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We show that the simple update approach proposed by JiaridHtG Jiang, Z.Y. Weng, and T. Xiang,
Phys. Rev. Lett.101, 090603 (2008)] is anficient and accurate method for determining the infinite tree
tensor network states on the Bethe lattice. Ground stafeepiies of the quantum transverse Ising model and
the Heisenberg XXZ model on the Bethe lattice are studiec tfdnsverse Ising model is found to undergo a
second-order quantum phase transition with a divergingneiig susceptibility but a finite correlation length
which is upper-bounded by/In(q — 1) even at the transition point| {s the coordinate number of the Bethe
lattice). An intuitive explanation on this peculiar “ct#il” phenomenon is given. The XXZ model on the Bethe
lattice undergoes a first-order quantum phase transititimeaisotropic point. Furthermore, the simple update
scheme is found to be related with the Bethe approximatiamallly, by applying the simple update to various
tree tensor clusters, we can obtain rather nice and scapbl®ximations for two-dimensional lattices.

PACS numbers: 75.40.Mg, 05.10.Cc, 02.70.-c, 75.10.Jm

I. INTRODUCTION this simple update scheme. It results from a mean-field ap-
proximation for the environment tensor. A way to go beyond

The investigation of quantum lattice models is one of thethis approximation is to enlarge the size of the cluster ithat

central themes in modern condensed matter physics. A criSed for evaluating the environment tensor. This, as shgwn b
cial step is to develop novel numerical methodsfliciently ~ Wang and Verstraet® can indeed improve the accuracy for

simulate the interesting and complex phenomena of quarf€ l0ng range correlation function.

tum many-body systems. In particular, the tensor network !N this work, we apply the simple update scheme to infinite
states and the related renormalization group methodsidacl TTN (iTTN) states on the Bethe lattice. We will show that
ing the tree tensor network state (TTRY,the multi-scale en-  this is a quasi-canonical approach for treating an iTTN.eHer
tanglement renormalization ansétthe projected entangled Py the word “quasi-canonical” we mean that with increasing
pair state’, the tensor renormalization group (TR&Y,and the number of iteration steps and decreasing the Trotter,err
the second renormalization group (SR39,are now under the tree tensor network state obtained by the simple update
rapid development. These methods provide promising numegcheme would become asymptotically canonical [i.e. the ten
ical tools for studying strongly correlated systems, eigllgc ~ Sors satisfy certain canonical orthonormality conditjosese

for the frustrated magnetic systems and fermion models, angds. @) below]. Thus the simple update scheme provides an
can be regarded as an extension of the fruitful density ma@ccurate andf&icient approach for evaluating the ground state
trix renormalization group (DMRG? in two or higher dimen- ~ Wavefunction on the Bethe lattice.

sions. The Bethe lattice, as shown in Fida, has a self-similar

In the study of the tensor network methods, one needstructure with an infinite Hausdrdimension. The size of
to first determine the tensor network wavefunction for thethe lattice is infinite, hence the boundarjeets do not need
ground state. In Refs7[10], a simple update scheme is pro- to be explicitly considered. The Bethe lattice was first used
posed to determine the ground state tensor network Wavefunthe StUdy of classical statistical mecharﬁﬁé? It has attracted
tion in two dimensions. This scheme iffieient and robust. broader interest since a number of chemical compounds with
It proceeds in three steps: (1) apply the imaginary time prothe Bethe lattice structures, such as the dendriffehsyve
jection operators simultaneously on bonds of the same typ&een synthesized in the laboratéfy.
for example thex directional bonds in Fig.la, and enlarge A finite Bethe lattice is called a Cayley tree. Soon af-
the bond dimension; (2) construct a local evolving block ma-ter White’s invention of DMRG.! the DMRG algorithm for
trix and simulate the environment contribution by the diag-the quantum lattice models defined on the Cayley tree was
onal matrices on the external bonds pndvy, in Fig. 1b]; proposed?? Based on the DMRG calculation of local phys-
(3) decompose the evolving block matrix by singular valueical quantities in the central part of the Cayley tree, Ot8tik
decomposition (SVD) and decimate the vector space of thelaimed that the anisotropic3/2 Heisenberg model (i.e. the
enlarged geometric bond according to the singular values iXXZ model) on the Bethe lattice should exhibit a first-order
the updated diagonal matri%. This technique has been com- phase transition at the isotropic point. Later Friedfammo-
bined with the TRESRG to evaluate the ground state prop-posed an improved DMRG scheme and evaluated the spin-
erties of two-dimensional (2D) Heisenberg mod&i&!%14 |t spin correlations in the ground state. Based on the DMRG
is an accurate numerical method for evaluating local physiresult, he suggested that long-range magnetic order night e
cal quantities, but it is less accurate in evaluating thedon ist at the isotropic Heisenberg point. Recently, Kumar et al
range correlation function’$. This is the major drawback of calculated the magnetization with a further improved DMRG



