

Bethe approximation to larger clusters in classical statistical
mechanics,17 we apply simple update to various tree tensor
clusters. In this way, the advantage (efficiency) in treating
a tree tensor network, namely the fact that it can be readily
canonicalized, is utilized to improve the calculation accuracy
on a regular 2D lattice.

To start, as a first-order approximation, let us compare the
results on theq = 3 Bethe lattice (which has no loops) with
those on the 2D honeycomb lattice (whose coordination num-
ber is alsoq = 3, and it does have loops). Our result for the
ground state energy of the Heisenberg model on theq = 3
Bethe lattice iseb = −0.359817(3), while the correspond-
ing energy on the honeycomb lattice obtained by the recent
quantum Monte Carlo calculation iseQMC = −0.36303(14).37

The relative difference between these two energies is less
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than 0.9%. However, the spontaneous magnetization for the
ground state of the Heisenberg model on the Bethe lattice,
namelyms = 0.34736(1), is much larger than the correspond-
ing value on the honeycomb lattice, which is about 0.27 as ob-
tained by the quantum Monte Carlo.37 Notice, some other re-
sults for the magnetization on the honeycomb or square lattice
obtained with the tensor network algorithms are also found to
be higher than the Monte Carlo ones.7,34

As a next step, our approximate treatment of the 2D hon-
eycomb lattice can be improved by using tensor networks that
include rings. In Fig.8, the cluster with one hexagonal ring
is shown, some geometric bonds are removed (dashed lines in
Fig. 8) to form a tree tensor cluster. Note although the tensor
network does not have geometric bonds on the dashed lines, in
the Hamiltonian the couplings along these bonds nevertheless
exist. Therefore, the projections by imaginary time evolution
should be executed also on the dashed lines. This cannot be
done directly as on usual bonds, but can be accomplished as
follows with the help of the swap gates. The swap gates are
used to exchange the physical indices of two tensors, which
proceeds similarly as the projection scheme illustrated inFig.
2, with the minor revision that the imaginary tim evolving op-
eratorU(τ) is now replaced with a swap operatorUs, that con-
ductsUs|mi ,mj〉 = |mj ,mi〉.

In Fig. 8, take the dashed bond between site A and F as
an example, swap gates moves the physical index on site A
in the order A→ B→ C, and the physical index on site F as
F→ E→ D. After that, the two spins are linked by the solid
bond between C and D, then we can take the projection and
update processes as on an usual bond. After that, we have
to move the two spin indices back to their original positions
by reversed swap operations, which accomplishes the special
projection step on a dashed bond. Through iterative and self-
consistent projection processes on the solid and the dashed
bonds of the tree cluster, an approximation for 2D lattices can
be obtained. Compared with the simple Bethe lattice, this tree
tensor cluster approach can provide better approximation for
2D. On the other hand, it can also be regarded as an ideal
method for evaluating the “super Bethe lattice”, of which each
“single site” is now placed with a hexagonal ring, instead ofa
single site, and the coordinate numberq = 6.

Beyond the one-ring cluster, more rings can be included
to further enlarge the cluster. As an example, Fig.9 shows
a cluster with 4 hexagonal rings. The accuracy of energy
versus different cluster size (labelled by the number of rings
included) are shown in Fig.10, which verifies that the ac-
curacy could be improved consistently with enhancing the

cluster size. To obtain better approximation for true 2D lat-
tices, the local observables are detected in the center area
of the cluster. In practice, for the 4-ring tree tensor clus-
ter in Fig. 9, the results are obtained by averaging over
sites 3 and 4. We find an energy per site ofe ≃ −0.54441
(bond energyeb ≃ −0.36294) and a local magnetization of
m = [e(hs) − e(hs = 0)]/hs ≃ 0.3147 (with a staggered mag-
netic fieldhs = 0.01). Hence, the inclusion of rings clearly
improves the agreement with QMC data. For the transverse
Ising model, through the 4-ring cluster calculations, the phase
transition point is estimated ashc ≃ 1.1, which is also more
accurate than the simple Bethe approximation. More numeri-
cal results with larger clusters and further details of thiscluster
Bethe approximation will be published separately.

VI. CONCLUSION

In summary, the simple update scheme is employed to study
two spin models on the Bethe lattice, i.e., the transverse Ising
and the Heisenberg XXZ model. For the Ising model, it is
found that the correlation length, as well as the entanglement
entropy, does not diverge at the second-order transition point.
Through a scale transformation, we have given an intuitive ex-
planation of this peculiar “critical” phenomenon. Moreover,
by studying the magnetic susceptibility, we show that the cor-
relation length is upper bounded. For the Heisenberg XXZ
model, the existence of a first-order phase transition at the
isotropic point is clearly verified, and the two different mag-
netic ordered phases are identified as the easy-plain and easy-
axis phases, respectively. Furthermore, in terms of the Bethe
approximation, we obtain accurate and scalable approxima-
tions for the 2D lattice models by applying the simple update
to tree tensor clusters.
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