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We study the ultrametric structure of phase space of one-dimensional Ising spin glasses with random power-
law interaction in an external random field. Although in zerofield the model in both the mean-field and non-
mean-field universality classes shows an ultrametric signature [Phys. Rev. Lett.102, 037207 (2009)], when a
field is applied ultrametricity seems only present in the mean-field regime. The results for the non-mean field
case in an external field agree with data for spin glasses studied within the Migdal-Kadanoff approximation.
Our results therefore suggest that the spin-glass state might be fragile to external fields below the upper critical
dimension.
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Spin glasses1,2 are paradigmatic model systems that find
wide applicability across disciplines. Although studied in-
tensely over the last four decades, our understanding of some
of their fundamental aspects is still in its infancy. In par-
ticular, the understanding of the nature of the spin-glass
state remains controversial and active discussion has emerged
recently.3–13 It is unclear if the mean-field replica symmetry
breaking (RSB) picture14 of Parisi describes the non-mean-
field behavior of spin-glasses in an externally-applied field
best. While the droplet theory15–18states that there is no spin-
glass state in a field for short-range systems, the mean-field
RSB picture2,14,19,20states that for low enough temperatures
T and fieldsH , i.e., below the de Almeida-Thouless line,21 a
stable spin-glass state emerges. The question lies at the core
of theoretical descriptions and is of immediate importanceto
applications in research fields ranging from, e.g., sociology to
economics where terms linear in the spin variable can emerge.

One way to settle the applicability of the RSB picture to
short-range spin glasses in a field while avoiding technical
difficulties when measuring observables in a field,13 is by
testing12 if the phase space is ultrametric (UM). Unfortu-
nately, the existence of an UM phase structure for short-range
spin glasses on hypercubic lattices remains elusive,22 mainly
because only small systems can be studied numerically. Re-
cent results in zero field22 suggest that short-range systems are
not UM, whereas other opinions exist.23–26

More recently12 results on one-dimensional (1D) Ising
models with power-law interactions showed that short-range
spin glasses might be UM after all. Therefore, a natural probe
for the spin-glass state in a field is to study the UM response
of 1D Ising models with power-law interactions when an ex-
ternal field is applied. The model has the advantage in that
by tuning the exponent of the power law, the universality
class can be tuned between a mean-field and a non-mean-field
regime. In addition, large linear system sizes can be simu-
lated, which allows for a better finite-size scaling analysis than
for hypercubic lattices.22

Our results show that for this model in a field the phase
space has an UM structure in the mean-field regime. How-
ever, in the non-mean-field regime, when an external field
is applied, the UM structure seems to be much weaker for

the studied system sizes, suggesting that the spin-glass state
for short-range systems is fragile with respect to externally-
applied fields. These results are compared to studies of spin
glasses within the Migdal-Kadanoff (MK) approximation.

FIG. 1: Dendrogram obtained by clustering 100 configurations (see
text) for a sample system withσ = 0.0 (Sherrington-Kirkpatrick
model) andL = 512 at T = 0.36, together with the matrixdαβ

(grey scale, distance 0 is black). The order of the states is given by
the leaves of the dendrogram (figure rotated clockwise by90◦).

Model.— The 1D Ising chain with long-range power-law
interactions17,27–29is described by the Hamiltonian

H = −
∑

i<j

JijSiSj −
∑

i

hiSi ; Jij = c(σ)
ǫij
rijσ

, (1)

whereSi ