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First principles calculations are used to investigate the effects of magnetic ordering on the
minimum-energy structure and on the full phonon dispersion relation of CdCr2O4, focusing on
the changes through the coupled magnetic/structural transition which shows relief of the geometric
frustration of the antiferromagnetic ordering on the pyrochlore lattice. We computed the full phonon
dispersion relations for the ferromagnetic and antiferromagnetic orderings in cubic and tetragonal
structures of CdCr2O4. We extracted the phonon dispersion for the cubic paramagnetic phase and
found that it compares well with the experimental results. The AFM ordering is seen to lower the
symmetry and induce a lattice distortion comparable in magnitude to that observed in the tran-
sition. While the spin-phonon couplings are large for modes which involve displacement of the Cr
atoms, there are no unstable modes at any point in the Brillouin zone for either of the magnetic
orderings considered, and thus we conclude that the phase transition is driven not by spin-phonon
coupling, but by the atomic forces and stresses induced by the magnetic order. Finally, by com-
parison of the phonon frequencies for structures with different magnetic orderings and structural
distortions, we find that the spin-phonon coupling, rather than the coupling of the phonons to the
structural change, is the dominant factor in the observed changes of phonon frequencies through
the phase transition.

I. INTRODUCTION

The physics of frustrated magnetism is a subject of
continuing interest1,2. Spinel oxides AB2O4 with mag-
netic B cations have received particular attention be-
cause they are characterized by three-dimensional ge-
ometrical frustration3–8. The spinel structure is cubic
(Fd3̄m No. 227) with the A cation tetrahedrally coor-
dinated by oxygens and the B cation octahedrally co-
ordinated by oxygens (see Figure 1). The octahedral
sites occupied by B magnetic ions form a pyrochlore
lattice, which is a three-dimensional network of corner-
sharing tetrahedra. With a nearest-neighbor antifer-
romagnetic (AFM) exchange interaction on three-fold
rings, this system is completely frustrated5,9, and it has
been shown that this frustration should prevent magnetic
ordering down to zero temperature10. In spite of this,
the magnetic spinels generally do show magnetic order-
ing, though at temperatures much lower than the scale
set by the exchange interaction (this ratio is called the
“frustration factor”). The ordering results from the fact
that the spins couple to other degrees of freedom, such
as orbital ordering and lattice distortion, to relieve the
frustration and pick out a particular lowest-free-energy
equilibrium state. In each case, the observed ordering
depends on the details of the coupling and energetics of
the individual system.

In particular, the chromium spinels ACr2O4 (Cr+3

with S= 3
2
; A=Cd, Zn and Hg) exhibit first-order phase

transitions from a paramagnetic cubic structure to a
low-temperature magnetically-ordered tetragonal phase
at 7.8, 12.7 and 12.5 K respectively5,6. ZnCr2O4 has a
Curie-Weiss temperature | Θ |≈ 390 K, while the phase
transition occurs at TN=12.7K (the frustration factor is
≈ 31), whereas CdCr2O4 has a Curie-Weiss temperature

| Θ |≈ 88 K and the phase transition occurs at TN =7.8
K. The lifting of frustration is achieved via the tetrag-
onal distortion, the details of which depend on the A
cation. In the case of ZnCr2O4, the phase transition in-
volves a tetragonal contraction along the c-axis (c < a)
and commensurate Neél ordering with multiple wave-
vectors3. In the case of CdCr2O4, however, the tran-
sition involves a tetragonal elongation along the c-axis
(c> a) and an incommensurate (IC) Neél ordering with
wave vector k = (0, δ, 1). The difference in the ordered
state for these two otherwise very similar systems reflects
subtle differences in the magnetic interactions and in the
coupling of the spins to the lattice distortions, which de-
termine the delicate balance between the lattice energy
cost for the distortion and the magnetic energy gain due
to the spin ordering.

