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The possible discovery of s± superconducting gaps in the moderately correlated iron-based su-
perconductors has raised the question of how to properly treat s± gaps in strongly correlated su-
perconductors. Unlike the d-wave cuprates, the Coulomb repulsion does not vanish by symmetry,
and a careful treatment is essential. Thus far, only weak correlation approaches have included this
Coulomb pseudopotential, which has motivated us to introduce a symplectic N treatment of the t−J

model that incorporates the strong Coulomb repulsion through the complete elimination of on-site
pairing. Through a proper extension of time-reversal symmetry to the large N limit, symplectic-N
is the first superconducting large N solution of the t − J model. For d-wave superconductors, the
previous uncontrolled mean field solutions are reproduced, while for s± superconductors, the SU(2)
constraint enforcing single occupancy acts as a pair chemical potential adjusting the location of
the gap nodes. This adjustment can capture the wide variety of gaps proposed for the iron based
superconductors: line and point nodes, as well as two different, but related full gaps on different
Fermi surfaces.

PACS numbers:

I. INTRODUCTION

The new family of iron-based superconductors1 has ex-
panded the study of high temperature superconductors
from the single band, d-wave cuprate superconductors
to include multi-band superconductors with full gaps.
Experimental2 and numerical3–5 work suggest a range of
correlation strengths between different materials. From
the theoretical point of view, weak and strong corre-
lation approaches converge on many of the major fea-
tures: most importantly, the predominantly s± struc-
ture of the superconducting gap3,6–15. The real materials
are likely in the regime of moderate correlations where
both approaches are useful. Unlike the d-wave cuprates,
where the strong Coulomb repulsion is eliminated by
symmetry, these multi-band s± superconductors require
a careful treatment of the Coulomb pseudopotential16.
While this has been incorporated into weak coupling
approaches7,10,12,17, it has yet to be included in strong
correlation treatments based on the t − J model. With
this in mind, we introduce the symplectic-N t−J model.
The use of a large N limit based on the symplectic group,
SP (N) allows a proper treatment of time-reversal in the
large-N limit18–20, making this the first superconducting
large N treatment of the t−J model. Symplectic-N also
replaces the usual U(1) constraint of single-occupancy
with a SU(2) constraint that strictly eliminates on-site
pairing20. This SU(2) constraint is essential to the treat-
ment of s± superconductors, where it acts as a pair
chemical potential, adjusting the gap nodes to eliminate
the Coulomb repulsion.

This paper is intended as an introduction to the
symplectic-N t− J model, illustrating the importance of

the additional constraint with the example of s± super-
conductors, and showing how this model contains a range
of gap behaviors reproducing those found in various iron-
based materials. We do not attempt to model any mate-
rial specific properties, merely to qualitatively illustrate
the effects of including the Coulomb pseudopotential in
a strongly correlated model. We begin by reviewing the
Coulomb pseudopotential in section II and demonstrate
the lack of superconductivity in the SU(N) t− J model
corresponding to the usual slave boson mean field the-
ory. In section III, we introduce symplectic Hubbard
operators, which allow us to develop a superconducting
large-N treatment of the t − J model. We demonstrate
this mean field theory on several examples in section IV,
before discussing the range of possible future directions
in V.

II. THE COULOMB PSEUDOPOTENTIAL AND

THE t− J MODEL

On-site pairing is disfavored by the Coulomb pseu-
dopotential, which will cost a bare amount, UN(0),
where U is the on-site Coulomb repulsion and N(0) is
the density of states at the Fermi energy. However, in
the weak coupling limit, where we assume the pairing
is mediated by the exchange of a boson with character-
istic frequency ωB, the time scale of the pairing, ωB is
much longer than that of the Coulomb repulsion. In other
words, while the effective electron-electron interaction is
attractive, it is also retarded, meaning the electrons like
to be in the same place, but at different times, while the
Coulomb repulsion is a nearly instantaneous repulsion of
two electrons at the same place and time. The Coulomb
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pseudopotential is therefore renormalized16,

µ∗ =
N(0)U

1 +N(0)U log EF

ωB

(1)

to weak coupling. If Tc ∝ ωB exp(−1/λ), the attrac-
tive interaction is replaced by λ → λ − µ∗, which re-
duces Tc slightly at weak coupling, but does not de-
stroy superconductivity. In BCS superconductivity, the
bosons exchanged are phonons, and the Debye frequency,
ωD ≪ EF . However, in more strongly correlated super-
conductors, the two time scales are of the same order,
and the Coulomb pseudopotential can drastically affect
the superconductivity. Strongly correlated examples, like
the cuprate and heavy fermion superconductors, avoid
this problem by developing a d-wave gap, where the pair-
ing with a positive gap is exactly cancelled out by that
with a negative gap, as guaranteed by the d-wave sym-
metry. This choice of gap neutralizes the Coulomb pseu-
dopotential. However, the iron-based superconductors
are widely believed to have an s± gap, where the amount
of cancellation between positive and negative gap regions
is not protected by symmetry, and depends strongly on
the Fermi surfaces (see Fig. 1). When this cancellation is
incomplete, µ∗ reduces Tc and it is extremely important
to consider this effect when mapping out the phase dia-
gram, as it affects the relative stability of s- and d-wave
gaps. These effects have been incorporated in the weakly
correlated solutions7,10,12,17, but not yet in the strongly
correlated approaches.
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FIG. 1: (Color online) (Left) In the d-wave gap, the cancella-
tion of the superconducting order parameter over the Fermi
surface is guaranteed by symmetry, as the positive (blue) re-
gions will exactly cancel the negative (white) regions. (Right)
However, in the s± superconducting gap, the amount of can-
cellation is extremely sensitive to the Fermi surface.

Here, we take the strongly correlated limit, U → ∞ to
eliminate double occupancy, which corresponds to taking
µ∗ → ∞. The Heisenberg model describes the insulating
half-filled limit of the t − J model, but generally holes
(n < 1) or electrons (n > 1) will hop around in an anti-
ferromagnetic background. Doubly occupied states must

be avoided, and the hopping is not that of free electrons.
Rather, it is projected hopping, described by the t − J
model21,22,

H = −
∑

ij

tij [Xσ0(i)X0σ(j) + H.c.] +
∑

ij

Jij ~Si · ~Sj. (2)

The Hubbard operators, Xab = |a〉〈b|, where |a〉 =
|0〉, |σ〉 ensure that only empty sites, or holes can hop
(or for n > 1 that electrons can only hop from doubly
occupied sites to singly occupied sites). Here, Xσ0 are
projected hopping operators
Exact solutions of the t−J model are unavailable, and

the typical approach is to write down a mean field solu-
tion using the slave boson approach23–25, which divides
the electron into charged, but spinless holons and neu-
tral spinons. The most common choice is the U(1) slave
boson representation27,

Xσ0 = f †
σb, (3)

so-called because it is invariant under U(1) gauge trans-
formations. However, mean field solutions do not neces-
sarily satisfy all the conditions on the full model, and may
not maintain the µ∗ → ∞ limit. Large N approaches
generate mean-field solutions by extending the SU(2)
t − J model to some larger group. When developing a
large N treatment of the hopping term, one must take
care that the two terms are consistent, or in other words,
that the charge fluctuations described by the t term gen-
erate the spin fluctuations in the Heisenberg term. The
algebra of these operators, given by

{Xα0, X0β} = f †
αfβ + b†bδαβ. (4)

extends the algebra of Hubbard operators from SU(2)
to SU(N), and we see that two charge fluctuations in
sequence give rise to a spin fluctuation described by the
SU(N) spin operator, Sαβ = f †

αfβ .
The large N limit of the full SU(N) t− J model is:

H = −
∑

〈ij〉

tij
N
f †
iαbib

†
jfjα +

∑

ij

Jij
N

(

f †
iαfjα

)(

f †
jβfiβ

)

. (5)

