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We study spinless bosons in a decorated square lattice with a near-diagonal tilt. The resonant

subspace of the tilted Mott insulator is described by an effective Hamiltonian of frustrated quantum

Ising spins on a non-bipartite lattice. This generalizes an earlier proposal for the unfrustrated

quantum Ising model in one dimension which was realized in a recent experiment on ultracold
87Rb atoms in an optical lattice. Very close to diagonal tilt, we find a quantum liquid state which

is continuously connected to the paramagnet. Frustration can be reduced by increasing the tilt

angle away from the diagonal, and the system undergoes a transition to an antiferromagnetically

ordered state. Using quantum Monte Carlo simulations and exact diagonalization, we find that for

realistic system sizes the antiferromagnetic order appears to be quasi-one-dimensional; however, in

the thermodynamic limit the order is two-dimensional.

I. INTRODUCTION

Recent experimental progress in the field of ultracold atomic gases has made it possible to study quantum many-body

physics in a controllable and clean setting. This makes cold atoms in optical lattices candidates for analog quantum

simulators of real materials1–4. Since the observation of a quantum phase transition from a superfluid state to an

interaction driven insulating state5, there has been much effort to simulate other correlated quantum phases, such as

magnetic phases. Many proposals suggest using an internal degree of freedom of the atoms to simulate a spin degree

of freedom6–8. Virtual hopping processes then lead to an effective magnetic interaction called superexchange9,10. The

energy scale of those processes is still low compared to experimentally reachable temperatures, and so magnetic long

range order has not yet been observed.

An important milestone was recently reached taking a surprising new route: an equilibrium quantum phase transi-

tion of an antiferromagnetic spin chain was simulated using spinless bosons in a non-equilibrium situation. Following

the theoretical proposal of Refs. 11 and 12, Simon et al.13 examined a one-dimensional array of 87Rb atoms in an

optical lattice; an additional potential gradient (‘tilt’) drove the transition from the Mott insulating state to a state

with density wave order. This happened in a metastable state, which is not the ground state of the full bosonic

hamiltonian. However, the dynamics of the tilted lattice was confined to a resonantly connected effective subspace,

which has an energy bounded from below, and so a mapping to an antiferromagnetic Ising model in a transverse and

longitudinal field is possible.11 Changing the tilt magnitude corresponds to changing the strength of the longitudinal

field, and this takes the systems through an Ising quantum phase transition, which was observed using single site

resolutions14–18. The dynamics of the one-dimensional system has also been studied theoretically19–21.

In Ref. 22, we have shown that a variety of correlated phases are possible in tilted two dimensional lattices. A
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FIG. 1: Decorated square lattice in a near-diagonal tilt: a) shows the physical lattice for the bosons. The spins reside on the
links, which form the lattice shown in b). The effective resonant subspace of the boson model of the decorated square lattice
(a) maps to an antiferromagnet on the octagon-square-cross lattice (b) in a strong longitudinal and in a transverse magnetic
field. If the tilt is not exactly diagonal, then spins on horizontal lines experience a different longitudinal field than spins on
vertical lines. The spin lattice is not bipartite, and in this sense the antiferromagnet is frustrated.

mapping to a spin model is in general not possible in two dimensions. In this paper we focus on a lattice- and tilt

configuration where a spin mapping is possible also in two dimension: a diagonally tilted decorated square lattice

of bosons leads to a spin model on a non-bipartite lattice, the “octagon-square-cross lattice” (see Figure 1). We

start from the Mott insulator with a filling factor of one atom per lattice site, and assume that effective three-body

interaction are important, such that triply occupied sites are not allowed. It has been shown22 that in this system,

three-body interactions have important qualitative effects; in particular, if three-body interaction are negligible, then

the system maps to a quantum dimer model on a square lattice, as discussed in Ref. 22.

When the potential drop per lattice site is comparable to the on-site repulsion, then the only processes allowed in

the resonant subspace are creations of ‘dipoles’ along the links of the lattice. A dipole is created when a boson follows

the tilt direction and moves onto a neighboring site, which already contains one boson. This process costs the on-site

repulsion energy U and gains potential energy E. In the parameter regime |U − E| � U,E all other processes are

off-resonant.11

Due to conservation of energy any lattice site can be part of no more than one dipole. We can map the Hamiltonian

of the resonant subspace to a spin model by associating a spin state to each link: spin up if no dipole has been created

on that link, and spin down if a dipole has been created on that link. The hard constraint forbidding overlapping

dipoles translates to a strong antiferromagnetic interaction in a strong longitudinal field, and so we obtain an Ising

antiferromagnet.

As this lattice is not bipartite, antiferromagnetic order is not possible, even for a weak longitudinal field (where the

antiferromagnetic interaction dominates over the magnetic field). In this sense the Ising spin model on this lattice is

geometrically frustrated.