First-principles calculations for these systems can pro-
vide valuable information about the spin-lattice coupling,
by which we mean the dependence of the energy as a
function of atomic displacements on magnetic ordering.
Specifically, with first-principles methods we can com-
pute the pattern of forces on atoms and the distortions
induced by a particular magnetic ordering11,12 as well
as the spin-phonon coupling, by which we mean the de-
pendence of phonon frequencies in a given structure on
magnetic ordering. A theory based on Dzyaloshinskii-
Moriya interactions was proposed to explain the static
spin-lattice coupling in CdCr2O4

13,14. The effect of mag-
netic ordering on zone-center phonons has been well stud-
ied both from first principles and in experiment13,15–17.
Recently, experimental observation has been extended to
the full phonon dispersion relation of CdCr2O4

18 and its
changes through the phase transition. First principles
calculations of the phonon dispersion can be used to in-
terpret these observations, in particular to resolve the
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FIG. 1. (Color online) (a) The crystal structure
of CdCr2O4 consisting of Cr centred octahedra and Cd cen-
tred tetrahedra. The O atoms are shown in yellow. (b) The
Cr centred octahedra form a three dimensional pyrochlore
sublattice.

question of whether the changes in the phonons through
the transition primarily arise from the change in mag-
netic ordering, through spin-phonon coupling, or from
the change in crystal structure.

In this paper, we use first principles calculations
to investigate the effects of magnetic ordering on the
minimum-energy structure and on the full phonon dis-
persion relation of CdCr2O4. By comparing ferromag-
netic ordering with a layered antiferromagnetic order-
ing, we determine the lattice distortion induced by the
lower-symmetry antiferromagnetic ordering, estimate the
magnitude of spin-phonon coupling, and extract phonon
frequencies for the paramagnetic phase. We find that
the computed phonon dispersion for the cubic paramag-
netic phase compares well with the experimental results.
While the spin-phonon couplings are large for modes
which involve displacement of the Cr atoms, there are
no unstable modes at any point in the Brillouin zone for
either of the magnetic orderings considered, suggesting
that the symmetry breaking at the phase transition is
not produced by a magnetically-induced phonon insta-
bility. Rather, the symmetry breaking is in the magnetic
ordering, and the structural change through the transi-
tion is driven by the atomic forces and stresses induced
by the magnetic order. Finally, by comparison of the
phonon frequencies for structures with different magnetic

orderings and structural distortions, we find that this
structural change is not the main factor in the changes
in the phonon frequencies observed through the transi-
tion, but rather that these changes are the result, via the
spin-phonon coupling, of the magnetic ordering at the
transition.

II. METHOD

We performed density functional theory calculations
using the generalized gradient approximation (GGA)
with the Perdew-Burke-Ernzerhof (PBE) parameteriza-
tion for the exchange correlation functional as imple-
mented in the Quantum Espresso simulation package19.
Interaction between valence electrons and ionic cores is
treated using ultrasoft20 pseudopotentials. The pseu-
dopotentials we used include 12 valence electrons for
Cd (4d10,5s2), 14 for Cr (3s2,3p6,3d5,4s1), and 6 for O
(3s2,2p4). We used a plane wave cutoff of 30 Ryd and
6×6×6 Monkhorst Pack21 k-point mesh for the Brillouin
zone (BZ) integration. All calculations are performed
for collinear spins without spin-orbit coupling. The op-
timization of atomic positions was carried through the
minimization of energy using Hellman-Feynman forces
acting on atoms with the Broyden-Flecher-Goldfarb-
Shanno (BFGS) scheme.
As discussed in the Introduction, the observed mag-

netic ordering in CdCr2O4 is quite complex, and direct
first-principles calculation of the full phonon dispersion
for this phase would requires too large a supercell to
be computationally practicable. However, calculations
for magnetic orderings with smaller supercells can give
us the information about the magnitude of spin-lattice
couplings that we need to determine whether the spin-
phonon coupling is large enough to produce the observed
changes in the phonon dispersion through the magnetic
transition, and to what extent these changes are the re-
sult of the change in crystal structure. Here, we consider
two magnetic orderings: ferromagnetic (FM) and anti-
ferromagnetic (AFM) ordering of the spins of the four
Cr atoms in the fourteen-atom primitive unit cell. In
the cubic unit cell, all arrangements of two up and two
down spins on the four Cr atoms for the AFM ordering
are symmetry equivalent, giving an arrangement in which
layers of up and down spins alternate along a cartesian
axis (chosen here to be the z axis).
The phonon frequencies and eigenvectors were com-

puted using the linear response method for cubic (Fd3̄m)
and tetragonal (I41/amd) structures with the FM and
AFM orderings. We computed interatomic force con-
stants (IFCs) in reciprocal space on a 2 × 2 × 2 q grid.
The full phonon dispersion was obtained by the inter-
polation method22, in which the asymptotic long-range
dipole-dipole form of the interatomic force constants is
determined by calculated values of the Born effective
charges and dielectric constant. The latter were obtained
using VASP23,24, as this capability is not currently avail-
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TABLE I. The calculated Born effective charge and dielectric constant tensors of CdCr2O4 for the FM and AFM orderings in
the cubic structure.