algorithm?® and showed that such long-range magnetic orde
does exist at that point.

The above DMRG calculations were done on the Cayley
tree lattice, not on the true infinite Bethe lattice. Furthere,
it should be pointed out that the boundaffeet is very strong
on a finite Cayley tree since more than one-half of the tota
sites reside on the lattice edge. This may strondiigci the
properties of the system. In some cases, the results obtain
on a Cayley tree lattice can be completelffelient from those
for the corresponding Bethe lattice. For example, the daks
Ising model shows a phase transition on the Bethe lattide, bt
not on the Cayley tree latticé.

To unambiguously resolve the above problems, it is neces
sary to calculate the spin models directly on the Betheckatti
The recent development of the TTN algorithiiishas indeed
made this feasiblé&>?® In particular, Nagagt al in Ref. 25
extended the infinite time evolving-block decimafibtech-

FIG. 1: (Color online) (a) The = 3 Bethe lattice. Every site has

nique to the Bethe lattice and determined the ground staté nearest neighbors, and the three bonds are labeled augdudi

wavefunction by imaginary time evolution. For the transeer
Ising model on the Bethe lattice, it was found that a second
order quantum phase transition exists at a critical transsve
field. An interesting result revealed in this calculatiornhat
even at the second-order critical point, the correlatiomgtk
remains finite. For the Bethe lattice with coordinatps 3,

the correlation length is shown to be less thamn. How-
ever, in the calculation Nagef alused a three-site projection
operator to simultaneously evolve the two equivalent incom

ing legs of the tensors, the computational cost is thus very

high. The computational time scales adD8(with D the ten-
sor dimension, which limits the value Bfthat can be handled
toD < 8.

Recently, Nag$® proposed a dierent algorithm to reduce
the computational cost by making use of t@g rotational
symmetry ofq = 3 Bethe lattice. This algorithm reduces
the computational cost to O¢) hence greatly improves the
efficiency. It can be used for studying the spjf2-fjuantum
lattice models. However, the application of this methockis r
stricted to the translation invariant spiyf2kystem.

As will be shown below, the simple update scheme is very.

efficient. Its computational costs scale asD&)( similar as
for the algorithm proposed by Na#fy But it is much more
flexible. It can be applied to treat arbitrary TTN states hvait
without translation invariance. Here we studied two spirdmo
els defined on the Bethe lattice. One is the transverse Isin
model and the other is the antiferromagnetic XXZ Heisenber
model. The quantum phase transitions and the ground sta
phase diagrams of these models are studied.

their directions ax, y, andz, respectively. (b) The two-site cluster
used in the single-bond projection of the simple updatersehd he
diagonal matrices, andy, on the dangling bonds should be included
in the projection to mimic the entanglement renormalizatd the
environment to this two-site system. (¢) A minimum clusteattis
used in the Bethe approximation. It consists of one A tensadr a
three nearest-neighbor B tensors (or vice versa).

1.  THE CANONICAL FORM AND THE SIMPLE UPDATE
SCHEME

The iTTN state on the Bethe lattice comprises 4-indexed
tensorsAY) , and BY) , defined on the vertices, and the di-
agonal matrice®, 4, y defined on the bonds along they,
andz directions as shown in Fidla, respectively. The bond
indices represent the quantum numbers of the virtual basis
states. The physical index runs over thed basis states of
the local Hilbert space at each lattice site. The diagon#iima
ces store the entanglementinformation, and play an importa
role in the simple update scheme.
In order to determine the ground state wavefunction, the
imaginary time evolving operatok$(r) = exp (-th; ;) are ap-
plied to the iTTN iteratively. At each step, the dimension of
the evolved bond is increased by a factorddf Thus the
tensor dimensions will proliferate exponentially with time
creasing number of projection steps. In order to sustain the
rojections until the iTTN converges to the true groundestat
eavefunction, one needs to truncate the bond dimension afte
ach projection step. This needs a proper consideratidreof t
renormalization fect of the environment tensor.