Let us first briefly review22 the case of a diagonal tilt. The parent Mott insulator remains stable to a weak tilt. In

the other limit, the strongly tilted case, the system wants to maximize the number of dipoles. Due to the nearest-

neighbor exclusion constraint, and due to the lattice geometry, there can be no more than one dipole per unit cell.
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FIG. 2: Phase diagram of the near-diagonally tilted decorated square lattice, determined by quantum Monte-Carlo calculations.
The tuning parameters are λx and λy which parametrize the cost for having a dipole in x and y direction, respectively. a) for
realistic system sizes there appears to be only one-dimensional order. This is a finite-size artifact, arising from the fact that
for these system sizes the finite-size gap dominates over the (antiferromagnetic) inter-chain coupling. b) in the thermodynamic
limit we predict 2d quantum Ising transitions to a phase where neighboring chains are aligned antiferromagnetically.

The lattice has four links per unit cell, and so there is a lot of room for the dipoles to fluctuate. Quantum fluctuations

then create a unique and gapped ground state: an equal amplitude superposition of all classically allowed dipole

coverings22. This disordered quantum liquid state is continuously connected to the parent Mott insulator; it is part

of the same phase, as shown in the phase diagram in Fig. 2.

The physics becomes more interesting when the tilt ~E = (Ex, Ey) deviates slightly from the diagonal, Ex 6= Ey.

Dipoles in x direction and dipoles in y direction now do not cost the same energy, and we define ∆x = U − Ex
(∆y = U − Ey) the energy associated with a dipole in x (y) direction.

In the limit ∆y →∞; ∆x/∆y → 0 the system can reduce its potential energy by maximizing the number of dipoles

in y direction; no dipoles in x direction are created in the ground state. Thus the system decouples into a collection

of horizontally aligned chains. In the absence of vertical dipoles these chains cannot interact with each other, and so

each of them undergoes an independent 1d Ising transition as a function of ∆x (see Fig. 2).

In this paper we study the full phase diagram of the near-diagonally tilted decorated square lattice. An important

question is whether there is a region in the phase diagram where 2d order develops, i.e. whether a coupling develops

between the above mentioned chains. We find that for realistic system sizes the crossover looks like the one of a

collection of independent 1d chains. This is due to the fact that the inter-chain coupling is small compared to the

finites-size gap of each chain between the symmetric and anti-symmetric superposition of its two ground states. There

is thus no 2d order. A schematic phase diagram for this situation is shown in Figure 2a. The situation is different

in the thermodynamic limit. As the finite-size gap vanishes the inter-chain coupling dominates, causing the chains to

align anitferromagnetically. The schematic phase diagram in the thermodynamic limit is shown in Figure 2a.

The remainder of this paper is organized as follows. In Section II we introduce the model and describe the effective

resonant subspace. In Section III we study the system by quantum Monte-Carlo (QMC) simulations and find no sign

of a coupling between the chains. In Section IV we will show by exact diagonalization of a model system consisting of

only two chains that there is indeed a very small coupling between these chains, which arises from processes in very

high order in perturbation theory. We present conclusions in Section V.
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II. MODEL

In this section we describe the effective resonant subspace of a near-diagonally tilted decorated square lattice. We

begin by recalling the Hamiltonian of a tilted Mott insulator. It is described by the generalized bosonic Hubbard

model with an additional potential gradient along a certain direction, H = Hkin +HU +Htilt:

Hkin = −t
∑
<ij>

(
b̂†i b̂j + b̂†j b̂i

)
(2.1a)

HU =
U

2

∑
i

n̂i(n̂i − 1) +
U3

6

∑
i

ni(ni − 1)(ni − 2) + . . . (2.1b)

Htilt = −E
∑
i

e · ri n̂i. (2.1c)

Here b̂i are canonical boson operators on lattice sites i at spatial co-ordinate ri, and n̂i ≡ b̂†i b̂i. The first term in HU

describes two-body interaction. The second term is an effective three-body interaction, generated by virtual processes

involving higher bands23–25. Such a term is present in ultracold atomic systems, and dramatically changes the physics

of a tilted lattice, as we have shown in Ref. 22: if U3 is not negligible compared to other energy scales in the problem,

then this term causes processes which create triply occupied sites to be off-resonant. This effect is independent of the

sign of U3. Indeed, in recent cold atom experiments U3 has been measured to be negative23,24,26. The potential gradient

is E, and the fixed vector e is normalized so that the smallest change in potential energy between neighboring lattice

sites has magnitude E. We assume that the potential drop per lattice site E is comparable to the on-site repulsion

U . The tilt has now two components ~E = (Ex, Ey), we define ∆x = U − Ex and ∆y = U − Ey, and we work in the

parameter regime where

|∆x| , |∆y| , t� |U | , |E| , |U3| . (2.2)

We assume that the parent Mott insulator has filling factor one atom per lattice site. The effective resonant subspace

of the near-diagonally tilted decorated square lattice is then described by the Hamiltonian

Ĥ = ∆x

∑
i∈x-links

d̂†i d̂i + ∆y

∑
j∈y-links

d̂†j d̂j −
√

2t
∑
a

(
d̂a + d̂†a

)
, (2.3)

here d̂†a (d̂a) creates (annihilates) a dipole on a link a; where the first sum runs only over links aligned in x direction,

the second sum only over links aligned in y direction. These two terms describe the energy cost/gain for having a

dipole. The last sum comes from the hopping term and describes creation and annihilation of dipoles; it runs over

all links. The dipoles obey a hard-core constraint: there can be no more than one dipole on each link. Additionally

there is a constraint which does not allow dipoles to overlap on a site: each lattice site can be part of no more than

one dipole.