Decoupling the J term yields a dispersion for the spinons,
but not pairing28. There is no superconductivity in this
large N limit.
While the large N limit of the SU(N) t−J model con-

tains no superconductivity, 1/N corrections do yield an
effective attractive electron-electron interaction47, Γ ∼
1/N . The superconducting transition temperature, TC ∼
e−N is then non-perturbative in 1/N and far smaller than
any finite power of 1/N corrections. While the SU(N)
expansion can suggest which pairing channels may be-
come attractive, it clearly provides a very poor starting
point to study the superconducting state. In the next
section, we shall see that the SU(N) large N limit loses
the time-reversal symmetry necessary to describe super-
conductivity, which is not fully restored for any finite
expansion in 1/N .
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III. THE SYMPLECTIC-N t− J MODEL

A superconducting large N limit requires a proper def-
inition of time-reversal, as Cooper pairs can only form
between time-reversed pairs of electrons. If we attempt
to generalize the time-reversal operation, θ from SU(2)
to SU(N), the transformation of SU(N) spins becomes

Sαβ
θ
−→ α̃β̃S−β−α, where α̃ = sgn(α). However, not all

SU(N) spins, Sαβ = f †
αfβ invert under this time-revesal

operation. In fact, there is no consistent definition of
time-reversal in SU(N) for any N > 2, which makes it
impossible to properly capture singlet superconductiv-
ity to any finite order in the SU(N) large N expansion.
There is, however, a subset of spins that invert under
time-reversal, which generate the group SP (N). It turns
out that the inversion of spins under time-reversal is ac-
tually equivalent to symplectic symmetry, and the only
way to preserve time-reversal in the large N limit is to
use symplectic spins18,19,

Sαβ = f †
αfβ − α̃β̃f †

−βf−α, (6)

where α ranges from −N/2 to N/2. Here we use the
fermionic representation because we are interested in the
doped spin liquid states that become superconductors.
Introducing doping means introducing a small number
of mobile empty states, and we can represent the Hilbert
space with the Hubbard operators,XAB = |A〉〈B|, where
|A〉 = |0〉, |α〉, with |α〉 representing the N possible spin
states. When an electron hops on and off a site, it can
flip the spin of the site. Mathematically, this action im-
plies that the anticommutator of two Hubbard operators
generates a spin operator. In a symplectic-N generaliza-
tion of the t-J model, anticommuting two such Hubbard
operators must generate a symplectic spin, satisfying the
relations:

{Xα0, X0β} = Xαβ +X00δαβ (7)

= Sαβ +

(

X00 +
Xγγ

N

)

δα,β,

where the last equality follows from the traceless defi-
nition of the symplectic spin operator, Sαβ = Xαβ −
Xγγ

N δαβ , and we are using the Einstein summation con-
vention, here and throughout the paper. When we repre-
sent the Hubbard operators with slave bosons, the sym-
plectic projected creation operators take the following
form20,

Xα0 = f †
αb + α̃f−αa, (8)

dictated by equation (7), and the other two Hubbard
operators take the form

Xαβ = Sαβ + δαβ
X00 = b†b+ a†a. (9)

This double slave boson form for Hubbard operators was
derived by Wen and Lee24 as a way of extending the local

SU(2) symmetry of spin26 to include charge fluctuations.
In our approach, the SU(2) symmetry, fσ → cos θ fσ +

sign(σ) sin θ f †
−σ appears as a consequence of the time-

inversion properties of symplectic spins for all even N ,
which permits us to carry out a large N expansion18.
We can simplify these expressions by introducing Nambu
notation, B† = (b†, a†) and f̃ † = (f †

α, α̃f−α), as Xα0 =

f̃ †
αB. The hopping term of symplectic-N t−J model can
thus be written,

H =−
∑

ij

tij
N

[(

f †
iαbi + α̃fi−αai

)(

fjαb
†
j + α̃f †

j−αa
†
j

)

+H.c.
]

=−
∑

ij

tij
N

(

f̃ †
iαBiB

†
j f̃jα +H.c.