The rest of the paper is arranged as follows. An introduc- An accurate and full determination of the environment ten-

tion to the simple update scheme and its relationship wih th
Bethe approximation is presented in Selt. The study of

sor is computationally costly. This limits generally thager
dimensionD that can be handled to a rather small value, say

the quantum phase transitions of transverse Ising and XXD < 6. The simple update schehté®, on the other hand,
Heisenberg models are presented in Secs. Ill and IV, respetakes the product of the dangling bond matrices as a mean

tively. In Sec. V, the present scheme is generalized to fargeield approximation to the environment tensor.

tree tensor clusters, in order to provide more accurateoappr
imations for 2D lattices. Finally, Sec VI is devoted to a sum-
mary.

It converts
the complicated global optimization problem into a loca¢pn

and hence greatly simplifies the calculation. On the regular
2D lattice, the bond matrix is an approximate measure of the



entanglement between the system and environment tensol ()

However, as will be shown later, the square of the diagona

bond matrix on the Bethe lattice is the eigenvalue of the re 7z Ay > O

duced density matrix if the iTTN is canonicalized, i.e. et QR-decompasition 22 Ra  ReT Qo7
tensors in the network are always kept in canonical form by 0, * projection
some transformations. Thus the simple update schemeis¢ A,” A B Yz

accurate treatment for the renormalization of the iTTN an th
Bethe lattice.
The simple update scheme is also closely related to the fe (e)
mous Bethe approximatiot¥:'® To understand this, we show
in Fig. 1c a 4-site cluster, which contains one A tensor and 2 r,l A, Ay

¢ SV-decomposition

three B tensors. In the simple update calculation, the two lo . (d)
cal tensors, A and B, and the three inner bond matriégs ( 4 .
Ay, vz) should be evaluated and updated iteratively. After eact »;” * A B’ Ny

~m=

single projection step on the inner bonds, to keep the schernr truncation Q VO VT or

self-consistent, one should also update all the danglimgl®o and update g

of the cluster, by replacing the bond matrices with the corre

sponding ones on the inner bonds. FIG. 2: (Color online) One iteration step in the simple updat
This cluster structure and the self-consistent scheme is iacheme: (a) A and B tensors are connected by the kontiich will

fact the Bethe approximation that was first proposed by Bethge involved in the following projection steps. There areydiaal ma-

in 1930’s, in the context of statistical mechantésThe key trices on the dangllng. bondg Qndz.bonds) of Aand B te.nsors. (b)

idea is to treat the correlations between the central siitan  APSOrb the four dangling matrices into A and B, and define theko

nearest neighbors in the cluster exactly, and to uséfantve M2 Mag). Then take the QR decomposition M), obtaining

. . . : Qawy andRy) matrices. (c) Projedt(r) onto the bond by contrac-
mean field to approximate the interactions between thearlust tions, and obtain the block matr [see Eq. 7)]. (d) Take singular

and the rest lattice spins. By solving this simple clust@bpr  \5)ye decomposition ¢ to find the unitary matrices andVT, and

lem, and assuming that all the spins in the cluster have lgxactthe new diagonal matrit'. (e) Truncate the-bond dimension t®
the same local magnetization, one can determine the spontaccording to the diagonal values @f MergeU (VT), ,*, and.;*

neous magnetization self-consistently. For the quantisassa  together intaQq, finally we arrive at the updatet! (B') tensors.
the six diagonal matrices on the dangling bonds of the aluste
are taken as the mean fields acting on the inner block. The

self-consistent condition requires that the matriget andy  4re the eigenvectors of the corresponding reduced denaity m

on dangling bonds are equal to the corresponding matrices QRy which are orthonormal to each other. Thus, in terms of

the inner bonds between A and B tensors (see Hy. the Schmidt decomposition, the square of the diagonal ma-
A tensor network state contains redundant gauge degrees gfy elements represent the probability amplitudes of thie ¢

freedom on each bonc_zl. It is invariant if one inserts a prOdUCFesponding eigenvectors appearing in the wavefunction.
of two reciprocal matrices on a bond and absorbs separately +1,o ayistence of this simple canonical form of the iTTN
each of them to a local tensor at the two ends of the bonq. '

