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Decoherence of superconducting qubits caused by quasiparticle tunneling

G. Catelani, S. E. Nigg, S. M. Girvin, R. J. Schoelkopf, and L. I. Glazman
Departments of Physics and Applied Physics, Yale University, New Haven, CT 06520, USA

In superconducting qubits, the interaction of the qubit degree of freedom with quasiparticles
defines a fundamental limitation for the qubit coherence. We develop a theory of the pure dephasing
rate Γφ caused by quasiparticles tunneling through a Josephson junction and of the inhomogeneous
broadening due to changes in the occupations of Andreev states in the junction. To estimate Γφ,
we derive a master equation for the qubit dynamics. The tunneling rate of free quasiparticles is
enhanced by their large density of states at energies close to the superconducting gap. Nevertheless,
we find that Γφ is small compared to the rates determined by extrinsic factors in most of the
current qubit designs (phase and flux qubits, transmon, fluxonium). The split transmon, in which
a single junction is replaced by a SQUID loop, represents an exception that could make possible
the measurement of Γφ. Fluctuations of the qubit frequency leading to inhomogeneous broadening
may be caused by the fluctuations in the occupation numbers of the Andreev states associated with
a phase-biased Josephson junction. This mechanism may be revealed in qubits with small-area
junctions, since the smallest relative change in frequency it causes is of the order of the inverse
number of transmission channels in the junction.

PACS numbers: 74.50.+r, 85.25.Cp

I. INTRODUCTION

Over the past several years significant efforts have been
directed toward designing and implementing supercon-
ducting circuits with improved coherence properties. For
quantum computation purposes, the coherence time T2
of a qubit must be sufficiently long as to allow for error
correction.1 The unavoidable couplings of the qubit with
various sources of noise are responsible for decoherence,
and different types of qubits have different sensitivities
to a given noise source. For example, the phase and flux
qubits coherence times are limited by flux noise,2,3 while
the transmon parameters are chosen to decrease the ef-
fect of charge noise in comparison with the Cooper pair
box.4 Flux and charge noise originate from the environ-
ment surrounding the qubits; in this paper, by contrast,
we study an intrinsic mechanism of decoherence due to
the coupling between the qubit and the quasiparticle ex-
citations in the superconductor the qubit is made of. In
general one can distinguish two contributions to the time
T2: first, the qubit can lose energy and the correspond-
ing relaxation time T1 imposes an upper bound to the
coherence time, T2 ≤ 2T1. Second, additional pure de-
phasing mechanisms, characterized by the rate Γφ, can
shorten T2 below this upper limit. Recent theoretical5,6

and experimental7–9 works have highlighted the contri-
bution of quasiparticle tunneling to the relaxation rate.
Here we focus on the pure dephasing effect of quasipar-
ticle tunneling.

The decoherence rates discussed above are related to
the power spectral density S(ω) of the noise source: the
relaxation rate is proportional to the value of the spec-
tral density at the qubit frequency ω10, 1/T1 ∝ S(ω10),
while the pure dephasing rate is determined by the low-
frequency part of the spectral density, Γφ ∼ S(0) – see,
e.g., Ref. 10. Clearly the latter relationship cannot hold if
the power spectral density diverges as ω → 0. Because of

its experimental relevance, a well-studied example of di-
verging spectral density is that of 1/f noise; in the case of
1/f flux noise, for instance, the decay of the qubit coher-
ence is not exponential in time, but Gaussian-like10,11 (up
to a logarithmic factor that depends on the measurement
protocol). In studying how quasiparticle tunneling affects
dephasing we find another such example, since the quasi-
particle current spectral density is logarithmically diver-
gent at low frequencies when the gaps on the two sides of
the junction have the same magnitudes (see Sec. III). We
show that despite this divergence, a finite dephasing rate
Γφ can be determined. We then estimate the dephasing
rate for a few different single- and multi-junction qubits
and find that in most cases Γφ is small compared to the
the quasiparticle induced relaxation rate. An exception
is the split transmon, in which the two rates can be of
the same order of magnitude (see Sec. VA). Since it is
known that quasiparticles limit the relaxation rate in this
system at sufficiently high temperatures,9 it may be pos-
sible to measure the quasiparticle dephasing rate if other
sources of dephasing can be minimized.

The quasiparticle dephasing mechanism discussed
above is due to tunneling of free quasiparticles across the
junction. Another dephasing mechanism originates from
quasiparticles weakly bound to a phase-biased junction
that give rise to subgap Andreev states; the dephasing is
caused by changes in the occupations of these states that
make the Josephson coupling and hence qubit frequency
ωq fluctuate. Because of this additional dephasing, the
measured decoherence rate 1/T ∗

2 acquires an inhomoge-
neous broadening contribution, 1/T ∗

2 − 1/T2, which can
be suppressed using echo pulse sequences. When the
average occupation xAqp of the Andreev states is small,

xAqp ≪ 1, the typical (i.e., root mean square) fluctuation

of the occupations is given by the square root of xAqp.
Then for the phase qubit we show in Sec. VI that the
typical frequency fluctuation is proportional to the typi-
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cal fluctuation of the occupations divided by the square
root of the (effective) number of transmission channelsNe

in the junction, 〈(∆ωq)
2〉1/2/ωq ∝

√

xAqp/Ne. For these

fluctuations to measurably affect the decoherence rate
1/T ∗

2 , the condition 〈∆ωq
2〉1/2T2 & 1 should be satisfied;

using this condition we estimate that this mechanism is
not a limiting factor to coherence in current experiments
with phase qubits. On the contrary, it could contribute
to decoherence in recent transmon experiments,7,12 due
to the small junction area (i.e., smaller Ne in comparison
with phase qubits). However, this possibility will require
a separate investigation, due to the lack of phase bias in
the transmon.
The paper is organized as follows: in the next Section

we introduce the effective description of a single-junction
system. In Sec. III we present the master equation
governing the qubit dynamics and we discuss the self-
consistent regularization of the logarithmic divergence in
the dephasing rate. Applications of our results to single-
and multi-junctions qubits are in Secs. IV and V, re-
spectively. The role of Andreev states is analyzed in
Sec. VI. We summarize our work in Sec. VII. We use
units ~ = kB = 1 throughout the paper.

II. EFFECTIVE MODEL

The effective Hamiltonian Ĥ for a superconducting
qubit can be split into two parts,

Ĥ = Ĥ0 + δĤ , (1)

where the non-interacting Hamiltonian Ĥ0 is the sum of
qubit and quasiparticle terms,

Ĥ0 = Ĥϕ + Ĥqp . (2)

The Hamiltonian for the qubit degree of freedom ac-
counts for the charging (EC), Josephson (EJ ), and induc-
tive (EL) energies in a system comprising an inductive
loop shunting a tunnel junction,

Ĥϕ = 4EC

(

N̂ − ng

)2

−EJ cos ϕ̂+
1

2
EL(ϕ̂− 2πΦe/Φ0)

2
,

(3)
with ng the dimensionless gate voltage, Φe the external
magnetic flux threading the loop, and Φ0 = h/2e the flux

quantum. The operator N̂ = −id/dϕ counts the num-
ber of Cooper pairs passed through the junction. The
quasiparticle Hamiltonian is given by

Ĥqp =
∑

j=L,R

Ĥj
qp , Ĥj

qp =

Nch
∑

l=1

∑

n,σ

ǫjnα̂
j†
nσlα̂

j
nσl, (4)

where α̂j
nσl(α̂

j†
nσl) are annihilation (creation) operators

for quasiparticles with channel index l and spin σ =↑, ↓
in lead j = L,R to the left or right of the junction. We
have assumed for simplicity the same number of channels

Nch and identical densities of states per spin direction ν0
in both leads. Denoting with ∆j the superconducting

gap, the quasiparticle energies are ǫjn =
√

(ξjn)2 + (∆j)2,

with ξjn single-particle energy level n in the normal state
of lead j. The occupation probabilities of these levels are
given by the distribution functions

f j(ξjn) = 〈〈α̂j†
n↑lα̂

j
n↑l〉〉qp = 〈〈α̂j†

n↓lα̂
j
n↓l〉〉qp , j = L,R ,

(5)
where double angular brackets 〈〈. . .〉〉qp denote averaging
over quasiparticle states. We take the distribution func-
tions to be independent of spin and equal in the two leads.
We also assume that δE, the characteristic energy of the
quasiparticles above the gap, is small compared to the
gap, but the distribution function is otherwise generic,
thus allowing for non-equilibrium conditions.

The interaction term δĤ in Eq. (1) accounts for tun-
neling and, as discussed in Appendix A of Ref. 6, is the
sum of three parts: quasiparticle tunneling ĤT , pair tun-
neling Ĥp

T , and the Josephson energy counterterm ĤEJ
.

When the superconducting gaps are larger than all other
energy scales, the only effect of the last two terms is to
contribute to the renormalization of the qubit frequency6

[see also the discussion after Eq. (13)]; therefore, we ne-
glect those terms and consider only the quasiparticle tun-
neling Hamiltonian, δĤ = ĤT with

ĤT =

Nch
∑

l,k=1

t̃lk
∑

n,m,σ

(

eiϕ̂/2uLnu
R
m − e−iϕ̂/2vRmv

L
n

)

α̂L†
nσlα̂

R
mσk

+ H.c. (6)

Here the Bogoliubov amplitudes ujn, v
j
n are real quanti-

ties, since their dependence on the phases of the order pa-
rameters appears explicitly through the gauge-invariant
phase difference ϕ. The elements t̃lk ≪ 1 of the electron
tunneling matrix t̃ are related to the junction conduc-

tance by gT = 2gK
∑Nch

p=1 Tp, where gK = e2/h is the
conductance quantum and the transmission probabilities
Tp (p = 1, . . . , Nch) are the eigenvalues of the matrix
(2πν0)

2 t̃t̃†.