AFM FM
Cd Cr O ǫ∞ Cd Cr O ǫ∞

2.35 0.00 0.00 3.02 0.92 0.92 -2.10 0.11 0.11 6.11 0.00 0.00 2.37 0.00 0.00 3.15 0.81 0.81 -2.17 0.10 0.10 6.53 0.00 0.00
0.00 2.37 0.00 0.88 3.11 0.76 0.14 -2.15 0.06 0.00 6.32 0.00 0.00 2.37 0.00 0.81 3.15 0.81 0.10 -2.17 0.10 0.00 6.53 0.00
0.00 0.00 2.37 0.88 0.76 3.11 0.14 0.06 -2.15 0.00 0.00 6.32 0.00 0.00 2.37 0.81 0.81 3.15 0.10 0.10 -2.17 0.00 0.00 6.53
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FIG. 2. (Color online) Electronic density of states of
CdCr2O4 for the FM and AFM orderings in the cubic struc-
ture.

able for spin-polarized systems in Quantum Espresso,
and the values are given in Table I. In these calculations
we used the same GGA functional and other computa-
tional parameters given above. We used experimental
lattice constants7 (cubic a0=8.588 Å) for the calculation
of the phonon dispersion to facilitate comparison with
the experimental phonon dispersion.

To obtain the phonon dispersion for the PM order-
ing, we averaged the interatomic force constant matrices
(IFCs) obtained for the FM and AFM orderings so that
each Cr-Cr bond has an equal fraction of aligned and
anti-aligned spins. As we will see in more detail in Section
III.C, this is an approximation that relies on two assump-
tions: (1) that the time scale for phonons is much longer
than for spin fluctuations, and (2) that the spins in the
paramagnetic phase are uncorrelated; these assumptions
correspond to the high-temperature limit. The averaging
procedure required generation of IFCs for the three dif-
ferent AFM configurations related by three-fold rotation
around [111]. In the cubic structure, the IFCs can be
obtained by transformation of the IFCs obtained for cal-
culation of a single AFM configuration; in the tetragonal
structure the IFCs have to be separately calculated for
two AFM configurations, one of which is related to the
third by symmetry. A given bond has spins aligned in one
of these configurations and spins antialigned in two. Av-
eraging with equal weight over these three configurations
and the FM configuration results in an equal fraction of
aligned and antialigned spins for each bond. The PM
IFCs can equivalently be obtained using the parameter-
ization discussed in section III (C). The Born effective
charges for the PM ordering are obtained by the same
averaging over the four configurations as for the IFCs.
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FIG. 3. (Color online)(a) The force pattern induced by the
AFM ordering in the FM relaxed structure in a primitive unit
cell. The Cd atoms are in red, Cr are in blue and O are in
yellow. (b) The energy as a function of amplitude for the FM
and AFM orderings in the cubic structure.

III. RESULTS AND DISCUSSION

A. Energetics of different magnetic orderings and

structures

We optimized the crystal structures with the FM and
AFM orderings. The lowest-energy structure for FM or-
dering is cubic (a=8.667 Å) whereas for the AFM or-

dering it is tetragonal (a=b=8.634 Å and c=8.694 Å).
The computed values are in very good agreement with
the experimental lattice constant7,15 for the cubic phase
a=8.588 Å and (c-a)/a=0.5 × 10−3 for the tetragonal
phase (noting, however, that the magnetic ordering is
not the same as in the experimental phase), with the
expected overestimation associated with the use of the
GGA functional. The computed internal structural pa-
rameter for the atomic positions of O atoms in the spinels
is u=0.2689 for the FM ordering. The O atoms in
the optimized AFM occupy the Wyckoff position 16h
(0,0.210,0.391) of the space group I41/amd. The calcu-
lated magnetic moment for the Cr ion is S= 3

2
, as expected

for a high-spin d3 system. The calculated electronic band
gap at the experimental lattice constant is 1.1 eV in the
FM structure and 1.3 eV in the AFM structure (see Fig.
2).
The total energy calculations of the FM and AFM or-

derings in the cubic structure at the experimental lat-
tice constant show that AFM ordering has energy lower
than that of FM ordering by 9.26 meV/f.u. The change
in total energy with spin orderings can be used to es-
timate the nearest-neighbor exchange interaction coeffi-
cient J using the classical Heisenberg model: Espin =
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TABLE II. The IR active phonon frequencies (in cm−1) at
q=(000) for the FM, AFM and PM orderings in the cubic
and tetragonal structures. The frequencies shown in bold are
doublet modes.