)

(10)

Restricting the spin and charge fluctuations to the
physical subspace requires that we fix the Casimir of the
Hubbard operators29,

C = ~S2
j + [X0α, Xα0]− (X00 + 1)2, (11)

where ~S2
j = 1

2

∑

αβ Sαβ(j)Sβα(j). A detailed calculation

(see Appendix) shows that

C = (N/2)2 − 1− ~Ψ2
j , (12)

where ~Ψ ≡ (Ψ†,Ψ,Ψ3) is given by

Ψ3 = nf + nb − na −
N

2
Ψ† =

∑

α>0

f †
αf

†
−α + b†a

Ψ =
∑

α>0

f−αfα + a†b. (13)

In the infinite-U limit, the Casimir, C is set to its maxi-

mal value, and we obtain the constraint ~Ψj = 0. Writing

out the condition that ~Ψj vanishes, we obtain

b†jbj − a†jaj + f †
jαfjα = N/2

b†jaj +
∑

α>0

α̃f †
jαf

†
j−α = 0

a†jbj + α̃fj−αfjα = 0. (14)

The first equation imposes the constraint on no double
occupancy. The second terms play the role of a Coulomb
pair pseudo-potential, forcing the net s-wave wave pair
amplitude to be zero when superconductivity develops.
Under the occupancy constraint, there is only a single
physical empty state, which is

|0〉 =
(

b† + a†α̃f †
−αf

†
α

)

|Ω〉, (15)

for N = 2. The physical interpretation of these terms be-
comes clearer if we pick a particular gauge. Since we only
have two flavors of bosons and N flavors of fermions, the
only way the bosons contribute in the large N limit is by
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condensing. As the bosons are condensed at all temper-
atures, Fermi liquids and superconductors are the only
possible states; while this situation is clearly unphysical,
and will be resolved with 1/N corrections, it allows us
to fix the gauge in a particularly simple way by setting
a = 0 and condensing only the b bosons, b2 = Nx/2
because the bosons carry all the charge in the system.
The factor of N/2 makes the doping extensive in N . The
constraint simplifies to,

f †
jαfjα =

N(1− x)

2
α̃f †

jαf
†
j−α = 0

α̃fj−αfjα = 0, (16)

In a mean field theory, these three constraints are en-

forced by a trio of Lagrange multipliers ~λ = (λ+, λ−, λ3)
in a constraint term that takes the form

HC =
∑

j

λ3

[

f †
jαfjα −

N(1− x)

2

]

+λ+(α̃f
†
jαf

†
j−α)+H.c

(17)
The first constraint is clearly recognizable as impos-
ing Luttinger’s theorem. This term is present in the
conventional U(1) slave boson approach23. The second
terms impose severe constraints on the pair wavefunc-
tion when superconductivity develops, implementing the
infinite Coulomb pseudopotential. For d-wave supercon-
ductors like the cuprates, which have been the main fo-
cus of previous t − J model studies, these constraints
are satisfied automatically, and at the mean-field level,
there is no difference between the symplectic-N limit
and many of the previously considered uncontrolled mean
field theories23,24,30. However, for s± pairing, these addi-
tional constraints enforce the Coulomb pseudopotential,
µ∗ and have a large effect on the stability of s± super-
conductivity.
Once the bosons are condensed, and the Heisenberg

term decoupled, the spinon Hamiltonian is quadratic,

H =
∑

ij

f̃ †
i

[

−
xtij
2

τ3 + Uij

]

f̃j+
N
[

|∆ij |
2 + |χij |

2
]

Jij
, (18)

where we have introduced the SU(2) matrix notation,

Uij =

[

−χij ∆ij

∆̄ij χ̄ij

]

. (19)

χij generates a dispersion for the spinons, while ∆ij pairs
them. The full Hamiltonian is given by H + HC . The
physical electron, c† ∼ 〈b〉f † + 〈a〉f will either hop co-
herently, forming a Fermi liquid when ∆ is zero, or will
superconduct when ∆ is nonzero. The mean field phase
diagram is obtained by minimizing the free energy with
respect to these mean field parameters, χij and ∆ij ,

χij =
Jij
N

〈f †
iαfjα〉

∆ij =
Jij
N

〈α̃f †
iαf

†
j−α〉, (20)

and enforcing the constraint on average, 〈
∑

j f
†
jαfjα〉 =

N(1−x)
2 and 〈

∑

j α̃f
†
jαf

†
j−α〉 = 0, where 〈· · · 〉 is the ther-

mal expectation value.
The J1−J2 model will have two sets of bond variables,

χη and ∆η, where η indicates a link, (ij). We assume
that χ1 and χ2 are uniform, and allow ∆1 and ∆2 to be
either s-wave or d-wave. When these order parameters
are Fourier transformed, we find χk = χ1γ1k + χ2γ2k ≡
2χ1(cx + cy) + 4χ2cxcy and ∆k =

∑

η ∆ηδηk is a combi-
nation of s-wave and d-wave pairing on the nearest and
next nearest neighbor links,

extended s 2∆1s(cx + cy)
dx2−y2 2∆1d(cx − cy)

s± 2∆2s(cx+y + cx−y) = 4∆2scxcy
dxy 2∆2d(cx+y − cx−y) = −4∆2dsxsy (21)

and we define cη = cos kηa, sη = sinkηa. The full Hamil-
tonian (including the constraint) has the form,

H =
∑

k

f̃ †
k

(

−
xǫk
2

+ Uk + λ3τ3 + λ1τ1

)

f̃k

+Ns

∑

η

N

Jη

(

|∆η|
2 + |χη|

2
)

−
NNsxλ3

2
(22)

where ǫk is the Fourier transform of tij , Uk is the Fourier
transform of Uij and λ1 = 1

2 (λ++λ−). (λ2 is unnecessary
if ∆ is real). This Hamiltonian can be diagonalized, and
the spinons integrated out to yield the free energy,

F = −2NT
∑

k

log 2 cosh
βωk

2

+Ns

∑

η

4N

Jη

(

|∆η|
2 + |χη|

2
)

−
NNsxλ3

2
, (23)

where ωk =
√

α2
k
+ β2

k
, αk = λ3 −

xǫk
2 + χk, and βk =

λ1 + ∆k. Minimizing this free energy leads to the four
mean field equations,

∂F/∂χη =

∫

k

tanh βωk

2

2ωk

αkγηk −
4

Jη
= 0

∂F/∂∆η =

∫

k

tanh βωk

2

2ωk

βkδηk −
4

Jη
= 0

∂F/∂λ3 =

∫

k

tanh βωk

2

2ωk

αk − x/2 = 0

∂F/∂λ1 =

∫

k

tanh βωk

2

2ωk

βk = 0. (24)

The first three are identical to those for the U(1) slave
boson mean field theories23, but the last enforces the ab-
sence of s-wave pairing. λ1 acts as a pair chemical poten-
tial adjusting the regions of negative and positive gap.

IV. SIMPLE EXAMPLES

Now let us see this constraint in action, applied to
several simple cases. First, we shall take the simplest
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FIG. 2: (Color online) (a) The t1 − J2 model. (b) The Fermi
surface (electrons shown in red) for the t1−J2 model at inter-
mediate doping. In the superconducting state, the gap nodes
follow the dashed lines, separating regions of positive and neg-
ative gap. (c) The superconducting transition temperatures
for the t1 − J2 model both with (solid lines) and without
the λ1 constraint(dashed lines), for s-wave (blue) and d-wave
(green) superconductivity. d-wave superconductivity is unaf-
fected by the Coulomb repulsion, while the s-wave transition
temperature is decreased.

lattice to exhibit s± pairing: the t1 − J2 model shown
in Fig. 2 (a). Here, only the next-nearest exchange cou-
pling, J2 and nearest neighbor hopping, t1 are nonzero,
which leads to a single electron Fermi surface with the
potential for either dxy or s± pairing. The dispersion
is given by ǫk = 2t1(cos kxa + cos kya). The supercon-
ducting transition temperatures can be determined by
setting ∆2s/d = 0+ and solving the mean field equa-
tions, (24) for Tc. The results are shown in Fig. 2(c),
where we have calculated the transition temperatures as
a function of doping, x both with and without the λ1

constraint. The d-wave transition temperature is unaf-
fected, as ∂F/∂λ1 = 0 by symmetry, but the s-wave Tc

is suppressed. Note that the two transition temperatures
are identical for x = 0. Looking at the gap structure, Fig-
ure 2(b), we see that λ1 has adjusted the gap nodes such
that there are equal amounts of positive and negative gap
density of states, eliminating the Coulomb repulsion. As
there is only one Fermi surface in this example, there
are necessarily line nodes even in the s-wave state. The
energetic advantage of a fully gapped s-wave Fermi sur-
face is thus lost, so that d-wave superconductivity, which
requires no costly adjustment of the nodes, becomes en-
ergetically favorable for this lattice.

(a) (b)

(c)

t1

t3

t2

x = .04 

+

+

+

+

+-

-

-

-

FIG. 3: (Color online) (a) The t1−t2−t3−J2 model. (b) The
Fermi surface (electrons shown in red) for the t1− t2− t3−J2

model at both low (single Fermi pocket) and intermediate
doping (two Fermi pockets). The gap nodes of the super-
conducting state are indicated with dashed lines. (c) The
doping phase diagram for the t1 − t2 − t3 − J2 model, calcu-
lated with the λ1 constraint (solid lines) and without (dashed
lines). There is a quantum phase transition between d-wave
pairing (green) and s-wave pairing (blue) as doping increases
and the s-wave states become fully gapped.

However, if there are multiple Fermi surfaces, s± su-
perconductivity can gap out both surfaces with opposite
signs. If we tune the t1−t2−t3 hoppings, keeping only J2,
we can obtain such a Fermi surface, which has two elec-
tron pockets as shown in Figure 3(a,b). It is of course im-
possible to reproduce the electron and hole Fermi surfaces
of the iron-based superconductors with this single band
model, but these two electron pockets capture the essen-
tial aspects from the Coulomb pseudopotential point of
view. The dispersion is given by

ǫk = −2t1(cos kxa+ cos kya)− 4t2 cos kxa coskya
−2t3(cos 2kxa+ cos 2kya), (25)

where we have taken t2 = −3t1 and t3 = 4t1 to get
the two electron pockets. Again, we calculate the s-wave
and d-wave transition temperatures in the presence of
the pseudopotential terms, showing the phase diagram
in Figure 3(c). Our one-band approach makes this dif-
ficult, as the size of the pockets shrinks with increasing
doping. The s-wave order parameter has line nodes for
low doping, which recede to point nodes and then van-
ish as the Fermi surface becomes fully gapped at larger
dopings, where the s-wave superconductivity is more fa-
vorable than d-wave, causing a d-wave to s-wave quan-
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tum phase transition as a function of doping. If we had
equally balanced hole and electron pockets at zero dop-
ing, s-wave would likely win out over d-wave at all dop-
ings.

V. DISCUSSION

This study of the symplectic-N t-J model illustrates
the importance of incorporating the Coulomb pseudopo-
tential into any strongly correlated treatment of s± su-
perconductors. The symplectic-N scheme provides the
first mean field solution of the t − J model that is both
controlled and superconducting. The large-N limit is
identical to previous mean-field studies23, but contains
the additional constraint fields λ± which enforce the con-

straint ~Ψ = 0. For d-wave pairing, this constraint is inert,
as the s-wave component of the pairing is zero by symme-
try, but this constraint plays a very active role for s-wave
pairing, acting as a pair chemical potential that adjusts
the gap nodes to eliminate any on-site pairing. As such,
these models can capture the full variety of gap physics
proposed in the iron-based superconductors: from line
nodes to point nodes to two different full gaps that are
not otherwise expected in a local picture. Properly ac-
counting for the adjustment of the line nodes is essential
when comparing the relative energies of d-wave and s-
wave pairing states in the model calculations.
However, the large-N limit suffers from an over-

abundance of coherence, due to the ubiquity of the bo-
son condensation. As such, the only phases captured
here are Fermi liquids and superconductors, and study-
ing the effects of 1/N corrections is an important future
direction. This application is especially relevant to the
cuprates, where there have been many intesting, but un-
controlled corrections to the mean field theories, reveal-
ing pseudogap-like phases formed by pre-formed pairs
and incoherent metallic regions24,25. A controlled 1/N
study of the phase diagram of the t− J model studying
the differences between s-wave and d-wave pairing should
be of great interest.
While the t−J models taken in this paper illustrate the

basic effect of the Coulomb pseudopotential on strongly
correlated superconductors, they are but poor approx-
imations of the real materials, due to the single band
approximation. A better theory would involve multiple
orbitals per site coupled by a ferromagnetic Hund’s cou-

pling, −|JH |~Sµi · ~Sµ′i between spins in different orbitals,
µ 6= µ′ on the same site, as well as more realistic disper-
sions. Current large-N techniques cannot treat such a
ferromagnetic coupling, but future work might introduce
add the pair chemical potential, λ1 to current uncon-
trolled mean-field approaches8,9 or take JH → ∞, which
may prove more tractable.
Interestingly, while the majority of the iron-based su-

perconductors have at least two electron and hole pock-
ets, there are a handful of “single band” materials: there
are the end members KFe2As2

31 and K1−xFe2−ySe2
32,

which appear to have only hole33 or electron pockets34,
respectively; and the single layer FeSe, which has a
single electron pocket35,36. In this local treatment,
KFe2As2’s single hole pocket must lead to a nodal d-
wave superconductor37, as in the t − J2 example above,
where the s± transition temperature is always smaller
than the d-wave temperature. A d-wave gap is strongly
suggested by recent heat conductivity measurements38.
On the other hand, K1−xFe2−ySe2 and single-layer FeSe
have electron pockets, which can develop node-less d-
wave order, as originally discussed from the weak cou-
pling approach39–41. Including the Coulomb pseudopo-
tential could again become important in this d-wave sys-
tem if the tetragonal symmetry were broken.
Finally, an intriguing open problem in the iron-based

superconductors is the relationship between the local
quantum chemistry and the superconducting order42.
The strong dependence of the superconducting transition
temperature on the Fe-As angle43,44 suggests that there
might be a more local origin of superconductivity, similar
to the composite pairs found in heavy fermion materi-
als described by the two-channel Kondo lattice18. These
two origins of s± pairing could then work in tandem to
raise the superconducting transition temperature45, and
as such a future generalization of this work to take into
account both the local iron chemistry and the staggered
tetrahedral structure is highly desirable. Such tandem
pairing might explain the robustness of these supercon-
ductors to disorder on the magnetic iron site46.
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VI. APPENDIX

In this section, we show that the operator combination

C =
1

2
SαβSβα + [X0α, Xα0]− (X̃00)

2 (26)

commutes with the Hubbard operators, where X̃00 =
X00 +1. C is therefore the quadratic casimir of the sym-
plectic supergroup SP(N|1). We also show that

C = (N/2)2 − 1− ~Ψ2
j (27)

in the symplectic slave boson representation.
The Hubbard operators X0α, Xα0 and X00, together

with the symplectic spin operators, Sαβ = Xαβ −
1
NXλλ,

form a closed superalgebra:

[Sαβ , Sγδ] = δβγSαδ − δγβSαδ + δβ̄δ γ̃β̃Sαγ̄ − δγᾱα̃δ̃Sδ̄β

[X0α, Sβγ ] = X0γδαβ + α̃β̃X0β̄δαγ̄

{X0α, Xβ0} = Sβα + δαβX̃00

{X0α, X0β} = 0
[X0α, X00] = −X0α. (28)
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Greek indices indicate spin indices α ∈ [±1/2,±3/2,±j]
where j = N/4 and N is even. For simplicity, we use the
notation ᾱ = −α and α̃ = sgn(α). The operator Sαβ =
Xαβ−

1
N δαβXλλ is the traceless symplectic spin operator,

while the subsiduary operator, X̃00 = X00 −
1
N

∑

α Xαα.
This graded Lie algebra defines the properties of the gen-
erators of the symplectic supergroup SP(N|1). This su-
peralgebra is faithfully reproduced by the slave boson
representation