For following discussion, we define the two independent tuning parameters

λx =
∆x√

2t
, λy =

∆y√
2t

(2.4)

These two parameters can take all real values.

A. Description by a constrained five-state model

We can describe the resonantly connected subspace for all values of our tuning parameters λx and λy by a constrained

five-state model on a simple square lattice. We let our unit cell be centered about the sites with four neighbors. Each

of the unit cells may be in one out of five states, see Fig. 3: It may contain no dipole (state |0〉), or it may contain
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FIG. 3: Effective five-state model: each unit cell of the decorated square lattice can be in one out of five possible states: having
no dipole, or having a dipole on one of the four links. There is also a constraint that dipoles may not overlap: two neighboring
unit cells may not have dipoles directed towards each other. Thus the effective model is a constraint five state model on a
simple square lattice.

one dipole, and there are four links to choose from (states |1〉, |2〉, |3〉, |4〉). The Hamiltonian of a single site is then

given by

Hsite = Hpot +Hkin

Hpot = λx (|2〉 〈2|+ |4〉 〈4|) + λy (|1〉 〈1|+ |3〉 〈3|)
Hkin = − |0〉 (〈1|+ 〈2|+ 〈3|+ 〈4|) + h.c.. (2.5)

Summing over all sites we obtain the free Hamiltonian of the five state system

Hfree =

Lx,Ly∑
x,y=1

Hsite(x, y).

Additionally there is a constraint that the dipoles may not overlap: two neighboring unit cells may not point toward

each other. We take this into account by projecting out all the states which would create such a collision

Hc = PcHfreePc

where Pc is a projection operator which projects out all the states that are forbidden by the constraint.

B. Mapping to a frustrated Ising spin model

In Refs. 11 and 13, the physics of a tilted one-dimensional Mott Insulator was described by an antiferromagnetic

Ising spin chain in a transverse and longitudinal field. In the same spirit, we map the diagonally tilted decorated

square lattice to an antiferromagnetic spin model, also in longitudinal and transverse field, on a frustrated lattice.

Note that the spin degrees of freedom reside on the links of the decorated square lattice, so that the lattice of the spin

model is an ‘octagon-square-cross’ lattice as depicted in Fig. 1. This lattice has four sites per unit cell, and each spin

has zcoord = 4 neighbors. As the lattice is not bipartite, an antiferromagnetic spin model on this lattice is frustrated,

and two-dimensional Ising order is not possible. The Hamiltonian of the resonant subspace can be described by the

5



following spin model

H = J

∑
〈i,j〉

SizS
j
z − hLRz

∑
i∈LR

Siz − hUD
z

∑
i∈UD

Siz − hx
∑
i

Six

 (2.6a)

hLRz =

(
2− ∆x

J

)
, hUD

z =

(
2− ∆y

J

)
(2.6b)

hx = 2
√

2
t

J
(2.6c)

where ~S = 1
2~σ. The second sum (i ∈ LR) is over all spins which reside on lines in horizontal direction, see Fig. 1,

and the third sum (i ∈ UD) is over spins that reside on vertical lines. While the first three terms all commute with

each other, the last term does not. It is this transverse field which makes this a quantum problem. The strong

antiferromagnetic interaction and the strong longitudinal field are introduced to realize the constraint: having two

neighboring spin down costs an energy of order J . The mapping becomes exact in the limit J → ∞1. As in one

dimension, this is of course not a mapping of the full bosonic model to a spin model, but of the resonantly connected

subspace.

We will phrase most of the following discussion in the language of the constrained five-state model, keeping in mind

that the results can directly be applied to the frustrated Ising spin model.

C. Limiting cases

We understand the system in the following limiting cases

1. λx, λy → ∞, λx/λy = 1 (weak diagonal tilt): The parent Mott insulator is stable to a weak tilt, and so the

dipole vacuum is the ground state in this limit. Dipole creation costs a large amount of energy, and so dipoles

are only virtually created.

2. λx, λy → −∞, λx/λy = 1 (strong diagonal tilt): This is the quantum liquid state described in Ref. 22. The

number of dipoles is maximized, and the ground state is an equal amplitude superposition of all dipole product

states that fulfill the constraint. As we have shown in Ref. 22 this is a disordered state; the ground state is

unique and gapped.