Thi . ; fat work stat b . Egs. (-3), is very useful in the calculations. First, the di-
IS gauge invariance of a tensor network state can be “S‘”afgonm bond matrix describes the entanglement spectrum be-
to simplify the calculation of local tensors, especially floe

iTTN stat the Bethe latti h il tall tween the system and environment subblocks. Thus to select
! states on the bethe jatlice, where a special gaug&all o yiryyal bond basis states according to the values otthes
canonical form, can be introduced.

. L diagonal matrix elements provides an optimal scheme to trun
TO be specmc! the local tensqrs of C‘?‘F‘O”'Ca' ITTN state%ate the bond dimension. Second, the contribution of the en-
satisfy the following orthonormality conditions vironment tensors can be faithfully represented by the ¢-dia
5 5 weem onal matrices on the dangling bonds surrounding the central
Z Z Oy (Teyz) Tayz = 0z (1) bond under projection (see Figa). It means that the imagi-

moxy nary time evolution on each bond can be done rigorously and
Z Z/Iiyg(TQ?,y,z)*Tnyz = Gy.x (2)  locally. Furthermore, we can also evaluate the expectation
m vz value of a local operator simply by contracting a small @ust
Z Z 22(TM Y TM = &, 3) comprising those tensors and bond matrices on which the op-

< Y20 xy 2 Txyz oy erator acts. This significantly reduces the computatioost.c

Bearing in mind the benefits of the canonical iTTN states,
where T represents the A or B tensor. If we cut an arbitraryone can perform explicitly the canonical transformations d
bond to divide the Bethe lattice into two parts, denoted as &g the projection processes. However, to further save com-
system and an environment subblock, one can then define thpatational costs, in practical calculations we choose toyca
reduced density matrix of the system block by integrating ouout the imaginary time evolution just using the simple updat
all the degrees of freedom of the environment block. For thescheme, and gradually reduce the Trotter stephich would
tensors that satisfy Eqsl-Q), the square of the diagonal bond bring the iTTN states into its canonical form step by stepsTh
matrices are the eigenvalues, and the renormalized bored basscheme works because the diagonal bond matrix provides an



approximate measure for the entanglement between the two

sides of the bond and can be used to substitute approximately 0.5¢

the environment tensor. Therefore, it can stabilize the-alg ol

rithm of the imaginary time evolution, provided that the ffro 5§ o

ter stepr is small enough so that the bond projection oper- Sos h=0 @@@@ s, o MPTO
atorU(r) is nearly unitary’ This near unitary evolution can ° @@@@ ‘ + mD=20
modify the wavefunction and reshape it in order to satisé th g 02 55 % % m,D=20 |
canonical conditions. The simple update scheme hence pro- = 0.1 @®@@@ |

vides a quasi-canonical evolution of the iTTN state, which %

will _flnally converge to the grOL_md state an_d become canoni- 05 02 04 06 08 1 5o mmmmes
cal in the limitr — 0. In practical calculations, the Trotter h

stepr is gradually decreased from 10to 1074, and the total .

number of projections steps varies from 20000 to 200000.
Now let us consider how to implement the simple update

scheme ficiently. A simple approach is to do directly the

singular value decomposition the evolving block tensoiicivh

is a matrix ofD? x D?. The computational cost for doing this

(b)
h=0

singular value decomposition is high, since it scale®3?). —05 O D=10 %@% ®

This cost can in fact be reduced®§D?) if we carry out this 0.l * D=20

singular value decomposition in the following steps (again ' .

projection onx bond is taken as an example): 0 02 04 06 08 1 12 14 16

(1) Define the following twdD? x Dd block matrices (Fig. h,
2b)
— m FIG. 3: (Color online) (a) The longitudinal and transver -

(Ma)yzxm = AyyZAmez’ “) tizations(rnZ and m, ve)rs(us) the trangverse fields. The tramse
(Mb)yz:xym = /IWZBxyz’ (5) magnetizationmy increases monotonously witty, while the lon-

gitudinal magnetizatiom, decreases and vanishes at the transition
point. (b) The second-order derivative of the ground staergy per
site e with respect tchy, d?e/dh2, obtained by taking the first-order

(My)y.zxm = Z Q;z;kR;:;mx, (6) derivative ofmy, dm,/dh,.
K

by absorbing the diagonal matricégandy; into the tensors
A and B, and calculate their QR decomposition

wherea = aorb. Q* is aD?xDd column orthonormal matrix. lll.  THE TRANSVERSE ISING MODEL
R* is aDd x Dd upper diagonal matrix.
(2) Apply the bond projection operattl(r) to the system The transverse Ising model is defined by the Hamiltonian

and define the gate matrix (Figc)
Hp = Z Jsis? - Z hyeSX — Z hSZ  (11)
Gmlklimzkz = Z <m1m2|U(T)|m1%>Rﬁl;Wx9XF$2;%x (7) <i,j>

XM, m, . .
where the spin-spin exchange constauig set as the energy
(3) Take the singular value decomposition for this matrig(F scale ( = 1, ferromagnetic coupling). The second term repre-

2d), sents the transverse-field alo8gdirection, and the last term
, is the longitudinal-field alon&? direction.
Grmlaimoe = U6} Vil (8) Figure3a shows the longitudinal and transverse magnetiza-
whereU andV are twoDd x Dd unitary matrices, and isa  tions,m; = (S;) andmy = (S), as a function of the transverse
semi-positive defined matrix. field hy. A continuous order-disorder phase transition is found

(4) Truncate the inner bond dimension by keeping theathc. Forhy <hc, the ground states undergo a spontaneus
largestD matrix elements o', and update the local tensors Symmetry breaking with a finite longitudinal magnetization

by the formula (Fig2e) m,, which decreases with increasihg and vanishes at the
critical field. By utilizing the Hellmann-Feynman theorem,
AWz = Z 771 Umkx, (9)  the second-order derivative of the ground state energy ean b
calculated byd?e/dr2 = —dm/dhy. As shown in Fig. 3b,
BT, = Z/ly 72 Q4 Vinkox: (10)  d’e/di exhibits a discontinuity altc, indicating thath is a

second-order phase transition point. The critical fielebisd

Combi his @i | q h dthel to beh, ~ 1.115, in agreement with previous calculatign&®
ombining this éicient simple update scheme and the 10-y s 5156 close to the critical fielti. = 1.06625(2) for the

cal determination of physical observables using the caabni transverse Ising model on the honeycomb lafffce.

form, , We can keep the computational cost in a low Ieve_l In Figure4 shows the bipartite entanglement entrcy
practice, this allows us to keep a relative large bond dimen-

sion. Sg = —Tr[A%log,(A%)], (12)
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FIG. 5: (Color online) The field dependence of the longitatisus-
ceptibility y%. It shows a divergent peak at the transition pdint
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tion systems, where the correlation length is always dietg

. at the critical point.
FIG. 4: (Color online) (a) The entanglement entropy of the . . . .
ground state for the transverse Ising model. The cusp at1.115 We will now show that this non-critical behavior of the cor-

corresponds to the second-order phase transition poinTh@cor-  relation length at the critical point is due to the peculiar g
relation lengthe of the ground state, which also shows a cusp at theometry of the Bethe lattice. For the Bethe lattice, the num-
transition point. ber of sites on the boundary of a finite connected region is
roughly equal to the number of internal sites within that re-
gion. It means that the lattice sites are highly non-unifigrm
and the correlation lengthfor the ground state. In Eq1®),  distributed as a function of lattice distance away from &giv
A =6, 1 ory is a diagonal matrix that satisfies the canonicalcenter. This is a feature of the Bethe lattice théfeds from a
condition. Sg shown in Fig. 4a is obtained by taking the regular lattice.
average over the three bonds. In order to understand why the correlation length is finite at
The correlation lengtlf is evaluated from the ratio of the the critical point, let us take a scaling transformation oo
the largestdp) and the second largest eigenvalag) (of the  vert the Bethe lattice to a “regular” 2D lattice whose ladtic
transfer-matrix for the iTTN state, sites are uniformly distributed in space. To do this, we first
choose an arbitrary site, to be viewed as “center” of the lat-
£=1/In ? . (13) tice, and define the distan&for a given layer to the center
1 as

matrices, depending on the site and the bond direction. For
example the transfer matrix along tiigdirection is defined
by (for A sublattice site)