Since we are interested in the dynamics of the qubit
only, rather than that of a multi-level system, we project
the Hamiltonian Ĥ onto the qubit states |0〉 and |1〉,
which we represent by the vectors (0, 1)T and (1, 0)T for
the ground and excited states, respectively; the two-level
approximation is justified under the conditions that per-
mit the operability of the system as a qubit13 (i.e., anhar-
monicity large compared to linewidth). Then in terms of
the Pauli matrices we can write

Ĥϕ =
ω10

2
σ̂z , (7)

where the qubit frequency in general depends on all the
parameters present in Eq. (3), and, dropping for nota-
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tional simplicity the channel indices,14

ĤT = t̃
∑

n,m,σ

[

Ad
nmσ̂

z +Ar
nm

(

σ̂+ + σ̂−
)

+Af
nmÎ

]

α̂L†
nσα̂

R
mσ +H.c. ,

(8)

where the coefficients Ak
nm, k = d, r, f , have the struc-

ture

Ak
nm = Ak

c

(

uLnu
R
m − vLnv

R
m

)

+ iAk
s

(

uLnu
R
m + vLnv

R
m

)

. (9)

Here Ak
c,s denote combinations of matrix elements for the

operators e±iϕ̂/2 associated with the transfer of a single
charge across the junction,

sij = 〈i| sin ϕ̂
2
|j〉 (10)

Ad
s =

1

2
(s11 − s00) (11)

Ar
s = s10 (12)

Af
s =

1

2
(s11 + s00) (13)

and the Ak
c are obtained by replacing sine with cosine

in the above definitions. As it will become evident in
the next section, only the terms with k = d and k = r
contribute to pure dephasing and relaxation of the qubit,
respectively.
The term with k = f (in combination with the k = r

one) contributes to the average frequency shift. More
precisely, the average frequency shift δω = δωEJ

+ δωqp

has two parts,6 originating from the quasiparticle renor-
malization of the Josephson energy and virtual transi-
tions between qubit states mediated by quasiparticles,
respectively. The latter part (δωqp) is discussed further
in Appendix A. Here we note that in the leading (∝ t̃2)
order, the Josephson part δωEJ

is the sum of two contri-
butions with distinct origins. The first one comes from
the product of the terms proportional to Af

nm and Ar
nm

in δĤT [Eq. (8)]. The second contribution is due to the

terms we neglected in δĤ . (The neglected terms are the
pair tunneling and Josephson counterterm, as defined in
Appendix A of Ref. 6.) Since we are studying decoher-
ence effects in this work, we set Af

nm = 0 henceforth.
Equations (4), (7), and (8) (with Af

nm = 0) constitute
the starting point for the derivation of the master equa-
tion presented in the next section.

III. QUBIT PHASE RELAXATION: THE

MASTER EQUATION

The information on the time evolution of the qubit is
contained in its density matrix ρ̂(t), which we decompose
as

ρ̂ =
1

2

[

Î + ρz σ̂
z
]

+ ρ+σ̂
− + ρ∗+σ̂

+ (14)

In this section we present the final form of the master
equation for the density matrix. The derivation can be
found in Appendix A, where we start from the Hamilto-
nian of the system presented in the previous section and
employ the standard Born-Markov and secular (rotating
wave) approximations15 to arrive at the expressions given
here.
The diagonal component ρz of the density matrix

obeys the equation

dρz
dt

= − [Γ1→0 + Γ0→1] ρz + [Γ0→1 − Γ1→0] (15)

where, assuming equal gaps in the leads (∆L = ∆R ≡ ∆),

Γ1→0 =
2gT
πgK

∫ +∞

∆

dǫ f(ǫ) (1− f(ǫ+ ω10))

[

ǫ(ǫ+ ω10) + ∆2

√
ǫ2 −∆2

√

(ǫ + ω10)2 −∆2
|Ar

s|2

+
ǫ(ǫ+ ω10)−∆2

√
ǫ2 −∆2

√

(ǫ + ω10)2 −∆2
|Ar

c |2
]

(16)

and Γ0→1 is obtained by the replacement f → 1−f . The
general solution to Eq. (15) is

ρz(t) = ρz(0)e
−t/T1 +

Γ0→1 − Γ1→0

Γ0→1 + Γ1→0
(17)

where we introduced the relaxation time T1 as

1

T1
= Γ0→1 + Γ1→0 . (18)

Equation (16) represents the generalization, valid for
any ω10 < 2∆, of the relaxation rate formula derived in
Refs. 5,6 in the limit ω10 ≪ 2∆ using Fermi’s golden
rule. Indeed, the assumption that quasiparticles have
characteristic energies small compared to the gap enables
us to approximately substitute ǫ→ ∆ in the numerators
in square brackets in Eq. (16), and neglecting terms of
order ω10/∆ we find

Γ1→0 ≃ |Ar
s|2 Sqp(ω10) , (19)

where

Sqp(ω) =
16EJ

π

∫ +∞

0

dx
1

√
x
√

x+ ω/∆

f [(1 + x)∆] {1− f [(1 + x)∆ + ω]}
(20)

and we remind that EJ = ∆gT /8gK. The agreement
of Eq. (19) with the results of Refs. 5,6 validates the
present approach. Since the relaxation rate is studied
in detail in those references, we do not consider it here
any further, except to note that the terms neglected in
Eq. (19) can become important if the matrix element Ar

s

is small, |Ar
s/A

r
c |2 . ω10/∆. In fact, Ar

s can vanish at
particular values of the external parameters used to tune
the qubit, for example in the flux qubit when the external
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flux equals half the flux quantum;5,6 in such a case, one
needs to retain the term proportional to Ar

c in Eq. (16)
to evaluate the (non-vanishing) relaxation rate.
The master equation for the off-diagonal part of the

density matrix is

dρ+
dt

= i (ω10 + δω) ρ+ − 1

2T1
ρ+ − Γφρ+ (21)

where δω is the quasiparticle-induced average frequency
shift5,6 discussed in the previous section, T1 is defined in
Eq. (18), and the pure dephasing rate is

Γφ =
4gT
πgK

∫ +∞

∆R

dǫ f(ǫ) [1− f(ǫ)]

[

ǫ2 +∆L∆R

√

ǫ2 − (∆L)2
√

ǫ2 − (∆R)2

∣

∣Ad
s

∣

∣

2

+
ǫ2 −∆L∆R

√

ǫ2 − (∆L)2
√

ǫ2 − (∆R)2

∣

∣Ad
c

∣

∣

2
]

(22)

where we assumed ∆R > ∆L. The general solution to
Eq. (21) is

ρ+(t) = ρ+(0)e
i(ω10+δω)te−t/T2 (23)

with

1

T2
=

1

2T1
+ Γφ . (24)

The pure dephasing rate defined in Eq. (22) has a
structure similar to that of the relaxation rate, Eq. (16),
if we substitute ω10 → 0 and Ar

s(c) → Ad
s(c) in the lat-

ter. Thus we recover the relationship between the power
spectral density S(ω) of a noise source and the decoher-
ence rates discussed in the Introduction, Γ1→0 ∝ S(ω10)
and Γφ ∝ S(0). However, in Eq. (22) we have explic-
itly assumed an asymmetric junction, ∆R > ∆L, and
extension of this result to the typical case of a symmet-
ric junction (∆R = ∆L) is problematic. Indeed, let us
consider an almost symmetric junction, ∆R−∆L ≪ ∆R,
with |Ad

s | & |Ad
c | and a non-degenerate quasiparticle dis-

tribution [f(ǫ) ≪ 1, ǫ > ∆R]; then we find, using from
now on the notation ∆ = ∆R,

Γφ ≃ 4gT
πgK

∣

∣Ad
s

∣

∣

2
∆

∫ +∞

0

dx
f [(1 + x)∆]

√
x
√

x+ (∆−∆L) /∆

≃ 2
∣

∣Ad
s

∣

∣

2
Sqp

(

∆−∆L
)

(25)

In the symmetric junction limit ∆L → ∆, Γφ diverges
logarithmically due to the singularity at x = 0 of the in-
tegrand in Eq. (25); for example, in thermal equilibrium
at temperature T ≫ ∆−∆L we have

Γφ ≈ 32EJ

π

∣

∣Ad
s

∣

∣

2
e−∆/T

[

ln
4T

∆−∆L
− γE

]

(26)

Due to the logarithmic divergence, in general we cannot
simply take Γφ ∝ Sqp(0); the correct procedure that leads
to a finite dephasing rate is presented in the next section.

A. Self-consistent dephasing rate

The terms in the right hand sides of the master equa-
tions (15) and (21) are proportional to the square of
the tunneling amplitude via the tunneling conductance
gT ∝ t̃2; this proportionality is a consequence of the low-
est order perturbative treatment of the tunneling Hamil-
tonian [Eq. (8)], which enables us to neglect higher or-
der (in t̃) terms when evaluating certain correlation func-
tions involving qubit and quasiparticle operators [see Ap-
pendix A for details]. This implies that those correlation
functions oscillate but do not decay in time, which is a
limitation of the used approximation: the inclusion of
higher order effects introduces decaying factors of the
from e−γt into the correlation functions, where at lead-
ing order the decay rate γ is itself proportional to the
tunneling conductance. Here we discuss an Ansatz for γ
whose validity is checked perturbatively in Appendix B.
As we show there, a finite decay rate γ reflects itself into
a smearing of the singularity for ∆L = ∆ of the integrand
in Eq. (25),

∫ +∞

0

dx

x
=

∫ +∞

0

dx√
x

∫ +∞

0

dy√
y
δ(x− y) →

∫ +∞

0

dx√
x

∫ +∞

0

dy√
y

1

π

γ/∆

(x− y)2 + (γ/∆)2

(27)

In the problem at hand there are two inverse time
scales which could serve as a low-energy cut-off to regu-
larize the integral as in the above equation, the relaxation
rate Γ1→0 and the pure dephasing rate Γφ. A finite relax-
ation rate means that the qubit excited level has a finite
width; one could argue that this uncertainty in the energy
will in turn reflect itself in an uncertainty of the energy
exchanged between qubit and quasiparticles, thus smear-
ing the singularity as in Eq. (27). However, relaxation
rate and dephasing rate are determined by different ma-
trix elements [cf. Eqs. (11)-(12)], so one can imagine, at
least in principle, a limiting situation in which the relax-
ation rate vanishes, which would then cause the dephas-
ing rate to diverge. Therefore, we expect that dephasing
processes will themselves be the ultimate limiting factors
for coherence, so that γ = Γφ. With this identification,
we arrive at the self-consistent expression for the pure
dephasing rate

Γφ =
32EJ

π

∣

∣Ad
s

∣

∣

2
∫ +∞

0

dx√
x

∫ +∞

0

dy√
y
f [(1 + x)∆]

×{1− f [(1 + y)∆]} 1

π

Γφ/∆

(x− y)
2
+ (Γφ/∆)

2

(28)

Equation (28) is the central result of this paper. It is
valid for symmetric junctions (or nearly symmetric, ∆R−
∆L ≪ Γφ) and we show in Appendix B that it agrees with
the result of the perturbative derivation of the master
equation extended with logarithmic accuracy to the next
to leading order in t̃2.
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Similarly to the relaxation rate, for some specific values
of the qubit parameters the matrix element Ad

s can be
small or even vanish exactly. Then one should take into
account the second term in square brackets in Eq. (22)
to get

Γφ =
32EJ

π

∣

∣Ad
c

∣

∣

2
∫ +∞

0

dx f [(1 + x)∆] {1− f [(1 + x)∆]}
(29)

An estimate for the actual dephasing rate is given by
the larger of the two rates calculated using Eq. (28) or
Eq. (29).

B. Non-equilibrium quasiparticles

The relaxation rate in Eq. (19) depends explicitly on
the qubit properties via the matrix element Ar

s, while the
spectral density Sqp accounts for the dynamics of quasi-
particle tunneling. The same structure is present in the
right hand sides of Eqs. (28)-(29) – a matrix element mul-
tiplies factors describing the tunneling dynamics. These
factors can be further simplified under certain assump-
tions. Here we focus on Eq. (28) and distinguish two
cases: first, let us assume that the quasiparticle energy
is small compared to the dephasing rate, δE ≪ Γφ, and
that quasiparticles are non-degenerate, f [(1 + y)∆] ≪ 1.
Then integrating first over y and then over x we find

Γφ ≃ 16EJ

π

∣

∣Ad
s

∣

∣

2

√

∆

Γφ
xqp , (30)

where

xqp =
√
2

∫ +∞

0

dx√
x
f [(1 + x)∆] (31)

is the quasiparticle density normalized by the density of
Cooper pairs. Indicating with f0 the typical occupation
probability, we estimate16 xqp ∼ f0

√

δE/∆. Then solv-
ing Eq. (30) for Γφ, the requirement Γφ ≫ δE can be
written as

16

π

EJ

∆

∣

∣Ad
s

∣

∣

2
f0 ≫

δE

∆
(32)

This condition is in practice difficult to satisfy, since with
our assumptions f0 ≪ 1, while

∣

∣Ad
s

∣

∣ ≤ 1, EJ/∆ . 1,
and at the lowest experimental temperatures δE/∆ ∼
T/∆ & 0.01. Thus we conclude that for non-degenerate
quasiparticles an upper bound for the dephasing rate is
given by Γφ . δE.

The second case we consider, for both degenerate and
non-degenerate quasiparticles, is in fact that of small de-
phasing rate, Γφ ≪ δE. Then neglecting terms of order

Γφ/δE, Eq. (28) simplifies to

Γφ ≃ 32EJ

π

∣

∣Ad
s

∣

∣

2
∫ +∞

0

dx√
x
Re

1
√

x+ iΓφ/∆

× f [(1 + x)∆] {1− f [(1 + x)∆]}

∼ 32EJ

π

∣

∣Ad
s

∣

∣

2
f0 (1− f0) ln

4δE

Γφ

(33)

We note that both Eqs. (30) and (33) can be written ap-

proximately in the form17 Γφ ∝
∣

∣Ad
s

∣

∣

2
Sqp(Γφ); however,

the proportionality coefficients are different in the two
cases. Solving Eq. (33) for Γφ by iterations gives

Γφ ≈ 32EJ

π

∣

∣Ad
s

∣

∣

2
f0 (1− f0) ln

πδE

8EJ |Ad
s |2 f0 (1− f0)

.

(34)
As a specific example, we consider from now on a quasi-
equilibrium distribution f(ǫ) = e−ǫ/Te , where Te is the
effective quasiparticle temperature.18 In this case we have
δE = Te and f0 = e−∆/Te ≪ 1, so that the dephasing
rate is

Γφ(Te) ≈
32EJ

π

∣

∣Ad
s

∣

∣

2
e−∆/Te

[

∆

Te
+ ln

πTe

8EJ |Ad
s |2

]

.

(35)
A few remarks regarding the above results are in order.

We assume that volume V of an electrode is such that
the total number of quasiparticles in it is large. There-
fore, we neglect the parity effects.19 At equilibrium the
corresponding condition20 is satisfied for temperatures
T & ∆/ ln(V∆ν0), where ν0 is the normal-state density
of states. Considering for example aluminum electrodes
with V of a cubic micron, it means T/∆ & 0.06. We
also note that the divergence for ∆R = ∆L in Eq. (22) is
a consequence of the square root singularity of the BCS
density of states at the gap edge. Therefore possible mod-
ifications of the density of states would in principle lead
to different estimates of the dephasing rate. An exam-
ple of such a modification is broadening as described by
the Dynes model;21 within this model, the effect of a
small density of subgap states has been recently consid-
ered in Ref. 22. However, we argue in Appendix E that
these modifications do not affect the estimates for the de-
phasing rate of Al-based qubits which we present in the
remainder of the paper.

IV. PHASE RELAXATION OF

SINGLE-JUNCTION QUBITS

In this section we consider the dephasing rate for two
single-junction systems, the phase qubit and the trans-
mon, under the assumption of small qubit frequency,
ω10 ≪ ∆ (see Appendix C 1 for the flux qubit). The cal-
culations of the matrix element entering the relaxation
rate are described in detail in Ref. 6, whose result we
briefly summarize. Here we use (without giving all the
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details) the same approach of that work to obtain the
matrix elements for dephasing. Interestingly, in all cases
the pure dephasing rate ΓΦ turns out to add at most a
small correction to 1/T2 in comparison with the relax-
ation term 1/2T1.

A. Phase qubit

In a phase qubit, the charging energy EC is small com-
pared to the transition frequency ω10. The latter depends
on the external flux via the position ϕ0 of a minimum in
the potential energy of the Hamiltonian in Eq. (3), as
determined by

EJ sinϕ0 + EL (ϕ0 − 2πΦe/Φ0) = 0 (36)

Then the frequency is

ω10 =
√

8EC (EL + EJ cosϕ0) . (37)

For a small effective temperature Te ≪ ω10 the relaxation
time is

1

T1
=

1

π

ω2
p

ω10
e−∆/Te

√

πTe
ω10

(1 + cosϕ0) , (38)

where

ωp =
√

8ECEJ (39)

is the plasma frequency of the junction.
Within the same approximations used to obtain the

above formulas,23 the matrix element for dephasing is

∣

∣Ad
s

∣

∣

2
=

1

8

(

EC

ω10

)2

(1− cosϕ0) (40)

and substituting into Eq. (35) we get

Γφ =
EC

2π

ω2
p

ω2
10

e−∆/Te

[

∆

Te
+ ln

8πTeω
2
10

ECω2
p(1− cosϕ0)

]

×(1− cosϕ0).

(41)

Note that the factor in front of e−∆/Te is smaller for Γφ

in comparison with that for 1/T1 because the matrix el-
ement for dephasing is smaller than that for relaxation
by a factor EC/ω10. At low temperatures the terms in
square brackets in Eq. (41) are dominated by ∆/Te and
hence, neglecting factors cosϕ0 as they are small com-
pared to unity, the condition 2T1Γφ > 1 can be written
as

Te
∆

<
(ω10

∆

)1/3
(

EC

ω10

)2/3

(42)

Typically for a phase qubit the product on the right is
of order 10−2, while Te/∆ ∼ 10−1. Therefore the pure
dephasing contribution to T2 [Eq. (24)] can be neglected.
Interestingly, for a quasiparticle temperature of the order
of the base temperature, T/∆ ∼ 10−2, relaxation and
pure dephasing would have similar order of magnitudes,
although both would be much smaller than at Te/∆ ∼
10−1 due to their common exponential suppression by
the Boltzmann factor.

B. Transmon

The Hamiltonian of transmon is given by Eq. (3) with
EL = 0, supplemented by a periodic boundary condition
in phase.4 For our purposes, the transmon can be consid-
ered as a particular case of the phase qubit with ϕ0 = 0
[see Eq. (36)]. With these parameters, one obtains from
Eq. (38) the correct estimate for the relaxation time T1,

1

T1
=

2

π
ωpe

−∆/Te

√

πTe
ωp

(43)

However, the vanishing for ϕ0 = 0 of the matrix element
in Eq. (40) is not the correct result for the transmon:
careful evaluation of the matrix element, following the
procedure outlined in Appendices B and C of Ref. 6, gives

an exponentially small value, Ad
s ∝ exp

[

−
√

8EJ/EC

]

.

This exponential suppression is sufficient to ensure that
the dephasing rate is dominated by the contribution in
Eq. (29), since the matrix element entering that equation
has no such suppression,

∣

∣Ad
c

∣

∣

2
=

1

4

(

EC

ωp

)2

=
1

32

EC

EJ
(44)

Substituting this expression into Eq. (29), for the quasi-
equilibrium distribution function we find

Γφ =
1

π
ECe

−∆/Te
Te
∆

(45)

Using Eqs. (43) and (45) it is easy to show that for the
transmon 2T1Γφ ≪ 1; therefore, as for the phase qubit,
the pure dephasing contribution to T2 is negligible.

V. PHASE RELAXATION OF

MULTI-JUNCTION QUBITS

The results of Sec. III are readily generalized to multi-
junction systems by following the same procedure as in
Sec. V of Ref. 6. Assuming the same gaps and distribu-
tion functions in all superconducting elements, we simply
need to substitute

EJ

∣

∣

∣
Ad

s(c)

∣

∣

∣

2

→
M
∑

j=0

EJj

∣

∣

∣
Ad

s(c),j

∣

∣

∣

2

(46)

in Eqs. (28) and (29) (and hence in subsequent equations
in Sec. III B). Here index j denotes the M + 1 junctions
with Josephson energy EJj and capacitance Cj , while the
matrix elements are defined by

Ad
s,j =

1

2

(

〈1| sin ϕ̂j

2
|1〉 − 〈0| sin ϕ̂j

2
|0〉
)

(47)

with ϕj the phase difference across junction j. The sim-
ilar definition for Ad

c,j is obtained by replacing sine with
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cosine. We remind that the phases are not independent,
as they are constrained by the flux quantization condition

M
∑

j=0

ϕj = 2πf , f = Φe/Φ0 . (48)

Below we consider explicitly the two-junction split trans-
mon, while the many-junction fluxonium is analyzed in
Appendix C2.

A. Split transmon

The split transmon single degree of freedom is governed
by the same Hamiltonian of the single-junction trans-
mon, but the SQUID loop has a flux-dependent effective
Josephson energy

EJ (f) = (EJ0 + EJ1) cos (πf)
√

1 + d2 tan2 (πf) (49)

with

d =
|EJ0 − EJ1|
EJ0 + EJ1

(50)

quantifying the junction asymmetry. In quasi-
equilibrium at the effective temperature Te, the relax-
ation time is given by6

1

T1(f)
=

√

Te
πωp(f)

e−∆/Te
ω2
p(f) + ω2

p(0)

ωp(f)
(51)

where

ωp(f) =
√

8ECEJ (f) , EC =
e2

2(C0 + C1)
(52)

We note that the smaller the asymmetry, the larger the
tunability of the qubit, since ωp(0)/ωp(1/2) = 1/

√
d.

However, this flexibility comes at the price of enhancing
the relaxation rate, T1(0)/T1(1/2) = (1 + d)/(2d3/4). In
Fig. 1 we plot the normalized relaxation rate T1(0)/T1(f)
as a function of reduced flux f for three values of the
asymmetry parameter. We note that the relaxation rate
rises by about a factor 1.5 up to f ∼ 0.4, but can increase
sharply for small asymmetry as f → 0.5.
The matrix elements for dephasing are [cf. Eq. (40)]

∣

∣Ad
s,j

∣

∣

2
=

1

8

(

EC

ωp(f)

)2

[1− cos(πf ± ϑ)] (53)

where the upper (lower) sign should be used for j = 1
(j = 0) and

tan(ϑ) = d tan(πf) (54)

Note that in contrast with the single junction transmon,
the matrix elements in general do not vanish (except at
f = 0). Using Eqs. (49), (53), and (54) we find

1
∑

j=0

EJj

∣

∣Ad
s,j

∣

∣

2
=

1

64
EC

(

ω2
p(0)

ω2
p(f)

− 1

)

(55)

FIG. 1: Normalized relaxation rate T1(0)/T1(f) vs. reduced
flux f for (top to bottom) d = 0.02, 0.05, 0.1. Inset: nor-
malized frequency ωp(f)/ωp(0) vs. reduced flux for the same
values of the asymmetry parameter (but decreasing top to
bottom).