Cubic Tetragonal
FM AFM PM FM AFM(x) AFM(z) PM
150 127,151 145 149,152 128,149 126,152 144,146
368 321,370 354 364,366 319,366 317,367 350,352
445 439,444 445 441,443 435,442 434,438 441,443
586 580,594 585 579,580 573,587 572,588 578,579

E0 − 2J
∑

〈ij〉 Si.Sj . In spinels, magnetic atom (Cr)

has six first nearest-neighbor sites (z = 6) and the en-
ergies for the FM and AFM orderings are given as:
EFM = E0 − 24JS2 and EAFM = E0 + 8JS2 respec-
tively. We estimate J = −0.26 meV for CdCr2O4 which
compares well with the experimental value (3 kB | Θ |
/2zS(S+1) = −0.38 meV) and is an order of magnitude
smaller than that of ZnCr2O4

25.
The change in the magnetic ordering from FM to

AFM ordering induces tetragonal stresses and a tetrag-
onal force pattern in the optimized FM cubic struc-
ture. The displacement of atoms according to the forces
induced due to AFM ordering lowers the energy (by
12.9 meV/f.u.) relative to the FM phase, as shown in
Fig.3, leading to a tetragonal symmetry with space group
I41/amd. The relaxation of the stresses induced by AFM
ordering further lowers the energy without breaking ad-
ditional symmetry. Similarly, the symmetry breaking in
the magnetic ordering at the observed phase transition
results in a low temperature tetragonal phase.

B. Phonons

To separate the effects of magnetic ordering and struc-
tural change on the phonon frequencies and eigenvec-
tors, we performed first-principles calculations of the
phonon dispersion relation for four configurations: (1)

cubic (a=8.588 Å, u=0.2686) with FM ordering; (2) cu-

bic with AFM ordering; (3) tetragonal (a=b=8.588 Å,

c=8.649 Å, O at 16h(0,0.213,0.394)) with FM ordering;
and (4) tetragonal with AFM ordering. In the tetragonal
structure, atoms Cd, Cr and O occupy the Wyckoff posi-
tions 4a, 8h and 16h of space group I41/amd respectively.
From these, we extract the phonon dispersion for the PM
ordering for both the cubic and tetragonal structures by
the averaging procedure described above.
First, we consider the results for the phonons in the

cubic structure for the FM and AFM orderings, which
highlights the spin-phonon coupling in this system. The
frequencies of the IR-active phonon modes at ~q = 0 are
reported in Table II. The 150 cm−1 triplet mode of cubic
FM splits into a doublet at 127 cm−1 and a singlet at 151
cm−1 in the cubic AFM phase. The triplet mode at 368
cm−1 in the cubic FM shows the largest splitting, consis-

TABLE III. The splitting of doublet modes at L point
q=( 1

2
,
1

2
,
1

2
) of FM, AFM and PM orderings in the cubic and

tetragonal structures. The frequencies are in cm−1.

Cubic Tetragonal
FM AFM PM FM AFM(x) AFM(z) PM
166 148,162 162 165,166 148,160 149,162 161,162
273 253,267 267 271,272 252,267 245,267 265,266
353 306,330 339 349,350 304,329 306,329 336,337
443 444,453 445 439,440 436,446 439,447 439,440
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FIG. 4. (Color online) A comparison of the cubic FM and
AFM phonon dispersion relations.

tent with the experimental observation that the triplet
modes at 354 cm−1 show the largest splitting. However,
we find that the doublet is 49 cm−1 below the singlet,
the reverse of the observed level order. The suggestion
that is due to the fact that the AFM order we consider is
not the ground state magnetic ordering is supported by
recent first principles calculations26 for the ~q = 0 modes
with the observed ground-state spin order, which do give
the correct splitting and level order. The other IR-active
modes at 445 and 586 cm−1 show relatively weak split-
ting with the change in the magnetic ordering from FM
to AFM.

Next, we consider the splitting of doublet modes at L
point in the BZ (q=(1

2
, 1
2
, 1
2
)) with change in magnetic

ordering from FM to AFM. In Table III, we present fre-
quencies of Eu modes that have large splittings. The dou-
blet mode at 353 cm−1 in the cubic FM shows the largest
splitting (24 cm−1) in the cubic AFM. The modes at 166
cm−1 and 273 cm−1 in the cubic FM show splitting of
14 cm−1 in the cubic AFM (see Table III). Other modes
also show moderate splittings in the range of 5-10 cm−1.

Phonon dispersion relations throughout the Brillouin
zone for the FM and AFM orderings provide information
about the role of spins in the short range interactions. In
Fig 4, we show phonon dispersion relations for the FM
and AFM orderings in cubic structures (see Fig 4). We
do not find any unstable modes throughout the BZ for
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FIG. 5. (Color online) A comparison of the calculated phonon
dispersion relation for the cubic PM with the experimental
phonon dispersion obtained at 10K18.

either magnetic ordering. Analysis of the eigen vectors of
the phonon modes shows that low frequency modes up to
160 cm−1 involve displacement of Cd atoms, modes with
frequency range 161-500 cm−1 involve displacements of
Cr and O atoms and higher frequencies modes involve
displacement of O atoms. The modes which involves
both Cr and O displacements have larger spin-phonon
coupling.
In order to compare the computed phonon dispersion

with the experiment, we estimate the PM phonon dis-
persion relation using the averaging procedure as de-
scribed above. The computed zone center frequencies
and L point frequencies for IR active modes are shown in
Tables II and III. We present our first-principles phonon
dispersion relation for the cubic PM phase in Fig. 5, plot-
ted with the experimental results obtained using inelastic
x-ray scattering at 10K18. We find a close correspon-
dence between our first-principles calculations and the
experimentally determined frequencies, noting that not
all the branches are observed in the experimental deter-
mination. This suggests that the first-principles results
provide a useful framework for interpreting the experi-
mental phonon observations.

C. Spin-phonon coupling

From the difference between the FM and AFM re-
sults, we can extract a quantitative parametrization of
the spin-phonon coupling. Following Ref. 25, the real-
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plotted in the two side panels.

space IFCs for different magnetic orderings can be ex-
panded around the paramagnetic real-space IFCs using
the second derivative of the exchange interaction w.r.t.

small atomic displacements:

C̃~Riα~R′jβ
= C~Riα~R′jβ

−
∑

mn

J
′′

~Riα~Rjβ;mn
〈~Sm · ~Sn〉, (1)

where C̃ is the matrix of IFCs for a particular magnetic
ordering, C is the matrix of IFCs for the paramagnetic
phase, J

′′

is the second derivative of the exchange in-
teraction J w.r.t. atomic displacements, the sums over
m and n run over the magnetic atoms in the system,

and the indices ~R, i and α refer to the displacement of

the atom i in the unit cell labelled by lattice vector ~R
along Cartesian direction α. Here, we explicitly see the
approximations mentioned in Section II above. Thermal
averaging of the spin configuration is based on the as-
sumption that the time scale for phonons is much longer

than for spin fluctuations, and we take 〈~Sm · ~Sn〉 = 0
in the paramagnetic phase based on the assumption that
the spins in the paramagnetic phase are uncorrelated.
Information about the matrix J

′′

can be obtained us-
ing the reciprocal-space matrices of IFCs for different
magnetic orderings. Here, we consider only magnetic or-
derings with the periodicity of the spinel structure unit
cell (PM, FM, AFM). Eq.1 for the FM and AFM order-
ings can be written as

C̃FM = C − 2J
′′

yzS
2 − 2J

′′

xzS
2 − 2J

′′

xyS
2

C̃AFMx = C − 2J
′′

yzS
2 + 2J

′′

xzS
2 + 2J

′′

xyS
2

C̃AFMy = C + 2J
′′

yzS
2 − 2J

′′

xzS
2 + 2J

′′

xyS
2

C̃AFMz = C + 2J
′′

yzS
2 + 2J

′′

xzS
2 − 2J

′′

xyS
2
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where C̃, C and J
′′

depend on ~q but explicit depen-
dence on ~q has been suppressed in above equations. The
C̃AFMx , C̃AFMy and C̃AFMz are the IFCs for AFM with
layers of ferromagnetically aligned spin stacked along x,
y and z respectively. Similarly, J

′′

yz , J
′′

xz and J
′′

xy are the
sum of bonds connecting two magnetic atoms in yz, xz
and xy planes respectively. We suppressed the explicit
dependence of C and J

′′

on the ~q in above equations.
Here, we consider nearest neighbor interaction between
the magnetic atoms and ignore the further neighbor in-
teractions for simplicity. The system of linear equations
can be solved to obtain J

′′

yz, J
′′

xz, and J
′′

xy.
The strength of spin-phonon coupling parameter λi for

any phonon mode i (|ψi(q)〉) can be estimated from the

interaction matrices J
′′

yz,J
′′

xz and J
′′

xy. The frequency
shift and splitting of each mode of PM due to AFMz

ordering is given as,

λi = 〈ψi(q)|(J
′′

yz + J
′′

xz − J
′′

xy)(q)|ψi(q)〉. (2)

We calculated the strength of spin-phonon coupling
for all the phonon modes of the PM ordering in the cu-
bic structure of CdCr2O4 at q= (000) and q=(1

2
, 1
2
, 1
2
).