For theq = 3 Bethe lattice, there are six kinds of transfer-
J NO  [@-1y
R« ~ (15)
T T

whereN(r) o« (g - 1)" is the number of sites enclosed by the
r layer. In this rescaled lattice,~ 2 InR + const, and the ex-
- s *g2 vy , . ! . ' ,
T;z;y’,z = Z ﬁyVZ(AT,y,z) exArQy',z Ayyz. (14) ponentially decaying correlation functi@{r) ~ exp(r/¢&) in
mx the original Bethe lattice corresponds to a power-law diecpy
function of R

The other five transfer matrices incIudiﬁQZ;y,,Z,, Tj"f;z,,x,, and

Tfjjb;x,y , can be similarly defined. The results of the correlation C(R) ~ R?%%, (16)
length shown in Fig4b are evaluated from the product of the

six transfer matrices along a specific path. The algebraic decay of this correlation function suggesss t

A distinctive feature revealed by Fidkis that the correla- spins on the Bethe lattice are actually long range corrélate
tion length&, as well as the entanglemesy, does not diverge in the rescaled framework, even away from the critical point
at the critical point¢ is found to be upper bounded byh 2,  This is the reason why the system can undergo a phase tran-
in agreement with the published resé?®. This peculiar be-  sition without exhibiting a divergent correlation lengthtiae
havior is not observed in the ordinary continuous phaseiran critical point in the original Bethe lattice.



To understand why the correlation length is upper bounded,

let us consider the longitudinal magnetic susceptibjlityof
the ground state (Fich)

d
Xo= % - Z<sgsf>65— (Spes(Spes.  (17)

whereSg is the spin at a reference centeruns over all the
sites on the lattice (O)gs is the expectation value of opera-
tor O in the ground state. Exploiting th@; rotational sym-
metry of the Bethe lattice, we defir@(r) = (S;S{)cs -
(S§)es(S))es, with r the layer number where siferesides.
Thusy; can be rewritten as

Xz= ), nNC),

r

(18)

wheren(r) is the number of spins on layer On a regu-
lar lattice, n(r) o r*-, wherev is the spatial dimension of
the lattice, the susceptibility is always finite if the sgEpin
correlation functionC%r) decays exponentially. However,
in the Bethe latticen(r) « (g - 1)"*. Now if we assume
CA(r) o exp(-r/¢), then

Xz Z(q —1)ye'’ = Z glin-1-1/¢]

r

(19)

which diverges it approaches the threshold valydi(q—1).
This shows that the susceptibility can diverge eve@ifr)
decays exponentially with. The critical point occurs when
£ =1/In(g-1), and the correlation lengths therefore upper-
bounded by 1In(g — 1) on the Bethe lattic&’

IV.  ANISOTROPIC HEISENBERG MODEL

The anistropic Heisenberg model, i.e. the XXZ model, is
defined by the Hamiltonian

Hoz = ) (SIS} + SISY + 6S7S),

<i,j>

(20)

wheres is the anisotropy parameter.

The above model has been intensively studied on the hon-

eycomb and square lattices byffédrent numerical meth-
ods, which include exact diagonalizatighguantum Monte
Carlo3%3! coupled cluster method$33 and tensor network
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FIG. 6: (Color online) (a) The ground state energy and (b)ipar-
tite entanglement entropy as a functionsdor the XXZ model. The
appearance of the cusp in the eneagywell as the discontinuity in
the first-order energy derivative [inset in (aliggests that this is a
first-order phase transition point.
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FIG. 7: (Color online) The staggered magnetization alomgztaxis

algorithms!%3* It is found that the system possesses magnetigms) andx-axis (1). The spin orientations flip suddenly at the transi-

long-range orders for all values 6f The antiferromagnetic
ordering vector points within the easy-plane for§ < 1 or
along thez-axis foré > 1. There is a first-order phase transi-
tion ats = 1, the Heisenberg poirit.

tion points = 1. For§ < 1, the spins are ordered within tig-plain,
while for § > 1, the ordering is along theaxis.