FIG. 2: Normalized dephasing rate 2T1Γφ vs. reduced flux
f for (top to bottom) d = 0.02, 0.05, 0.1. Other parameters
are specified in the text after Eq. (56). The vanishing of Γφ

as f → 0 is an artifact of the approximations used to obtain
Eq. (56); a finite dephasing rate at any flux would be obtained
by including a subleading contribution analogous to Eq. (45).

and the above-described generalization to multi-junction
systems of Eq. (35) gives

Γφ =
1

2π
EC

(

ω2
p(0)

ω2
p(f)

− 1

)

e−∆/Te

×
[

∆

Te
+ ln

8πTe
EC(ω2

p(0)/ω
2
p(f)− 1)

]

(56)

In Fig. 2 we show examples of the dependence of 2T1Γφ

on flux for different values of the asymmetry parameter
d and typical values of the other dimensionless parame-
ters (EJ (0)/EC = 80, ωp(0)/∆ = 0.2, Te/∆ = 0.06); we
note that near f = 1/2 and for small asymmetry, pure
dephasing dominates over relaxation, 2T1Γφ > 1. There-
fore the pure dephasing effect of quasiparticle tunneling
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could be measured in a split transmon if other sources of
dephasing (such as flux, photon, and charge noise) can
be suppressed. Charge noise, in particular, can become
the dominant dephasing mechanism as f → 1/2, since the
Cooper pair box regime of small EJ (f)/EC is approached
in this case for small asymmetry.4 However, the contribu-
tion of Γφ to 1/T2 becomes relevant and thus potentially
observable at values of reduced flux smaller than 1/2,
where the system is still in the transmon regime; for ex-
ample, for f ∼ 0.35 where EJ(f)/EC ∼ 0.45EJ(0)/EC ,
we estimate 2T1Γφ ∼ 0.4.

VI. T ∗

2 AND ANDREEV STATES IN A

JOSEPHSON JUNCTION

In the previous sections we have considered the pure
dephasing due to the interaction between tunneling
quasiparticles and qubit. Here we study a different
quasiparticle mechanism affecting the measured dephas-
ing rate 1/T ∗

2 : as discussed briefly in Sec. II and in more
detail in Ref. 6, the quasiparticles renormalize the qubit
frequency by shifting it by an amount δω which depends
on the quasiparticle occupation. Therefore fluctuations
in the occupation induce frequency fluctuations that can
cause additional dephasing. In this section we focus on
the phase qubit and show that this mechanism is not
active during a single measurement, so that it does not
contribute to the pure dephasing rate Γφ; however, it
can contribute to the time T ∗

2 by changing the qubit
frequency from measurement to measurement. In other
words, the fluctuations of the Andreev level occupation
take place on a time scale much longer than the relax-
ation time T1 and therefore do not contribute to dissi-
pation; this is in contrast with the fluctuations discussed
e.g. in 24,25 for weakly damped superconducting quan-
tum point contacts, where the dissipation is governed by
the electron-phonon interaction in the junction region. In
the present case, the fluctuation mechanism being slow
compared with the coherence time, its dephasing effect
can be corrected by using echo techniques.
In a Josephson junction, weakly bound quasiparticles

occupy the Andreev states that carry the dissipation-
less supercurrent.26 Changes in the occupations of these
states affect the value of the critical current (or equiva-
lently of the Josephson energy) and in turn fluctuations
in EJ lead to frequency fluctuations. As we show be-
low, the parameter determining the relative magnitude
of these fluctuations is the inverse square root of the
(effective) number of transmission channels through the
junction; therefore this fluctuation mechanism could be
relevant in small junctions. For each transmission chan-
nel p (p = 1, . . . , Nch) with transmission probability Tp

[defined after Eq. (6)], we find a corresponding Andreev
bound state with binding energy [see Appendix D]

ωA
p = ∆− EA

p , EA
p = ∆

(

1− 1

2
Tp sin

2 ϕ0

2

)

(57)

This result is valid for Tp ≪ 1; the expression valid for
arbitrary Tp can be found in Ref. 26. The (zero tem-
perature) Josephson energy entering Eq. (3) is given by
EJ = ∆

∑

p Tp/4. To account for the occupations xAp of
the Andreev states, due for example to finite tempera-
ture, in Eq. (37) we replace EJ by

EJ → ∆

4

Nch
∑

p=1

Tp

(

1− 2xAp
)

(58)

From this substitution we see that a change in the oc-
cupation of a single Andreev level can lead to a small
change δEJ in the Josephson energy and hence in the
qubit frenquency, with a relative frequency shift of the
order of δEJ/EJ ∼ 1/Nch. This effect could be mea-
surable in small junction (Nch ∼ 105) qubits and may
have already been observed in a transmon, where slow
frequency jumps of few parts per million magnitude have
been measured.7 More generally we find for the qubit
frequency ωq at a given set of occupation numbers xAp

ωq ≃ ω10 −
8EC

ω10
cosϕ0

N
∑

p=1

∆

4
Tpx

A
p (59)

Here we assumed that on average the occupation num-
bers are small, xAqp = 〈xAp 〉 ≪ 1; in quasi-equilibrium

the average takes the exponentially small value xAqp =

e−∆/Te .27 From this expression we see that fluctuations
of the occupations of the Andreev states lead to frequency
fluctuations. The mean square fluctuations of xAp are re-

lated to the average xAqp as28

〈
(

∆xAp
)2〉 ≡ 〈

(

xAp − xAqp
)2〉 = xAqp(1 − xAqp) (60)

Using this expression for the non-degenerate case xAqp ≪
1, we find for the root-mean-square frequency fluctua-
tions

√

〈(∆ωq)
2〉

ω10
= | cosϕ0|

ω2
p

ω2
10

√

xAqp
1√
Ne

(61)

where

Ne =

(

∑

p Tp

)2

∑

p T
2
p

(62)

is the effective number of channels; Ne coincides with
Nch if all the channels have equal transmission probabili-
ties. The number Ne can be estimated independently by
measuring the so called subgap structure due to Andreev
reflections,29

Ne =
δI1
δI2

gT
2gK

, (63)

where the first factor in the right hand side is the ra-
tio between the current step δI1 measured as the volt-
age increases from below to above 2∆/e and the sub-
gap current step δI2 at V ∼ ∆/e. This ratio is re-
lated to junction transparency and is of the order30,31
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δI2/δI1 ∼ 10−5−10−3, while depending on junction area
the ratio between junction conductance gT and the con-
ductance quantum gK is gT /gK ∼ 1−100, so we estimate
Ne ∼ 103 to 107 for junction sizes from small to large.
The dephasing effect of the above frequency fluctua-

tions gives observable contribution to T ∗
2 if

〈(∆ωq)
2〉1/2T2 & 1 . (64)

Using Eq. (61) this condition is

T2 &
ω10

2ω2
p

√

Ne

xAqp
∼ 1

ωp

√

Ne

xAqp
(65)

Assuming equilibrium between the occupation factors of
Andreev states and free-quasiparticle states at the effec-
tive temperature Te ≈ 140 mK (so that xAqp = e−∆/Te),

since ωp ∼ 1011 s−1 we find T2 & 10−6 s (10−4 s) for
small (large) juctions. For phase qubits, which are fabri-
cated with large junctions, this estimate is two to three
orders of magnitude longer than the observed coherence
time.2 Therefore fluctuations in the occupations of An-
dreev levels do not contribute significantly to dephasing
in current experiments with phase qubits.
The dephasing effect of the frequency fluctuations can

be corrected using an echo pulse if the occupations do not
change during a single measurement. In other words, if
the rate at which the occupations change is small com-
pared to the greater of Γφ and 1/2T1, then the fluctua-
tions contribute to the decoherence time T ∗

2 rather than
to T2. Within our model Hamiltonian, Eq. (1), the only
processes that can change the quasiparticle occupations
are due to the interaction between qubit and quasiparti-
cles; for an occupied Andreev level, this interaction leads
to its ionization, with the qubit relaxing and giving its
energy to a bound quasiparticle which is then excited into
the continuum part of the spectrum. Since this process
relaxes the qubit, it can in principle contribute to 1/T1
and, via the fluctuation-dissipation theorem, give rise to
an additional contribution to the real part of the junction
conductance. Such a contribution has been considered
in Refs. 24,25 for the case of weakly damped supercon-
ducting quantum point contacts. However, we show in
Appendix D that this intrinsic contribution is small com-
pared to the relaxation rate due to the interaction of the
qubit with the bulk quasiparticles. There are of course
extrinsic mechanisms that could affect the occupations
of the Andreev states and hence the rate of frequency
fluctuations. An example of such a mechanism is flux
noise; we estimate that the ionization rate due to flux
noise is in fact small compared to the experimental 1/T2
– see Appendix D2. Another mechanism is the quasipar-
ticle recombination caused by the electron-phonon inter-
action. The recombination rate is ≈ xqp/τ0, with the
characteristic time τ0 ∼ 10−7 − 10−6 s in aluminum and
∼ 10−10 s in niobium.32,33 Since at low temperatures7,34

xqp ∼ 10−7 − 10−8, we find that the recombination rate
is much smaller than 1/T2.

So far we have considered the effect of fluctuations
of the Andreev levels occupations. Other mechanisms
can in principle contribute to decoherence. For exam-
ple, fluctuations of the order parameter ∆ in the vicin-
ity of the junction also affect the Josephson energy, see
Eq. (58); however, at low temperatures the typical time
scale over which ∆ changes in response to a sudden per-
turbation is very short, of order 1/∆,35 so these fluctu-
ations do not lead to additional decoherence. Another
mechanism is associated with fluctuations in the number
of free (rather than bound) quasiparticles. As discussed
at the end of Sec. II, there are two contributions to the
average frequency shift – the Josephson one, δωEJ

, and
the quasiparticle one, δωqp. Fluctuations of free quasi-
particle occupations affect the latter, but their contribu-
tion to inhomogeneous broadening is small. Indeed, the
average frequency shift can be obtained by considering
the effect of quasiparticles on the junction impedance;5,6

in quasiequilibrium the contribution of the normalized
quasiparticle density xqp to the quasiparticle part Yqp of
the junction impedance YJ is smaller than the term in YJ
proportional to xAqp by the parameter

√

Te/ω10. More-
over, the root mean square fluctuations of xqp scale as the
inverse square root of the volume of the electrodes28 and
can therefore be neglected for macroscopic electrodes.