3. λy → +∞; λx/λy → 0: along this line vertical dipole states on links aligned in y direction cannot be occupied, as

they cost an infinite amount of energy, while horizontal dipoles along links in x direction are accessible. In this

limit the system decouples into a collection of horizontal one-dimensional chains. These chains are effectively

one-dimensional, they undergo a phase transition in the Ising universality class2 at a critical value of λx = −1.31

(which is the same as in the one-dimensional case).

We expect the one-dimensional order within each chain to persist when λy takes on finite values. Neighboring chains

may then interact via dipole states aligned in y direction, which might lead to a coupling between these chains, and

thus to two-dimensional order.

1 When taking the limit J →∞, the parameter ∆ has to be kept fixed, not hα. The terms proportional to J are then used to realize the
constraint, as explained in Ref. 11

2 The symmetry which is broken in the ordered phase is a reflection symmetry. The lattice has a larger translation symmetry (unless ∆y

is strictly infinite), which is not broken in the ordered phase.
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III. PHASE DIAGRAM OBTAINED FROM QUANTUM MONTE CARLO

Here we present results from a Quantum Monte Carlo study of the effective resonant subspace of the near-diagonally

tilted decorated square lattice. We emphasize that we do not simulate the full bosonic Hamiltonian: QMC would

then look for the absolute ground state, which means that all bosons follow the tilt and fall down to minus infinity.

Instead we simulate the effective resonant subspace, which is described by the constrain five state model.

A. Order parameters

As we expect one-dimensional order to persist in some region of the phase diagram, we introduce order parameters

which probe for 1D Ising order, as well as order parameters which probe for two-dimensional order.

Before introducing our order parameters, we begin by reviewing the order parameter of the one-dimensional system

in Refs. 11,13: a staggered magnetization which breaks lattice symmetries (translation, inversion, and reflection

symmetry). In the language of the spin mapping in Section II B, and Ref. 13 it is given by

M =
1

L

∑
l

(−1)lσzl .

In the limit λy =∞, λx/λy = 0 each unit cell of the decorated square lattice has only three states available, and we

can directly translate this staggered magnetization to our notation. Each chain aligned along the x direction and at

position y then has its own, independent order parameter

MLR(y) =
1

Lx

∑
x

(p̂→ − p̂←)x,y =
1

Lx

∑
x

mLR(x, y), (3.1)

where p̂d is a projection operator that projects onto the dipole state d. Note that this order parameter is normalized

to take values in the interval [−1, 1]. The (staggered) magnetization of each unit cell has been defined for dipoles

along left-right direction only as

mLR(x, y) = p̂→ − p̂←

When λy 6= ∞, each unit cell has two additional states available3. We can still use the above definition, and add

another component to the order parameter,

mUD(x, y) = p̂↓ − p̂↑

the magnetization for dipoles aligned in y direction. We combine the two to a vector,

~m(x, y) =

(
mLR(x, y)

mUD(x, y)

)

we will refer to this as the “magnetization” of a unit cell of our system. The magnetization ~m(x, y) transforms as a

3 This breaks the translation symmetry of the one-dimensional chain explicitly: There is no translation relating the state |→〉 to the state
|←〉, under which the order parameter would change sign. There is, however, an inversion symmetry and a reflection symmetry left,
which can be spontaneously broken by an ordered state.
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vector and is odd under inversion. To probe for two-dimensional order in the system, we define the total magnetization

~M =
1

LxLy

∑
x,y

~m(x, y). (3.2)

and measure 〈 ~M2〉. If the chains are aligned ferromagnetically, then this order parameer is non-zero. To probe for

antiferromagnetically aligned chains we define a total staggered magnetization

~Mstagg,x =
1

LxLy

∑
x,y

(−1)x ~m(x, y),

~Mstagg,y =
1

LxLy

∑
x,y

(−1)y ~m(x, y).

For an anisotropic tilt we expect the most important effect to be an order within each chain. These chains may

or may not be coupled to form two-dimensional order. It is therefore usefull to define order parameters which probe

for one-dimensional order along x or y direction only. For this purpose we will use MLR(y), Eq. 3.1, and average its

square over all chains,

〈〈M2
LR〉〉 =

1

Ly

∑
y

〈M2
LR(y)〉 =

1

Lx

1

L2
y

∑
x,x′,y

〈mLR(x, y)mLR(x′, y)〉 (3.3)

and similarly for for chains aligned along y, 〈〈M2
UD〉〉 = 1

Lx

∑
x〈M2

UD(x)〉.