The unit of λ is eV/h2, where h is the Planck constant.
In Fig.6, we quantitatively show the strength of spin-
phonon coupling for each mode, which overall agrees very
well with the shifts and splittings of the AFM phonon
modes from the PM modes. The largest spin phonon
coupling at q = 0 is for the IR active mode at 354 cm−1,
which is consistent with the large splitting observed in
experiments15,18 and in the first principles results as dis-
cussed above. The doublet Eu mode at 293 cm−1 in the
PM also shows a large spin-phonon coupling. The other
IR active modes which show large spin-phonon coupling
are the modes at 145 cm−1 and 445 cm−1 (see Fig.6). At
q=(1

2
, 1
2
, 1
2
), the values are smaller than at q= (000). The

Eu mode at 339 cm−1 shows large spin-phonon coupling.
The other modes which have large spin-phonon coupling
are Eu modes at 162 cm−1 and 267 cm−1 (see Fig.6).
Examination of the eigenvectors show that those modes
which involve displacement of Cr and O atoms together
have the largest spin-phonon coupling.

D. Relative effects of magnetic ordering and

tetragonal distortion on phonon dispersion

As discussed in the Introduction, CdCr2O4 undergoes
a phase transition from the cubic PM phase to a tetrag-
onal magnetically-ordered phase at low temperature. To
interpret the changes in phonon frequencies through the
transition, we computed full phonon dispersion relations
of both the cubic and the tetragonal structures with the
PM and AFM orderings, shown together in Fig.7. Al-
though the AFM ordering we have considered in this
work is not the observed ground state magnetic ordering,
the magnitude of the shifts in the phonon frequencies be-
tween the PM and AFM orderings should be comparable
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FIG. 7. Effect of magnetic ordering and structural distortion
on the phonon dispersion relations.

to those between the PM and observed ground-state mag-
netic ordering, and this analysis allows us to separate the
effects of the magnetic ordering and the structural dis-
tortion on the phonons, as already discussed above.
The comparison of the phonons in the cubic structure

for PM and FM ordering has been presented above in
Tables II and III, showing the splitting of IR active modes
with the spin ordering and tetragonal distortion at the
zone center (~q = 0) and L point in the BZ. The differences
for PM and FM ordering in the tetragonal structure are
similar, as further seen in Tables II and III. Detailed
analysis of the IFCs of the PM and AFM orderings shows
that the changes in the phonon dispersion relations for
the two structures are mainly from the changes in the
IFCs between Cr-Cr and Cr-O atoms.
The effect of tetragonal distortion on the phonon can

be seen by comparing the cubic PM phonon disper-
sion to that of the tetragonal PM phase and the cubic
AFM phonon dispersion to the tetragonal AFM phase in
Fig.7 and in Tables II and III. We find that the differ-
ences due to tetragonal distortion are much smaller than
the changes induced by magnetic ordering. The largest
change in phonon frequencies at q = 0 due to tetragonal
distortion is 5 cm−1 for the mode at 585 cm−1.

IV. CONCLUSION

In summary, we have presented a first-principles
study to investigate the effects of magnetic order-
ing on the minimum-energy structure and on the full
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phonon dispersion relation of CdCr2O4, focusing on the
changes through the coupled magnetic/structural transi-
tion which shows relief of the geometric frustration of the
antiferromagnetic ordering on the pyrochlore lattice. The
phonon dispersion for the cubic paramagnetic phase com-
pares well with the experimental results. While the spin-
phonon couplings are large for modes which involve dis-
placement of the Cr atoms, there are no unstable modes
at any point in the Brillouin zone for all the magnetic or-
derings considered, and thus we conclude that the phase
transition is driven not by spin-phonon coupling but by
the atomic forces and stresses induced by the AFM order-
ing. Finally, by comparison of the phonon frequencies for
structures with different magnetic orderings and struc-
tural distortions, we find that the spin-phonon coupling,
rather than the coupling of the phonons to the structural

change, is the dominant factor in the observed changes
of phonon frequencies through the phase transition.
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