VII. SUMMARY

In this work we have studied decoherence caused by
quasiparticles in superconducting qubits and obtained
estimates for the pure dephasing rate Γφ and for the
contribution of inhomogeneous broadening to the deco-
herence rate 1/T ∗

2 . We have presented a master equa-
tion approach that not only reproduces and generalizes
the formula for the relaxation rate 1/T1 of Refs. 5,6 [see
Eq. (16))], but also gives a self-consistent expression for
the pure dephasing rate Γφ, Eq. (28). Moreover, in study-
ing 1/T ∗

2 we have derived a formula, Eq. (61), for the typ-
ical fluctuation of the qubit frequency due to change in
the occupations of Andreev states. These two equations
are our main results.
Application of Eq. (28) to single-junction qubits such

as the phase qubit, the transmon (Sec. IV), and the flux
qubit (Appendix C 1), and to the many-junctions flux-
onium (Appendix C2) shows that in these systems the
pure dephasing rate is a small contribution to decoher-
ence, 2T1Γφ < 1. In the split transmon (Sec. VA), on
the other hand, the quasiparticle dephasing rate can be
larger than the relaxation rate when the external flux
that tunes the qubit frequency approaches half the flux
quantum, see Fig. 2; together with its temperature and
flux dependence [Eq. (56)], the increased importance of
Γφ in this regime could permit its experimental measure-
ment.
Finally in Sec. VI we have considered the contribu-

tion to the decoherence rate 1/T ∗
2 due to quasiparticles

bound into Andreev states localized near the Josephson
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junction. Fluctuations of the occupations of these lev-
els from measurement to measurement can in principle
induce dephasing which can be corrected with an echo
pulse. In practice, this mechanism gives negligible contri-
butions to dephasing in current experiments with phase
qubits: due to the short observed T2 time, Eq. (64) im-
plies that the fluctuations of the occupations would need
to cause relative frequency fluctuations of the order 10−3

to start affecting the coherence of the qubit.
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Appendix A: Derivation of the master equation

In this Appendix we summarize the main steps of the
derivation of the master equation presented in Sec. III.
Our starting point is the von Neumann equation,15 which
we write for the two components of the qubit (i.e., re-
duced) density matrix as

dρz
dt

= −iTr
{[

δĤ; ρ̂t

]

σ̂z
}

(A1)

dρ+
dt

= iω10ρ+ − iTr
{[

δĤ ; ρ̂t

]

σ̂+
}

(A2)

Here ρt is the total density matrix of the system, com-
prising both qubit and quasiparticles, [·; ·] denotes the
commutator and, as discussed in Sec. II, for our pur-
poses the interaction Hamiltonian δĤ = ĤT is given by
Eq. (8) with Af

nm = 0. More useful forms of the traces
in the right hand sides of the above equations are

Tr
{[

ĤT ; ρ̂t

]

σ̂z
}

= 〈〈
[

σ̂z; ĤT

]

〉〉

= 2t̃〈〈
(

σ̂+ − σ̂−
)

∑

n,m,σ

Ar
nmα̂

L†
nσα̂

R
mσ〉〉+H.c.′

(A3)

and similarly

Tr
{[

ĤT ; ρ̂t

]

σ̂+
}

= t̃〈〈σ̂z
∑

n,m,σ

Ar
nmα̂

L†
nσα̂

R
mσ〉〉

−2t̃〈〈σ̂+
∑

n,m,σ

Ad
nmα̂

L†
nσα̂

R
mσ〉〉+H.c.′

(A4)

where angular brackets denote quantum statistical aver-
aging with respect to the total density matrix and the
prime denotes that Hermitian conjugation is not applied
to qubit operators (i.e., Pauli matrices).

The averages in the right hand sides of Eqs. (A3)-(A4)
can be found by solving the equations governing their
time evolution, such as

− i∂t〈〈σ̂±α̂†L
nσα̂

R
mσ〉〉 = 〈〈

[

Ĥ ; σ̂±α̂†L
nσα̂

R
mσ

]

〉〉

=
(

±ω10 + ǫLn − ǫRm
)

〈〈σ̂±α̂†L
nσα̂

R
mσ〉〉

+ t̃

{

±Ad∗
nmρ±(t)

[

fL
n (1− fR

m) + (1− fL
n )f

R
m

]

− 1

2
Ar∗

nm

×
[

(1± ρz(t)) f
L
n (1− fR

m)− (1∓ ρz(t))(1 − fL
n )f

R
m

]

}

(A5)

The terms in curly brackets originate from averages of
one qubit operator times four quasiparticle operators
evaluated in the Born approximation,15 for example

∑

i,j,ρ

〈〈σ̂+
{

α̂R†
jρ α̂

L
iρ; α̂

L†
nσα̂

R
mσ

}

〉〉

= ρ+(t)
[

fL
n (1− fR

m) + (1− fL
n )f

R
m

]

(A6)

where {·; ·} is the anticommutator. The solution of
Eq. (A5) is

〈〈σ̂±α̂†L
nσα̂

R
mσ〉〉 = it̃

∫ t

0

dτ ei(±ω10+ǫLn−ǫRm+i0+)(t−τ)

{

±Ad∗
nmρ±(τ)

[

fL
n (1− fR

m) + (1− fL
n )f

R
m

]

− 1

2
Ar∗

nm

[

(1± ρz(τ)) f
L
n (1 − fR

m)− (1 ∓ ρz(τ))(1 − fL
n )f

R
m

]

}

(A7)

A similar expression can be derived for the average in
Eq. (A4) that contains σ̂z . After substituting these
expressions into Eqs. (A3)-(A4) and the results into
Eqs. (A1)-(A2), we perform two additional approxima-
tions. First, we neglect fast rotating terms; this so-called
secular (or rotating wave) approximation15 is valid when
the decoherence rate is small on the scale of the qubit fre-
quency, 1/T2ω10 ≪ 1, and it amounts to keeping in the
equation for ρz only the terms proportional to (1 ± ρz)
and in the equation for ρ+ only those proportional to ρ+.
With this approximation we find

dρz(t)

dt
= −2t̃2

∫ t

0

dτ
∑

n,m

|Ar
nm|2

×
{

ρz(τ)
[

fL
n (1− fR

m) + (1 − fL
n )f

R
m

]

×
[

e++− + e−+− + e+−+ + e−−+
]

+
[

fL
n (1− fR

m)− (1− fL
n )f

R
m

]

×
[

e++− − e−+− − e+−+ + e−−+
]}

(A8)
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and

dρ+(t)

dt
= iω10ρ+(t) (A9)

−2t̃2
∫ t

0

dτ
∑

n,m

ρ+(τ)
[

fL
n (1 − fR

m) + (1 − fL
n )f

R
m

]

×
{

2
∣

∣Ad
nm

∣

∣

2
[

e++− + e+−+
]

+ |Ar
nm|2

[

e0+− + e0−+
]}

where we use the shorthand notation

eαβγ = ei(αω10+βǫLn+γǫRm+i0+)(t−τ) (A10)

Next we introduce the Markov approximation15 by
substituting in the integrands of Eqs. (A8)-(A9) ρz(τ) →
ρz(t), ρ+(τ) → e−iω10(t−τ)ρ+(t) and extending the lower
integration limits from 0 to −∞. Then the τ -integrals
can be performed using the identity

∫ t

−∞

dτ ei(ω+i0+)(t−τ) = iP
1

ω
+ πδ(ω) (A11)

where P denotes the principal part. We note that in
Eq. (A8) the contributions of the principal parts cancel
out, while after rewriting the summations over n, m as
integrals over the quasiparticle energies the δ-functions
can be used to eliminate one of these integrals. Assuming
equal gaps in the leads, we finally arrive at Eq. (15).
Applying the above steps to Eq. (A9), we find that the

principal parts cancel out in the term proportional to
Ad

nm; in that term we assume different gaps with ∆R >
∆L to get expression (22) for the pure dephasing rate Γφ.
On the other hand, we can take the gaps to be the same
in the term proportional to Ar

nm; then the δ-functions
give rise to the contribution −1/2T1ρ+ in Eq. (21). As
for the principal parts, they contribute a term iδω̃ρ+(t)
with

δω̃ = |Ar
s|2 [Fqp(−ω10)− Fqp(ω10)] (A12)

The function Fqp is defined in Appendix A of Ref. 6; as
in that work, we have neglected here contributions sup-
pressed by the factor ω10/∆. We note that while δω̃ has a
structure similar to that of δωqp in Ref. 6, due to the pro-
jection onto the qubit subspace described in Sec. II the
expression in Eq. (A12) accounts for virtual transitions
between the qubit states only and neglects those to other
states of the full system. In systems with small anhar-
monicity (e.g., the transmon and phase qubit) these tran-
sitions cannot be neglected and the average frequency
shift must be calculated using the formulas in Ref. 6. Fi-
nally, we remind that the total average frequency shift
δω contains also a Josephson part δωEJ

, as discussed in
Sec. II.

Appendix B: Dephasing at next-to-leading order

The self-consistent equation (28) for Γφ requires go-
ing beyond the lowest order (in the tunneling amplitude

t̃) perturbative considerations of Appendix A in order to
regularize the logarithmic divergence in Eq. (22) for equal
gaps. Here we focus on the next to leading order contri-
butions to validate that equation. First, however, let us
discuss briefly the smearing of the singularity, Eq. (27),
which is obtained as follows: after the Markov approx-
imation, the term in Eq. (A9) proportional to Ad

nm is
explicitly

−4t̃2ρ+(t)
∑

n,m

[

fL
n (1− fR

m) + (1 − fL
n )f

R
m

] ∣

∣Ad
nm

∣

∣

2

lim
γ→0+

∫ t

−∞

dτ
[

ei(ǫ
L
n−ǫRm+iγ)(t−τ) + ei(−ǫLn+ǫRm+iγ)(t−τ)

]

(B1)

Rather than taking the limit, we assume γ small but
finite (in particular, γ ≪ ω10 for the rotating wave ap-
proximation to be valid). After integration the last line
becomes

2γ

(ǫLn − ǫRm)2 + γ2
(B2)

This explains the origin of the last factor in the second
line of Eq. (27), with the other factors accounting for
the square root singularity of the BCS density of states.
We now want to show that the identification γ = Γφ is
correct at next to leading order. To do so, we initially
assume that the left/right gaps are different, so that the
logarithmic divergence is absent and the perturbative ex-
pansion in t̃ is justified. Next, we keep only those terms
that would become logarithmically divergent in the limit
of equal gaps.