B. Phase diagram

Results of the QMC simulations are summarized in the phase diagram shown in Figure 4. The disordered dipole

state for λx, λy → −∞ appears to be continuously connected to the parent Mott insulator at λx, λy → +∞ . There is

a critical line where the system undergoes a transition to an ordered state with one dimensional order along individual

chains. For λy < λx these chains are aligned in y direction (lower right corner of the phase diagram in Fig. 4), and

〈〈M2
UD〉〉 6= 0, while 〈 ~M2〉 = 〈 ~M2

stagg,x〉 = 〈 ~M2
stagg,y〉 = 0. We will show below that the system indeed seems to

be disordered in the transverse direction; each chain appears to have a two-fold degenerate ground state, which is

independenent of the order parameters of the neighboring chains, and so the two-dimensional system has a ground

state degeneracy 2Lx , where Lx is the linear system size in x direction, i.e. the number of chains. Correlations in the

x direction decay exponentially with a correlation length which is smaller than the lattice spacing, ξx � a. There is

no region in the phase diagram where either 〈 ~M2〉, Eq. 3.2, or 〈 ~M2
stagg,x〉 or 〈 ~M2

stagg,y〉 takes a non-zero value.

We probe for two-dimensional order by measuring 〈 ~M2〉. This quantity scales with system size exactly as it would

for a collection randomly aligned magnetized one-dimensional chains. This suggests that there is no two-dimensional

order: while in some regions of the phase diagram there is long range order along individual chains, there is no

correlation between these chains, see Figure 5.

We find good data collapse with the critical exponents of the 2D classical Ising model (Onsager exponents), see

Appendix. This further supports the observation that individual chains behave as independent 1d Ising systems.

Note that this QMC method can also be used for a “doped” system, i.e. a system with initial defects in the Mott

insulator. Defected sites then block neighboring links from dipole occupation. Studying such a disordered system is

an interesting subject to future work.
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FIG. 4: Phase diagram obtained from QMC study. We find only one-dimensional order. The two-dimensional order parameters
are zero everywhere. The phase boundary was obtained from crossing of the Binder27 cumulant of the one-dimensional
magnetization, Eq. (3.3), see Appendix A 1. Square lattice of size Lx = Ly = (4, 8, 16, 32, 64) the imaginary time slice thickness
was a = 0.04, imaginary time direction was scaled with the linear system size, Mτ = (40, 80, 160, 320, 640), corresponding to
temparatures T = (0.625, 0.3125, 0.1562, 0.0781, 0.0391). Essentially the same phase diagram is obtained from order parameter
scaling assuming the Ising exponent η = 1/4.

IV. INTER CHAIN COUPLING: EXACT DIAGONALIZATION STUDY

Quantum Monte Carlo results describe a system which decouples into a collection of one-dimensional chains, while

on symmetry grounds one would expect that a coupling between the chains should be generated28. The following

scenarios might explain this disagreement

• hidden symmetry : there could be a subtle microscopic symmetry which forbids any coupling between the order

parameters of the chains. The next relevant term is then the energy-energy coupling, which leads to a change

of the critical exponent ν but no ordering of the chains; or

• finite-size effects: the coupling between the chains could be present, but is too small to have an observable effect

for the system sizes studied with QMC. Simulating larger lattices should then, in principle, find a phase with
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FIG. 5: Absence of two dimensional order in the QMC study. Here we show the scaling of the total magnetization with system
size, 〈 ~M2〉×L. For randomly aligned magnetized chains we expect 〈 ~M2〉 ∝ 1/L, while for perfectly aligned chains 〈 ~M2〉 = const

and for antiferromagnetic order in transverse direction 〈 ~M2〉 = 0. In the disordered phase 〈 ~M2〉 ∝ 1/(LxLy). This shows that
in the ordered phase the system behaves as a collection of independent chains with one-dimensional order within each chain.
Here λx = −5 was kept fixed; similar results are obtained for different cuts through the phase diagram.

two-dimensional order.

Here we resolve this question by an exact diagonalization study of a toy model, which consists of two chains and

qualitatively captures the interchain constraint, and thus the coupling.

We find that a coupling between two neighboring chains is indeed present: it is antiferromagnetic in sign and very

small in magnitude. It appears only in high order in perturbation theory in t/|U −E|, and is thus not observable for

realistic system sizes, neither in QMC nor in cold-atomic quantum simulation experiments.
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A. Toy model

We use a simplified model with only two chains. We reduce the Hilbert space further by only keeping the three

most relevant dipole states in each unit cell4, see Figure 6. The state without dipole has been integrated out5, while

one of the vertical dipole states is missing: this enhances the coupling and reduces the size of the Hilbert space, which

enables us to study longer chains. We expect this toy model to qualitatively describe the interchain coupling of our

system.

FIG. 6: Two chain model used for the exact diagonalization study. Each central site (marked with a square) can be in one
out of three states. A chain of length four unit cells is shown. This model should capture the interchain behavior of our model
qualitatively.