Xαβ = f †
αfβ + α̃β̃fᾱf

†

β̄

Xα0 = f †
αb+ α̃fᾱa

X0α = b†fα + a†α̃fᾱ
X00 = b†b+ a†a (29)

while the spin and subsiduary operator, X̃00 are given by

Sαβ = Xαβ −
1

N
δαβXλλ = f †

αfβ − α̃β̃f †

β̄
fᾱ

X̃00 = X00 +
1

N
Xαα = b†b+ a†a+ 1. (30)

By inspection, C contains only rotationally invariant
combinations of the Hubbard operators and each term
leaves the number of slave bosons unchanged, so that
it commutes with Sαβ and X00. We now show by di-
rect evaluation that it also commutes with the fermionic
Hubbard operators X0α and Xα0

First we evaluate the commutator between Xα0 and
the spin part of the Casimir,

[X0α, SβγSγβ] = [X0α, Sβγ ]Sγβ + Sβγ [X0α, Sγβ]
= X0γSγα +X0β̄Sᾱβsgn(αβ)
+ SβαX0β + sgn(αγ)SᾱγX0γ̄ (31)

Using the identity Sαβ = −sgn(αβ)Sβ̄ᾱ, we can convert
this expression into the form

[X0α, SβγSγβ] = X0γSγα +X0β̄Sβ̄α + SβαX0β + Sγ̄αX0γ̄

= 2{X0β, Sβα}. (32)

Next we evaluate

−[X0α, [X0β, Xβ0]] = −X0β{X0α, Xβ0} − {X0α, Xβ0}X0β

= −{X0β, Sβα} − {X0α, X̃00}. (33)

Finally,

[X0α, X̃
2
00] = −[X0α, X̃00]X̃00 − X̃00[X0α, X̃00]

= {X0α, X̃00} (34)

Adding (32), (33) and (34) together gives

[X0α, C] = 0. (35)

Since Xα0 = X†
0α and C = C† is Hermitian, it follows that

[Xα0, C] = 0. Thus, C commutes with all Hubbard oper-
ators, and is thus a Casimir of the supergroup SP(N|1)
generated by the symplectic operators.
To evaluate the Casimir, we insert the slave boson form

of the Hubbard operators. First, evaluating the spin part,
we obtain

SαβSβα = 2[f †
αfβf

†
βfα − f †

β̄
fᾱf

†
βfαsgn(αβ)]

= 2
[

f †
α(N − f †

βfβ)fα + f †

β̄
f †
βfᾱfαsgn(αβ)

]

= 2
[

nf (N + 2− nf )− 4Ψ†
fΨf

]

(36)

where Ψ†
f =

∑

α>0 α̃f
†
ᾱf

†
α, while

[X0α, Xα0] = (N − 2nf)(nb − na)−N. (37)

Combining the various terms in the Casimir, we obtain

C = nf (N + 2− nf )− (N − 2nf)(nb − na)−N

− 4(Ψ†
f + b†a)(Ψf + a†b) + 4b†aa†b− (X̃00)

2.(38)

By regrouping terms, we obtain

C = −(nf + nb − na −
N

2
)2 + (nb − na)

2 +

(

N

2

)2

+ 2(nf + nb − na −
N

2
)− 2(nb − na)

− Ψ†Ψ+ 4b†aa†b− (X̃00)
2. (39)

We now introduce the triad of operators

Ψ3 = nf + nb − na −
N

2
Ψ† = Ψ†

f + b†a

Ψ = Ψf + a†b (40)

where [Ψ†,Ψ] = Ψ3. Alternatively
1
2 (Ψ1+iΨ2) = Ψ† and

1
2 (Ψ1− iΨ2) = Ψ. The Casimir can then be simplified to

C = −(Ψ3)
2 + (nb + na + 1)2 + (N/2)2 − 1

− (Ψ2
1 +Ψ2

2)− (nb + na + 1)2 (41)

The terms involving nb and na completely cancel out,

leaving C =
(

N
2

)2
− 1− (~Ψ2).
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