To begin our derivation, we note that in Eq. (A9) the
first term in square brackets multiplying Ad

nm originates
from 〈〈σ̂+α̂†L

nσα̂
R
mσ〉〉, as explained in Appendix A. To-

gether with the other term in square brackets, they give
rise to the pure dephasing rate term in the master equa-
tion (A9) via the equality

2t̃
∑

n,m,σ

[

Ad
nm〈〈σ̂+α̂L†

nσα̂
R
mσ〉〉 + Ad∗

nm〈〈σ̂+α̂R†
mσα̂

L
nσ〉〉

]

= iΓφρ+(t) (B3)

In what follow we first consider in some detail the next
order contributions to 〈〈σ̂+α̂†L

nσα̂
R
mσ〉〉 and then discuss

briefly the contributions to other averages. Without in-
voking the lowest order Born approximation, the equa-
tion of motion for 〈〈σ̂+α̂†L

nσα̂
R
mσ〉〉 is obtained by adding

to the right hand side of Eq. (A5) the terms

t̃
∑

i,j,ρ

[

Ad
ijN

σ,ρ
nm,ij +Ad∗

ij M
σ,ρ
nm,ij −

1

2
Ar

ijQ
σ,ρ
nm,ij

−1

2
Ar∗

ij P
σ,ρ
nm,ij +

1

2
Ar∗

ij S
σ,ρ
nm,ij +

1

2
Ar∗

ij R
σ,ρ
nm,ij

]

(B4)
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with the definitions

Mσ,ρ
nm,ij = 〈〈σ̂+

{

α̂R†
jρ α̂

L
iρ; α̂

L†
nσα̂

R
mσ

}

〉〉 (B5)

− δniδmjδσρρ+
[

fL
n (1− fR

m) + (1− fL
n )f

R
m

]

Nσ,ρ
nm,ij = 〈〈σ̂+

{

α̂L†
iρ α̂

R
jρ; α̂

L†
nσα̂

R
mσ

}

〉〉 (B6)

P σ,ρ
nm,ij = 〈〈σ̂z

{

α̂R†
jρ α̂

L
iρ; α̂

L†
nσα̂

R
mσ

}

〉〉 (B7)

− δniδmjδσρρz
[

fL
n (1− fR

m) + (1− fL
n )f

R
m

]

Qσ,ρ
nm,ij = 〈〈σ̂z

{

α̂L†
iρ α̂

R
jρ; α̂

L†
nσα̂

R
mσ

}

〉〉 (B8)

Rσ,ρ
nm,ij = 〈〈

[

α̂R†
jρ α̂

L
iρ; α̂

L†
nσα̂

R
mσ

]

〉〉 (B9)

− δniδmjδσρ
[

fR
m − fL

n

]

Sσ,ρ
nm,ij = 〈〈

[

α̂L†
iρ α̂

R
jρ; α̂

L†
nσα̂

R
mσ

]

〉〉 (B10)

In introducing these definitions we have subtracted out
the lowest order contributions already appearing in
Eq. (A5). Then in that equation and in Eqs. (B5) and
(B7) the density matrix should be understood as the
lowest (zeroth) order one. In other words, by construc-
tion the quantities defined in Eqs. (B5)-(B10) account for
higher order (in t̃) contributions; these can be found by
considering the equations of motions for those quantities,
such as

−i∂tMσ,ρ
nm,ij = (ω10 + ǫLn − ǫRm + ǫRj − ǫLi )M

σ,ρ
nm,ij

+t̃
∑

k,l,µ

〈〈σ̂+
{

Ad
klα̂

L†
kµα̂

R
lµ +Ad∗

kl α̂
R†
lµ α̂

L
kµ;Aσ,ρ

nm,ij

}

−1

2
σ̂z
{

Ar
klα̂

L†
kµα̂

R
lµ +Ar∗

kl α̂
R†
lµ α̂

L
kµ;Aσ,ρ

nm,ij

}

+
1

2

[

Ar
klα̂

L†
kµα̂

R
lµ +Ar∗

kl α̂
R†
lµ α̂

L
kµ;Aσ,ρ

nm,ij

]

〉〉

(B11)

where Aσ,ρ
nm,ij stands for the anticommutator

Aσ,ρ
nm,ij =

{

α̂R†
jρ α̂

L
iρ; α̂

L†
nσα̂

R
mσ

}

(B12)

At lowest order, all the averages in the right hand side
of Eq. (B11) vanish; non-vanishing contributions can in
principle be found by considering once again the equa-
tion of motions for those averages. As it is well known,
proceeding in this manner we would obtain a hierarchy of
coupled equations.36 Here we make two approximations:
first, we truncate the hierarchy at this level; second, as
explained above we keep only those terms that in the
limit of equal gaps would give logarithmically divergent
contributions to the master equation. As a first step, this
amounts to performing a mean-field like approximation
in which the averages in the right hand side of Eq. (B11)
are written in terms of product of averages as in the fol-
lowing example:

〈〈σ̂+
{

α̂L†
kµα̂

R
lµ;Aσ,ρ

nm,ij

}

〉〉 = 2〈〈σ̂+α̂L†
kµα̂

R
lµ〉〉〈〈Aσ,ρ

nm,ij〉〉

+ 2〈〈σ̂+α̂L†
nσα̂

R
mσ〉〉〈〈Aµ,ρ

kl,ij 〉〉
(B13)

where

〈〈Aσ,ρ
nm,ij〉〉 = δniδmjδσρ

[

fL
n (1− fR

m) + (1− fL
n )f

R
m

]

(B14)
Similar expressions can be written for the other averages
appearing in Eq. (B11). In the second step we check
which of the terms obtained in this way are logarith-
mically divergent in the limit of equal gaps and discard
those that are finite (here we employ again the Born-
Markov37 and rotating wave approximations).

Applying the above procedure to Eq. (B11) we find
that the terms in the last two lines can be neglected, while
in terms originating from the second line we use Eq. (B3)
as well as Eq. (A7) (in the rotating wave approximation,
we only need to keep the term in the right hand side of
that equation that contains ρ+). Solving the equation
for Mσ,ρ

nm,ij so obtained we finally arrive at

Mσ,ρ
nm,ij(t) = −tΓφρ+(t) δniδmjδσρ

[

fL
n (1 − fR

m) + (1− fL
n )f

R
m

]

− 2t̃2ρ+(t)A
d
ijA

d∗
nm

[

fL
i (1− fR

j ) + (1− fL
i )f

R
j

]

×
[

fL
n (1− fR

m) + (1− fL
n )f

R
m

]

∫ t

0

du ei(ǫ
L
n−ǫRm+ǫRj −ǫLi +i0+)(t−u)

∫ u

0

dτ
(

ei(ǫ
L
n−ǫRm+i0+)(u−τ) + ei(−ǫLi +ǫRj +i0+)(u−τ)

)

(B15)

We then use the same approach to find the expression
for Nσ,ρ

nm,ij [Eq. (B6)], which has the structure similar to

that of the last term in Eq. (B15). Using these results

we get

∑

i,j,ρ

(

Ad
ijN

σ,ρ
nm,ij +Ad∗

ij M
σ,ρ
nm,ij

)

= −Γφρ+(t)A
d∗
nm

[

fL
n (1 − fR

m) + (1− fL
n )f

R
m

]

×
{

t+

∫ t

0

dτ ei(ǫ
L
n−ǫRm+i0+)(t−τ)

}

(B16)
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To obtain the last term in curly brackets we used the
identity

∫ t

0

du

∫ u

0

dτ h(τ, u) =

∫ t

0

dτ

∫ t

0

du h(τ, u)

−
∫ t

0

du

∫ u

0

dτ h(u, τ)

(B17)

to combine contributions coming from Mσ,ρ
nm,ij and

Nσ,ρ
nm,ij in a compact form.
Using the same procedure one can find the expressions

for the quantities defined in Eqs. (B7)-(B10). Those
quantities, however, do not contribute to the master
equation within the approximations we are employing (in
particular, we remind that in the rotating wave approx-
imation we neglect by assumption terms small by the
factor Γφ/ω10). Therefore, we obtain the following next-
to-leading order equation of motion for 〈〈σ̂+α̂†L

nσα̂
R
mσ〉〉 by

substituting Eq. (B16) into Eq. (B4) and adding the re-
sult to the left hand side of Eq. (A5):

− i∂t〈〈σ̂+α̂†L
nσα̂

R
mσ〉〉 =

(

ω10 + ǫLn − ǫRm
)

〈〈σ̂+α̂†L
nσα̂

R
mσ〉〉

+ t̃Ad∗
nmρ+

(

1− Γφt− Γφ

∫ t

0

dτ ei(ǫ
L
n−ǫRm+i0+)(t−τ)

)

×
[

fL
n (1− fR

m) + (1− fL
n )f

R
m

]

− t̃

2
Ar∗

nm

[

(1 + ρz) f
L
n (1 − fR

m)− (1 − ρz)(1− fL
n )f

R
m

]

(B18)

As explained at the beginning of this Appendix, we want
to show that this equation agrees at next to leading or-
der with the smearing obtained by introducing a finite
decay rate in the terms responsible for dephasing, with
the decay rate given by Γφ itself. Indeed, introducing
this decay in Eq. (A7) we find

〈〈σ̂+α̂†L
nσα̂

R
mσ〉〉 = it̃Ad∗

nm

∫ t

0

dτ ei(ω10+ǫLn−ǫRm+iΓφ)(t−τ)

ρ+(τ)
[

fL
n (1 − fR

m) + (1 − fL
n )f

R
m

]

− 1

2
it̃Ar∗

nm

∫ t

0

dτ ei(ω10+ǫLn−ǫRm+i0+)(t−τ)

[

(1 + ρz(τ)) f
L
n (1− fR

m)− (1− ρz(τ))(1 − fL
n )f

R
m

]

(B19)

Taking the time derivative of this equation we get

− i∂t〈〈σ̂+α̂†L
nσα̂

R
mσ〉〉 =

(

ω10 + ǫLn − ǫRm
)

〈〈σ̂+α̂†L
nσα̂

R
mσ〉〉

+ t̃Ad∗
nmρ+

[

fL
n (1 − fR

m) + (1 − fL
n )f

R
m

]

− t̃

2
Ar∗

nm

[

(1 + ρz) f
L
n (1 − fR

m)− (1 − ρz)(1− fL
n )f

R
m

]

− Γφt̃A
d∗
nm

∫ t

0

dτ ρ+(τ)e
i(ω10+ǫLn−ǫRm+iΓφ)(t−τ)

×
[

fL
n (1− fR

m) + (1− fL
n )f

R
m

]

(B20)

At next-to-leading order, one should expand the expo-
nentially decaying part of ρ+ [cf. Eqs. (23)-(24)] in the
second line of Eq. (B20) and hence substitute there, with
logarithmic accuracy, ρ+ → ρ+(1 − Γφt). The last term
in Eq. (B20) is explicitly of higher order, so one can use
ρ+(τ) ≃ eiω10τ and drop Γφ in the exponent. In this way
we recover Eq. (B18), thus showing for 〈〈σ̂+α̂†L

nσα̂
R
mσ〉〉 the

validity of our Ansatz. To complete the proof, we repeat
the above steps for other averages, such as 〈〈σ̂+α̂†R

mσα̂
L
nσ〉〉

and 〈〈σ̂zα̂†L
nσα̂

R
mσ〉〉. The latter contributes to the 1/2T1

term in the master equation (21) and at next-to-leading
order the only correction we find is that corresponding to
the expansion of the exponentially decaying part of ρ+,
as discussed above for the second line in Eq. (B20).

Appendix C: Phase relaxation in flux qubit and

fluxonium

1. Flux qubit

In a flux qubit, the external flux threading the su-
perconducting loop is tuned to half the flux quantum,
f = Φe/Φ0 ≃ 1/2, and the potential energy takes the
form of a double well. Then the qubit states |±〉 are
the two lowest tunnel-split states in this potential with
energy difference

ω10(f) =

√

ǭ2 +
[

(2π)2ĒL(f − 1/2)
]2

(C1)

where for ĒJ ≫ ĒC we have

ǭ = 2

√

2

π

√

8ĒCĒJ

(

8ĒJ

ĒC

)1/4

e−
√

8ĒJ/ĒC (C2)

Expressions for the renormalized parameters ĒC , ĒJ ,
and ĒL in terms of the bare parameters of the Hamilto-
nian (3) can be found in Sec. IV.B of Ref. 6. It was shown
there that the matrix element Ar

s vanishes at f = 1/2
because of symmetry considerations, thus leading to a
minimum for the relaxation rate. Here we focus on the
case f = 1/2 and therefore we need to evaluate the con-
tribution to relaxation originating from the last line in
Eq. (16). The relevant matrix element is

|Ar
c | =

ǭ

ω10(f)
(C3)

which equals unity at f = 1/2. Then from Eq. (16) we
obtain

1

T1
=

8

π
EJ

√

ω10

2∆
xqp =

8

π
EJ

√

πǭTe
∆2

e−∆/Te (C4)

Turning now to the dephasing rate, we find at f = 1/2
the following expression for the matrix element

∣

∣Ad
s

∣

∣ =
D

2
√
2

ǭ

ĒJ

(

ĒJ

ĒC

)1/3

, (C5)
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whereD ≈ 1.45 is a numerical coefficient.6 Using Eq. (35)
and (C4), after straightforward algebra we arrive at

2T1Γφ =
D2

√
π

√

∆

EC

√

∆

Te

(

ǭ

ĒC

)3/2(
ĒC

ĒJ

)4/3

×
{

∆

Te
+ ln

[

π

D2

Te
∆

∆

ĒC

(

ĒC

ǭ

)2(
ĒJ

ĒC

)1/3
]} (C6)

Due to the exponential suppression of the splitting,
Eq. (C2), this quantity is in general small. Indeed,
for ĒC/∆, Te/∆ > 0.01 and ĒJ/ĒC & 15 we find
2T1Γφ . 0.01.

2. Fluxonium

In the fluxonium an array of M ≫ 1 identical junc-
tions (each with Josephson energy EJ1 ≫ EC1 large
compared to their charging energy) acts as a lossy in-
ductor connected to a weaker junction with EJ0 < EJ1.
The inductive energy of the array is EL = EJ1/M and
the losses are due to quasiparticle tunneling through the
array junctions. In fact, for external flux near half the
flux quantum the relaxation time is determined by this
loss mechanism,6

1

T1
= 4πEL

√

πTe
ω10(f)

e−∆/Te

(

ω10(1/2)

ω10(f)

)2

, (C7)

since as discussed above for the flux qubit the contribu-
tion of the weaker junction is suppressed at f = 1/2
[cf. Eq. (C4)]. Note that at f = 1/2 the rate in
Eq. (C7) is larger than that in Eq. (C4) by the factor
(∆/EJ )(EL/ω10(1/2)).
To calculate the dephasing rate, we note that at f =

1/2 the matrix element for the weak junction is the same
as for the flux qubit, Eq. (C5),

∣

∣Ad
s,0

∣

∣ =
D

2
√
2

ω10(1/2)

ĒJ0

(

ĒJ0

ĒC0

)1/3

(C8)

while for each array junction we get

∣

∣Ad
s,1

∣

∣ =
π

2M

∣

∣Ad
s,0

∣

∣ (C9)

Then the coefficient containing the sum over all junctions
is

M
∑

j=0

EJj

∣

∣Ad
s,j

∣

∣

2
=

(

EJ0 +
π2

4
EL

)

∣

∣Ad
s,0

∣

∣

2
, (C10)

which in the limit ĒJ/ĒC ≫ 1 is exponentially sup-
pressed, see Eq. (C2). Therefore at f = 1/2 the de-
phasing rate Γφ has the same exponential suppression
as in the flux qubit. Since as discussed above the flux-
onium relaxation rate is parametrically larger than the

flux qubit one,38 we find again that the pure dephasing
rate is small compared to the relaxation rate for large
ĒJ/ĒC . The latter condition is not satisfied experimen-
tally, since typically39 EJ/EC . 5, and numerical cal-
culations beyond the scope of the present work may be
needed to address this parameter regime. However, we
note that in all cases studied here decreasing the ratio
EJ/EC increases the relative contribution of pure de-
phasing to 1/T2.

Appendix D: Andreev bound states and ionization

rate

The goals of this Appendix are to derive Eqs. (57)
starting from the model defined by Eqs. (1)-(6), and to
estimate the ionization rates due to qubit-quasiparticles
interaction and flux noise. In the low energy limit where
the characteristic energy of the quasi-particles δE as well
as the qubit transition frequency ω10 are small compared
to the superconducting gap ∆, we approximate the BCS
coherence factors as ujn ≈ vjn ≈ 1/

√
2. Then considering

for now a single channel junction, Eq. (6) takes the form6

ĤT = it̃ sin(ϕ̂/2)
∑

n,m,σ

α̂L†
nσα̂

R
mσ +H.c. (D1)

Assuming for simplicity identical left/right leads, we per-
form a canonical rotation into a new quasiparticle basis
defined by the operators

γ̂±nσ =
1√
2

(

α̂L
nσ ± iα̂R

nσ

)

. (D2)

In this basis we have [cf. Eq. (4)]

Ĥqp = Ĥqp+ + Ĥqp− , Ĥqp± =
∑

n,σ

ǫnγ̂
†
±nσ γ̂±nσ (D3)

ĤT = t̃ sin
ϕ̂

2

∑

n,m,σ

(

γ̂†−nσγ̂−mσ − γ̂†+nσ γ̂+mσ

)

. (D4)

Denoting with |j〉 and Ej the eigenstates and eigenener-

gies of Ĥϕ [Eq. (3)], the total Hamiltonian Ĥ can then be
split into parts that are respectively diagonal and non-
diagonal in the qubit subspace, Ĥ = Ĥd + Ĥnd, with the
diagonal part defined as

Ĥd =
∑

j

Ej|j〉〈j|+
∑

j

|j〉〈j|
(

Ĥj+ + Ĥj−

)

, (D5)

where

Ĥj± = Ĥqp± ∓ t̃sjj
∑

n,m,σ

γ̂†±nσ γ̂±mσ. (D6)

and we have used the definition (10) for the matrix ele-
ments sij . The non-diagonal part is given by

Ĥnd = t̃
∑

i6=j

sij |i〉〈j|
∑

m,n,σ

(

γ̂†−nσ γ̂−mσ − γ̂†+nσγ̂+mσ

)

(D7)
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It describes real transitions in which qubit and quasipar-
ticles exchange energy. The term proportional to t̃ in the
diagonal part, on the other hand, accounts for virtual
transitions that renormalize the spectrum. Indeed, as we
show next, for sjj > 0 (sjj < 0) there exists a sub-gap
Andreev bound state in the γ+ (γ−) subspace. Because
the two subspaces are uncoupled, we can restrict our-
selves to either one of those; in the following we consider
the γ+ subspace.

Since Ĥd is diagonal in the qubit space, to find the
spectrum we only need to calculate the eigenvalues of
the quasiparticle Hamiltonians Ĥj±. We denote with
|Aj〉 the wavefunction of the Andreev state when the
qubit is in state |j〉; to solve the Schrödinger equa-

tion Ĥj+|Aj〉 = E|Aj〉 we make the Ansatz |Aj〉 =
∑

nσ ajnγ
†
+nσ|∅〉, where |∅〉 denotes the quasiparticle vac-

uum state, γ±nσ|∅〉 = 0, and obtain the following system
of linear equations

ajn = t̃sjj
1

ǫn − E

∑

m

ajm. (D8)

To find the eigenenergy E, we sum both sides over n and
in the low energy limit we write ǫn ≈ ∆ + ξn

2/(2∆);
then the sum over n in the right hand side can be ap-
proximated by an integral,

∑

n ≈ ν0
∫

dξ, and we arrive
at

1 = πν0 t̃sjj

√

2∆

∆− E
. (D9)

A solution with energy E < ∆ exists if and only if sjj > 0
(the opposite holds in the γ− subspace where a bound
state exists if and only if sjj < 0.). The corresponding
bound state energy is

EA
j = ∆[1− 2(πν0 t̃)

2sjj
2], (D10)

This energy depends on the state of the qubit via the
matrix element sjj . However, for the low-energy states
of the phase qubit this matrix element is the same at
leading order in EC/ω10 ≪ 1, since the square of the
matrix element is6

sij
2 = δi,j

[

1− 2
EC

ω10

(

i+
1

2

)]

sin2
ϕ0

2

+
EC

ω10
[jδi,j−1 + (j + 1)δi, j + 1] cos2

ϕ0

2

(D11)

up to higher order terms ∝ (EC/ω10)
2. Keeping only the

leading term in this equation, introducing the transmis-
sion probability T = (2πν0 t̃)

2 in Eq. (D10), and general-
izing it to multiple channels, we arrive at Eq. (57). (In
that equation the subscript p denotes the transmission
channel, and we have dropped the qubit state index j
since, as explained above, the leading order expression is
independent of j.)
For later use, we note that the normalization condi-

tion
∑

n(ajn)
2 = 1/2, which accounts for spin degener-

acy, together with the square of Eq. (D8), leads to the

amplitudes

ajn =
1√
πν0

(2∆ωA
j )

3/4

ξn
2 + 2∆ωA

j

, (D12)

where ωA
j = ∆− EA

j is the binding energy.

1. Ionization rate

The ionization of the Andreev level can be caused by
quantum fluctuations of the phase difference across the
junction induced by the finite charging energy EC ; the
ionization rate can be calculated using Fermi’s golden
rule by treating the non-diagonal part (D7) of the Hamil-
tonian as a perturbation. For a qubit initially in the state
|i〉, the ionization rate ΓA

i is given by

ΓA
i = 2π

∑

nj

∣

∣

∣
〈j, ǫjn|Ĥnd|i, Ai〉

∣

∣

∣

2

× δ(Ej + ǫn − Ei − EA
i )(1 − f(ǫn)). (D13)

Here |ǫjn〉 is a scattering state in the continuum part
of the quasiparticle spectrum and the factor (1 − f(ǫn))
gives the probability that this state is empty. The matrix
element in Eq. (D13) is the product of the off-diagonal
matrix element sji times the overlap of the wavefunctions
of bound and scattering states at the junction,

〈j, ǫjn|Ĥnd|i, Ai〉 = −t̃sji
∑

m

ψ∗
jm(ǫn)

∑

n′

ain′ , (D14)

where ψjm(ǫn) = 〈ǫm|ǫjn〉 and |ǫm〉 are the eigenstates

of Ĥqp+, see Eq. (D3). Next we calculate the wavefunc-
tions for the continuum states by solving the scattering
problem in the standard T -matrix approach.40

We focus again on the γ+ subspace and write Ĥj+ =

Ĥqp+ + Ĥj1 with Ĥj1 = −t̃sjj
∑

nm,σ γ̂
†
+nσ γ̂+mσ [cf.