The Hamiltonian for each of a single unit cell reads

Hsite =

 ∆b −tb −tb
−tb ∆a −ta
−tb −ta ∆a


where ∆a is the energy cost for a dipole along chain direction, and ∆b is the energy cost for a dipole in direction

transverse to the chains. The effective hopping elements ta, and tb are obtained from second order perturbation

theory, and they both have a negative sign (since ∆a < ∆b < 0):

tb = t2
(

1

∆a
+

1

∆b

)
, (4.1)

ta =
2t2

∆a
. (4.2)

In addition to the single site Hamiltonian, there is the hard-core constraint forbidding two central sites from pointing

toward each other. This constraint reduces the size of the Hilbert space.

4 ’unit cell’ here refers to the unit cell of each individual chain, not the the unit cell of the combined ladder.
5 this of course only works for ∆x,∆y < 0
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B. Results

We diagonalized this system for a chains of up to length nine6, with periodic boundary conditions. The chain length

L refers to the number of unit cells in each chain. In analyzing the results, it is useful to compare the spectrum to

that of a simple model of two decoupled Ising chains in the ordered phase. For systems of finite length, this model

would give four low-energy states, whose splitting vanishes exponentially with the system size in the thermodynamic

limit.

Fig. 7 shows the energy of the three lowest excited states relative to the ground state, as a function of the system

size. At first glance, these results are consistent with the model of completely decoupled chains, since the energy

splitting to the three lowest excited states appears to vanish exponentially. However, for certain parameters and

for the longest systems (Fig. 7b), we observe a deviation from the decoupled chain model. Two of the low-energy

states remain nearly degenerate, while the gap to the other two starts deviating from exponential. This behavior is

consistent with having a small but non-zero inter-chain coupling.
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FIG. 7: Strong finite-size effects: Logarithmic plot for energy of the first three excited states relative to the ground state as a
function of system length, for (a) ∆a = −5,∆b = −4 (b) ∆a = −7,∆b = −1. The lines E1 −E0 and E2 −E0 appear on top of
each other. At first sight this suggests that there are four ground states in the thermodynamic limit and that thus the order
parameters of the chains are not coupled. However there is a small splitting between the first two levels above the ground state.
As can be seen in Fig. 8 this splitting grows linearly with system size and eventually dominates over the finite-size gap for long
enough chains.

1. Estimate of the order parameter coupling

The following observations further support the existence of a small coupling between the order parameters of the

two chains:

1. There is a splitting between the first and the second excited state, E2 − E1. This splitting is too small to be

visible in Fig. 7a. We present it in Fig. 8. Although the magnitude of the splitting is very small, it grows

approximately linearly with system size, consistent with a finite energy density associated with an inter-chain

6 while we can diagonalize chains of length nine in all regions of the phase diagram, in some regions the splitting between the lowest
eigenvalues seems to become smaller than machine precision, this limits our analysis.
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FIG. 8: Splitting between first and second excited state grows linearly with system size. This suggests that there is indeed a
coupling between the order parameters of these two chain.

order parameter coupling.

2. We can show that there is no hidden symmetry forbidding order parameter coupling: if we fix the boundary

conditions7 to make the chains either aligned or anti-aligned, there is a difference in ground state energy of these

two systems which grows linearly with system size, see Fig. 9. We can use the slope of this curve as an estimate

for the coupling of the order parameters per unit cell.

The slopes of both curves in Fig. 7,9 agree approximately, giving us a good estimate for the order parameter coupling

of the chains. For the system sizes we studied, however, this coupling is smaller than the effective tunneling element

between the different ground states, i.e. smaller than the finite-size gap. For larger chains this order parameter

coupling will start to dominate over the tunneling, and then there will only be two ground states. The coupling

between two chains is antiferromagnetic.

7 We can view the segment under consideration as a part of a very long system, which is aligned either ferromagnetically or antiferromag-
netically. The remainder of the long system provides the boundary conditions for the segment.
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FIG. 9: The inter-chain coupling is antiferromagnetic, which we show by fixing the boundary conditions so that the chains
are forced to be either aligned or anti-aligned. The energy difference grows linearly with system size and antiferromagnetic
boundary conditions are energetically favorable.

2. Estimate of order in perturbation theory for coupling

We now estimate the order in perturbation theory in which the antiferromagnetic coupling is generated. To this

end, we set ta = tb = 1 and use ∆ = ∆b −∆a as our only tuning parameter. Let Ec be the energy per unit length of

the antiferromagnetic coupling

Ec =
E2 − E1

N

(here N is the chain length). If the antiferromagnetic coupling appears roughly in nth order in perturbation theory,

then

Ec ∝ |∆|1−n (4.3)

log (Ec) = (1− n) log (|∆|) + const (4.4)

We plot logEc versus log(|∆|) and obtain n = 10 from a linear fit (see Fig. 10). This suggests that the antiferro-

magnetic inter-chain coupling is generated roughly in 10th order in perturbation theory within this toy model, and

in 20th order in perturbation theory within the bosonic model.