This model was also studied on the Bethe lattice (more pre- Figure6 shows the&-dependence of the ground state energy

cisely, on the Cayley tree lattice) by DMR&?336, |t was
found that there exists a long-range magnetic order at th
isotropic points = 1. It was also suggested that a quantum
phase transition occurs at this point. However, the progeert
of this transition and the phases on the two sides of theatiti
point have not been clarified.

per bond and the entanglement entropy for the XXZ model. A
elear first order quantum phase transition is observéd-at.

The energy per bond shows a change of slopg atl (the
first-order energy derivative is shown in the insethich sug-
gests that there is an energy level crossing. The entangteme
entropy varies continuously across the transition pointefs-



FIG. 8: (Color online) The one-ring cluster with 12 sites.eTdiag-
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FIG. 9: (Color online) The 4-ring cluster with 26 sites. Theduiv-

onal matrices\ are defined on the dangling bonds. The dashed lineslent lattice sites are numbered from 1 to A§; labels the diagonal

represent removed bonds (the physical couplings on theeddste

still exist).

hibits a cusp.

Figure 7 shows the staggered magnetizatiofi and m3
around the critical point. The ground state is found to pssse
in-plane antiferromagnetic order with a finite for § < 1,
andz-axis antiferromagnetic order with a finite for 6 > 1.

At the transition point, the two order parameters change suc
denly, displaying a spin flip transition. This result vesfide

conjecture made by Otsuka.

At the transition point, we find that the ground state en-
ergy per bond has the valeg = —0.359817(3) and the spon-
taneous magnetization has the valmg = 0.34736(1) for
D = 40. The errors in the parentheses are estimated by con
paring the results for éierent bond dimensiob and difer-
ent Trotter sliceg. Our results agree well with the DMRG
data published in Ref.2[], where the local magnetization is
found to bem = 0.347 on the central lattice site and the bond

matrix on the bond linking siteisand j.
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FIG. 10: (Color online) The ground state energy per site far t

Heisenberg model on the honeycomb lattice. The results\ale e
uated in the central area of the clusters. The dashed lifesiset

energy between the central spin and a spin on the first Iay(?',rent quantum Monte Carlo resdltThe number of hexagonal rings
is e = —0.359. This satisfactory agreement suggests that by, ,sed to label the cluster size.

calculating the Bethe lattice, we can reproduce the resflts
local properties in the very center of a large Cayley tree.

V. CLUSTER UPDATE SCHEME

Bethe approximation to larger clusters in classical statib
mechanics, we apply simple update to various tree tensor
clusters. In this way, the advantagdfi@ency) in treating
a tree tensor network, namely the fact that it can be readily

In the previous sections, the Simp|e update has been a,ganonicalized, is utilized to improve the calculation decy
plied to study the quantum spin models on the Bethe latticedn a regular 2D lattice.
leading to very accurate results. What is more, in terms of To start, as a first-order approximation, let us compare the
the Bethe approximation, these results can also be regardeesults on they = 3 Bethe lattice (which has no loops) with
as approximations for the corresponding 2D lattice modelsthose on the 2D honeycomb lattice (whose coordination num-
Actually, the simple update scheme has already been used ber is alsoq = 3, and it does have loops). Our result for the
study regular 2D lattices, such as the honeycomb or square laground state energy of the Heisenberg model oncthe 3
tices. Combined with the TRSRG techniques, it can achieve Bethe lattice ise, = —0.359817(3), while the correspond-
rather accurate resulf§:1° Nevertheless, in this section, we ing energy on the honeycomb lattice obtained by the recent
would provide a dterent way of using the simple update to quantum Monte Carlo calculation égwc = —0.36303(14)’
calculate 2D lattices. Inspired by the generalization @& th The relative diference between these two energies is less
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than 09%. However, the spontaneous magnetization for theluster size. To obtain better approximation for true 2D lat
ground state of the Heisenberg model on the Bethe latticdjces, the local observables are detected in the center area
namelyms = 0.34736(1), is much larger than the correspond-of the cluster. In practice, for the 4-ring tree tensor clus-
ing value on the honeycomb lattice, which is about 0.27 as olter in Fig. 9, the results are obtained by averaging over
tained by the quantum Monte CafdbNotice, some other re- sites 3 and 4. We find an energy per siteeof —0.54441
sults for the magnetization on the honeycomb or squaredatti (bond energys, ~ —0.36294) and a local magnetization of
obtained with the tensor network algorithms are also foond t m = [e(hs) — e(hs = 0)]/hs =~ 0.3147 (with a staggered mag-
be higher than the Monte Carlo on&¥. netic fieldhs = 0.01). Hence, the inclusion of rings clearly