Eq. (D6)]. From the Schrödinger equation, we have for
the scattering states |ǫjn〉

|ǫjn〉 = |ǫn〉+
1

ǫn − Ĥqp+ + i0+
Ĥ1j |ǫjn〉

=

[

1̂ +
1

ǫn − Ĥqp+ + i0+
Tj(ǫn)

]

|ǫn〉, (D15)

where we have defined the T-matrix as

Tj(ǫn) = Ĥ1j + Ĥ1j[ǫn− Ĥqp++ i0+]−1Ĥ1j + . . . (D16)

The T-matrix is related to the quasiparticle Green’s func-
tion Gj via

Gj = g + gTjg , (D17)

where g is the (diagonal in momentum) bare quasiparticle
Green’s function gn(ω) = 1/(ω − ǫn + i0+). Using the
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inverse of this equation: Tj = g−1Gjg
−1 − g−1, we find

upon projecting Eq. (D15) onto |ǫm〉
ψjm(ǫn) = lim

ω→ǫn
Gj,mn(ω)(gn(ω))

−1. (D18)

The Green’s function, as obtained from the equations of
motion for γ+nσ, is given by

Gj,nm(ω) = δnmgn(ω)−
t̃sjjgn(ω)gm(ω)

1 + t̃sjj
∑

p gp(ω)
. (D19)

Hence the continuum states are

ψjm(ǫn) = δnm − t̃sjjgm(ǫn)

1− iπν0t̃sjj

√

2∆
ǫn−∆

, (D20)

where we have used that in the low energy limit
∑

p gp(ǫn) ≈ −iπν0
√

2∆/(ǫn −∆).

Using Eqs. (D12) and (D20) we find

∑

n

ain = 21/4πν0
√

t̃∆sii, (D21)

∑

m

ψ∗
jm(ǫn) =

1

1 + iπν0t̃sjj
√

2∆/(ǫn −∆)
. (D22)

Substituting these expressions into Eq. (D13), and con-
sidering explicitly the case of a phase qubit, using the ex-
pressions for the matrix elements sij given in Eq. (D11)
finally yields for the ionization rate of a single-channel
junction

ΓA
j = j

ωp
2

8ω10
(1 + cosϕ0)

√

2ωA
j

Ej−Ej−1−ωA
j

1 +
ωA

j−1

Ej−Ej−1−ωA
j

× (1− f(Ej − Ej−1 + EA
j )), (D23)

with ϕ0, ωp, and ω10 defined in Sec. IVA and we used
that for a single-channel junction EJ = ∆(πν0 t̃)

2.
The above result can be easily generalized to the case

of Nch independent channels. Assuming for simplicity
identical transmission amplitudes, the Andreev binding
energy can be written as ωA

j = 2EJsjj
2/Nch which for a

phase qubit reduces approximately to ωA ≈ EJ/Nch. We
assume Nch ≫ 1 sufficiently large so that ωA ≪ ω10 and
obtain for the ionization rate of each occupied channel

ΓA
1 ≈ 1

4Nch

ωp
2

ω10

√

2ωA

ω10

1 + cosϕ0

2
. (D24)

A single ionization event is sufficient to relax the
qubit energy, and the probability of at least one ion-
ization event taking place during time t, when initially
Nocc ≤ Nch Andreev levels are occupied, is given by

p = 1 − e−NoccΓ
A
1 t. Introducing the total ionization rate

ΓA
tot = NoccΓ

A
1 and using Eq. (38), leads to the estimate

T1Γ
A
tot ≈

1

4
√
2π

Nocc

N
3/2
ch

e∆/Te

√

EJ

Te
, (D25)

Defining the frequency shift δωq = ω10 − ωq and using
Eq. (59) to estimate its value, we may eliminate Nocc

and rewrite the above as

T1Γ
A
tot ∼ e∆/Te

√

EJ

NchTe

δωq

ω10
∼ 4× 104

δωq

ω10
(D26)

where we used EJ/Nch ∼ 10−5∆ and Te ≈ 140 mK. Thus
when δωq & 10−4ω10, the qubit relaxation is likely dom-
inated by the ionization process, rather than by quasi-
particle transitions within the continuum. However, we
note that the typical shift is much smaller than this,
δωq/ω10 ∼ e−∆/Te ∼ 3 × 10−7, i.e. p ≈ 0.012, so the
contribution of ionization to qubit relaxation is negligi-
ble unless Nocc is anomalously large.

2. Ionization by flux noise

As an example of an extrinsic ionization mechanism,
we consider here low frequency (≪ ω10) flux noise. Small
fluctuations δΦe(t) ≪ Φ0 of the external flux induce
small fluctuations ϕ1(t) of the phase difference ϕ0,

ϕ1(t) = 2π
δΦe(t)

Φ0

EL

EL + EJ cosϕ0
(D27)

[see Eq. (36)]. Since the low-frequency fluctuations do
not induce qubit transitions, their effect is accounted for
by substituting ϕ0 → ϕ0 + ϕ1(t) into the diagonal ma-
trix element sjj in Eq. (D6). At linear order in ϕ1 we
thus obtain the time-dependent perturbation (in the γ+
subspace)

V̂ (t) = −t̃ ϕ1(t)

2
cos
(ϕ0

2

)

∑

n,m,σ

γ†+nσγ+mσ, (D28)

Using Fermi’s golden rule and following similar steps as
in the previous section, the total ionization rate can be
expressed as

ΓA
tot = Nocc

(

EJ

Nch

)3/2
∣

∣

∣
sin

ϕ0

2

∣

∣

∣

1 + cosϕ0

2
(D29)

×
∫ ∞

ωA

dω Sϕϕ(ω)

√
ω − ωA

ω
(1− f(ω + EA)).

where Sϕϕ(ω) = 1/(2π)
∫

eiωt〈ϕ1(t)ϕ1(0)〉dt is the phase
fluctuation spectrum and the binding energy introduces a
natural low-frequency cutoff. For non-degenerate quasi-
particles, f(ωA+EA) ≪ 1, and a power-law spectrum of
the form2,3,10 Sϕϕ(ω) = (δϕ)2/(2πωα), we obtain

ΓA
tot =

(δϕ)2

2π
Nocc

(

EJ

Nch

)3/2
∣

∣

∣
sin

ϕ0

2

∣

∣

∣

1 + cosϕ0

2

× ω
1
2
−α

A

∫ ∞

1

dx

√
x− 1

xα+1
(D30)
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For α = 1 (pure 1/f noise), the remaining integral is
equal to π/2 and since ωA = 2(EJ/Nch) sin

2(ϕ0/2), we
arrive at

ΓA
tot =

(δϕ)2

4
√
2
Nocc

(

EJ

Nch

)

1 + cosϕ0

2
. (D31)

The measured2,3 magnitude of the fluctuations is small,
δϕ ∼ 10−6; since EJ/Nch ∼ 10−5∆ and Nocc ≪ Nch .
107, we estimate this rate to be much smaller than 1 Hz.

Appendix E: Modifications of the density of states

The logarithmic divergence of the dephasing rate and
its regularization discussed in Sec. III are a consequence
of the square root singularity of the BCS density of states
at the gap edge. Here we discuss other mechanisms that
also can regularize the divergence and show that for Al-
based qubits used at present they do not affect the esti-
mates in the main text.
To begin with we consider the broadened density of

states introduced by Dynes21 to interpret experimental
tunneling data. This phenomenological density of states
is characterized by a broadening parameter ΓD ≪ ∆ and
a finite density of subgap states. These states give rise to
an additional contribution to the dephasing rate which we
denote with Γsg

φ ; assuming quasi-equilibrium, it is given

by22

Γsg
φ (Te) =

16EJ

π

∣

∣Ad
c + iAd

s

∣

∣

2
(

ΓD

∆

)2
Te
∆
. (E1)

and it is always smaller than the broadening, Γsg
φ ≪ ΓD.

Comparing Eqs. (35) and (E1), we see that a small broad-
ening in the latter can compensate for the exponential
suppression of the quasiparticle occupation in the former.
Then we can distinguish three regimes: 1. at “high”
temperatures, the dephasing rate is given by Eq. (35),
since the broadening can be neglected in calculating Γφ.
The high-temperature regime is defined by the condition
ΓD . Γφ(Te); 2. at intermediate temperatures, when
Γsg
φ (Te) . Γφ(Te) . ΓD, the broadening of the density

of states cannot be neglected. With logarithmic accu-
racy, this amount to substituting Γφ → ΓD in the last
term in Eq. (33) and hence replacing the square bracket
in Eq. (35) with ln(Te/ΓD) [see also Eq. (E4) below; as
we discuss there, since this substitution affects only the
logarithm, use of Eq. (35) still gives a correct order-of-
magnitude estimate]. 3. at low temperatures, such that
Γφ(Te) . Γsg

φ (Te) the subgap contribution becomes dom-
inant.
In recent measurements34 the intrinsic value of the

broadening parameter in aluminum was found to be
small, ΓD/∆ < 2 × 10−7. Using this value and the
results of Sec. IV, our estimates show that the low-
temperature regime is entered for Te . 60 mK. In
experiments with superconducting resonators41 as well
as qubits7,42 the quasiparticle effective temperature is
larger, Te ∼ 140 mK, so we can neglect the subgap contri-
bution to the dephasing rate for Al-based qubits, which

we focus on in this paper. However, the subgap contri-
bution may be relevant in other systems, such as qubits
fabricated with niobium.22

While the above considerations are based on a phe-
nomenological model, an intrinsic modification of the
continuum part of the density of states near the junc-
tion is due to the presence of Andreev bound states.
They modify the square root singularity into a square
root threshold,

√

2∆

ω −∆
→

√
2∆

√
ω −∆

ω − EA
(E2)

with EA the energy of the bound state defined in Eq. (57)
(here we consider for simplicity the single channel case).
The above substitution can be obtained using Eq. (D19)
for the Green’s function to calculate the density of states.
Assuming the binding energy ωA = ∆− EA to be small
compared to the typical quasiparticle energy, ωA ≪ δE,
we find that the substitution (E2) would lead to the
replacement of Γφ with ωA in the right hand side of
Eq. (33). In quasi-equilibrium this amount to replacing
the square brackets in Eq. (35) with

ln
Te
ωA

∼ ln
Te
EJ

+ lnNch (E3)

where Nch ≫ 1 is the number of channels in the junc-
tion. We note that the tunneling limit we are considering
consists in taking the transmission amplitude t̃ → 0 at
finite EJ , which implies Nch → ∞. Then in this limit
the self-consistent approach is justified with logarithmic
accuracy as explained in Appendix B.

In both the examples above, the modifications of the
density of states can lead to a regularization of the loga-
rithmic divergence of Γφ. More generally, assuming that
if the subgap states are present their effect can be ne-
glected [see discussion above] and indicating with Γb the
energy scale characterizing the broadening of the peaks
in the density of states, for Γb ≪ ∆ the estimate for the
dephasing rate Γb

φ regularized by broadening is

Γb
φ(Te) ≈

32EJ

π

∣

∣Ad
s

∣

∣

2
e−∆/Te ln

4Te
Γb

. (E4)

This expression is correct irrespective of the mechanism
causing the broadening. For example, in clean supercon-
ductors it can be caused by order parameter anisotropy,
but this effect is washed out in dirty superconductors.43

Strictly speaking, Eq. (E4) applies at low temperatures
when Γb & Γφ(Te), while at higher temperatures Eq. (35)
remains valid. Using experimental estimates of Te and
typical values of the matrix element for a phase qubit,
we estimate that Eq. (35) should be used only when
Γb . 10−9∆. However, even for broadening as large as
Γb ∼ 10−3∆, Eq. (35) overestimates the dephasing rate
by a factor of less than 4, so it can always be used in
practice for order-of-magnitude estimates.
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