C. Mechanism for inter-chain coupling

Having established that, in the ordered phase, the chains couple antiferromagnetically, it is natural to ask what is

the microscopic mechanism responsible for this coupling. Below, we give a qualitative argument for the generation of

14



1.8 2 2.2 2.4 2.6 2.8 3
28

26

24

22

20

18

16

log( )

lo
g(
E c
)

FIG. 10: The antiferromagnetic coupling appears in 10th order in perturbation theory. This logarithmic plot shows that the
coupling per unit length scales as |∆|−9, where ∆ = ∆b −∆a.

inter-chain coupling in high orders in t/∆, which predicts that the sign of the coupling should be antiferromagnetic.

We begin by the observation that in the Ising ordered phase, there are two distinct types of domain wall fluctuations,

a kink and an anti-kink (see Fig. 11(a,b)). Kink-anti-kink pairs can be generated virtually, lowering the kinetic energy.

We note also that the two domain walls have a parametrically different effective mass: the kink (Fig. 11a) can hop

via a process of order t2b/(|∆a−∆b|), while the anti-kink (Fig. 11b) is much lighter, hopping via a process of order ta.

Therefore, the anti-kinks are more delocalized. We note also that kink-anti-kink pairs in a fully ordered configuration

are created with a preferred orientation. For example, if the order parameter in a particular chain is pointing to the

left, then each kink is typically to the right of its anti-kink partner (see Fig 11c). As a consequence, world lines of

kinks curve in the opposite direction than world lines of anti-kinks; and which way they curve is determined by the

sign of the order parameter. Some typical space-time paths of fluctuating kink-anti-kink pairs are shown schematically

in Fig. 11c.

The order parameters of two neighboring chains are not coupled directly; i.e., in a classical, fully ordered config-

uration (which is the ground state in the limit ta,b = 0), there is no energy difference between an aligned and an

anti-aligned configuration. However, in the presence of quantum fluctuations, the two chains become coupled. For

instance, in our two-chain model, kinks cannot occur simultaneously on both chains, because of the constraint pre-

venting two dipoles to point towards each other. Note that there is no such constraint for anti-kinks; configurations

in which anti-kinks in the two chains occur on the same rung are allowed.

This hard-core interaction between kinks provides a mechanism for coupling the order parameters of the two chains.

Consider the kink space-time configuration in Fig. 11c. In this configuration the world lines of kinks tend to curve to

the right, because of the hard-core repulsion between kinks and anti-kinks on the same chain. The repulsive interaction

between kinks on two neighboring chains reduces the “phase space” available for quantum fluctuations. However, one

can imagine that if the two order parameters are anti-aligned, the phase space for fluctuations is slightly larger than in
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FIG. 11: A kink (a) and anti-kink (b) configuration. Kinks in different chains cannot reside on the same rung, because of
the hard-core constraint; no such restriction exists for the anti-kinks. c) Schematic space-time trajectories for kink-anti-kink
pairs. The kinks (anti-kinks) are represented by solid (dashed) lines, respectively. The arrows represent the direction of the
Ising order parameter. The average order parameter is assumed to be pointing to the left. In this configuration, the kinks are
typically to the right of the anti-kinks, and their world lines typically curve left. Since the two chains couple only through the
kinks, this provides a mechanism for coupling the order parameters of the two chains. d,e) A simplified model showing the
source of the interaction between the order parameters of the two chains. The space-time trajectories of kinks on the upper
chain are approximated, for simplicity, by the rectangular U-shaped curves shown in blue. We define the “position” of a world
line as the center of the rectangle enclosing it. The hatched region shows the space-time volume blocked for the position of
kinks in the lower chain, assuming that the order parameters of the two chains are aligned (d) or anti-aligned (e), due to the
hard core repulsion between kinks in the upper and lower chains. The space-time trajectories of kinks in the lower chain in the
two cases are shown by the dashed blue curves.

the opposite case. This is since if the order parameters are anti-aligned, the space-time trajectories of the kinks on the

lower chain tend to curve oppositely to those of on the upper chain, allowing one to fit more quantum fluctuations in a

given space-time “volume” (thus lowering the kinetic energy). To see this, imagine for simplicity that the space-time

trajectories of kinks in the upper chain are of the shape shown by the solid blue curve in Fig. 11d. Then, one can

ask how much space-time volume does a kink in the upper chain block for kinks in the lower chain. The blocked

volume is twice as large in the case in which the order parameters of the two chains are aligned, compared to the

anti-aligned case (Fig. 11d,e), favoring the order parameters to be anti-aligned. This “order by disorder” mechanism

explains how the repulsion between kinks can generate a coupling between the order parameters of the two chains to

high order in ta,b/|∆a −∆b|. Moreover, it predicts that the coupling is antiferromagnetic, consistently with the ED

findings described above. We believe that it is unlikely that this coupling could introduce new phases.

V. CONCLUSIONS

We have proposed a setup to simulate frustrated quantum Ising spins with cold atoms in a tilted optical lattice, by

generalizing an idea which has been successfully applied experimentally in one dimension. We have studied the phase

diagram of the resulting model and found that it has strong finite-size effects. For realistic systems it decouples into

a collection of one dimensional Ising chains, a coupling between the chains is present in the thermodynamic limit.

A quantum simulator of ultracold atoms would, however, be limited in the system size. We therefore expect it to

observe a one-dimensional transition to ordered chains, just as we did in QMC.
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Appendix A: Details on the QMC study

We mapped the two-dimensional quantum model Eq. (2.3) to three-dimensional classical model with discrete imag-

inary time. The model has now become a three-dimensional constraint five-state model on a cubic lattice. In the

Monte Carlo simulations we used single site flips (which change the state of a unit cell), as well as cluster updates (i.e.

updates which flip a segment in imaginary time at a given spatial position, and updates that flip the magnetization of

an entire chain). Time discritization introduces a Trotter error, but it should change neither the nature of the phases,

nor the universality class of the phase transition.

For the results presented in this paper we used an imaginary time slice thickness a = 0.04; we have also run

simulations with smaller imaginary time slices and obtained similar results. We had 27000 equilibration sweeps before

starting to take measurements. Mearsurements were taken every 50 sweeps, and 50 measurements were binned into

one group. The number of groups were (2290, 1090, 530, 210) for linear system size (8, 16, 32, 64). Error bars were

obtained from a simple binning analysis29.

1. Binder cumulant

The Binder cumulant gives a good estimate for the critical point, and it does not depend on critical exponents27.

For an Ising order parameter, M , the Binder cumulant is defined as

U = 1−
〈
M4
〉

3 〈M2〉2
.

When the Binder cumulant is plotted for different system sizes, all curves should cross at the critical point for the

following reason. While for an infinite system the magnetization vanishes at the critical point as

M ∝ (−τ)
β
,

where τ is the reduced temperature τ = T/Tc− 1, β is the critical exponent of the magnetization. For a finite system

there are corrections to scaling, described by a scaling function φ, which only depends on ξ/L,

M = (−τ)
β
φ (ξ/L) = (−τ)

β
φ̃
(
τL1/ν

)
,

where ξ is the correlation length, and ν is the correlation length exponent. We used ξ = τ−ν to rewrite the scaling

function for a different argument. The average magnetization squared, and raised to the fourth power, have different

scaling functions, 〈
M2
〉

= (−τ) 2βu2

(
τL1/ν

)
〈
M4
〉

= (−τ) 4βu4

(
τL1/ν

)
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and so the Binder cumulant is a function of this same argument, τL1/ν

U(τ, L) = 1−
u4
(
τL1/ν

)
3
(
u2
(
τL1/ν

))2 = f
(
τL1/ν

)
, (A1)

At the critical point we have τ = 0, and so the Binder cumulant at this point should not depend on system size. In

the thermodynamic limit for an Ising system in the ordered phase U → 2
3 , and U → 0 in the disordered phase. Fig. 12

shows the Binder cumulant of the one-dimensional order parameters 〈〈M2
LR〉〉 and 〈〈M2

UD〉〉 for different cuts through

the phase diagram.

2. Order parameter scaling and the critical exponent η

The phase transition point can also be found from order paramter scaling. This will depend on the correlation

length exponent, η. Let M again be an Ising order parameter, at the critical point the correlation decays as a power

law,

〈M(r)M(0)〉 ∝ |~r|−(d+z−2+η) (A2)

z is the dynamic critical exponent, which is z = 1 in case of the Ising model. We define M as the (normalized) total

magnetization M = 1/L
∫
M(r)dr, and for a one dimensional system (d = 1) we have

〈M2〉 ∝ L−η (A3)

The correlation length exponent for the 2D classical Ising model is η = 1/4. In Figure 13 we plot 〈〈M2
LR〉〉L−1/4 and

〈〈M2
UD〉〉L−1/4 for different system sizes. The crossing point of these lines gives us the phase boundary which agrees

with the one found from the Binder cumulant.

3. Critical exponent ν

If we rescale the x axis for the Binder cumulant, and plot it as a function of (λ− λc)L1/ν , then the data points for

all system sizes should collapse. We indeed observe a good data collapse for the correlation length exponent of the

classical two-dimensional Ising model, ν = 1, see Fig. 14.
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FIG. 12: Binder cumulant for order parameters 〈〈M2
LR〉〉 and 〈〈M2

UD〉〉 for a horizontal cut through the phase diagram, keeping
λx = −5 fixed, plotted for different system sizes, Lx = Ly = 8, 16, 32, 64. Similar plots are obtained for different cuts through
the phase diagram.
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FIG. 13: Order parameter scaling, assuming the correlation length exponent η = 1/4 of the classical two-dimensional Ising
model. Good agreement of the crossing points, also with the ones found from the Binder cumulant.
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FIG. 14: Data collapse for the critical exponent ν = 1 of the classical two-dimensional Ising model. The x axis is centered
around the critical point and rescaled by L1/ν
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