As a next step, our approximate treatment of the 2D honimproves the agreement with QMC data. For the transverse
eycomb lattice can be improved by using tensor networks thasing model, through the 4-ring cluster calculations, thage
include rings. In Fig.8, the cluster with one hexagonal ring transition point is estimated dg ~ 1.1, which is also more
is shown, some geometric bonds are removed (dashed lines atcurate than the simple Bethe approximation. More numeri-
Fig. 8) to form a tree tensor cluster. Note although the tensocal results with larger clusters and further details of thister
network does not have geometric bonds on the dashed lines, Bethe approximation will be published separately.
the Hamiltonian the couplings along these bonds nevedhele
exist. Therefore, the projections by imaginary time eviolut
should be executed also on the dashed lines. This cannot be VI. CONCLUSION
done directly as on usual bonds, but can be accomplished as
follows with the help of the swap gates. The swap gates are
used to exchange the physical indices of two tensors, whicpW
proceeds similarly as the projection scheme illustrateeidn
2, with the minor revision that the imaginary tim evolving op-

eratoru (r) is now replaced with a swap operatdg, that con- entropy, does not diverge at the second-order transitiamt.po
ductsUgmy, m;) = [mj, my). . . S
. . Through a scale transformation, we have given an intuitive e
In Fig. 8, take the dashed bond between site A and F as : ) S
lanation of this peculiar “critical” phenomenon. Moreove

an example, swap gates moves the physical index on site . . S
in the order A— B — C, and the physical index on site F as %y studying the magnetic susceptibility, we show that the co

F — E — D. After that, the two spins are linked by the solid relation length is upper bounded. For the Heisenberg XXZ

oo model, the existence of a first-order phase transition at the
bond between C and D, then we can take the projection and . S o ;

ISotropic point is clearly verified, and the twofldirent mag-
update processes as on an usual bond. After that, we have

to move the two spin indices back to their original positionsne'[IC ordered phases are identified as the easy-plain apd eas

by reversed swap operations, which accomplishes the :fapeci%\xIS phases, respectively. Furthermore, in terms of thed3et

T . ; pproximation, we obtain accurate and scalable approxima-

projection step on a dashed bond. Through iterative and self. . ) :
: o . igns for the 2D lattice models by applying the simple update
consistent projection processes on the solid and the dash?
e ; 0 tree tensor clusters.

bonds of the tree cluster, an approximation for 2D latticas c
be obtained. Compared with the simple Bethe lattice, this tr
tensor cluster approach can provide better approximation f
2D. On the other hand, it can also be regarded as an ideal VI,
method for evaluating the “super Bethe lattice”, of whichlea
“single site” is now placed with a hexagonalring, insteadof =~ The authors would like to thank Tomotoshi Nishino and
single site, and the coordinate numbet 6. Zhong-Chao Wei for stimulating discussions. WL is also in-

Beyond the one-ring cluster, more rings can be includediebted to Gang Su, Cheng Guo, Guang-Hua Liu, Ming-Pu
to further enlarge the cluster. As an example, Fgshows  Qin, Li-Ping Yang, and Hui-Hai Zhao for helpful discussions
a cluster with 4 hexagonal rings. The accuracy of energyf X was supported by the National Natural Science Founda-
versus diferent cluster size (labelled by the number of ringstion of China (Grants No. 10934008 and No. 10874215) and
included) are shown in Fig10, which verifies that the ac- the MOST 973 Project (Grant No. 2011CB309703). WL was
curacy could be improved consistently with enhancing thesupported by the DFG through SFB-TR12.

In summary, the simple update scheme is employed to study
0 spin models on the Bethe lattice, i.e., the transveiag Is
and the Heisenberg XXZ model. For the Ising model, it is
found that the correlation length, as well as the entangieme
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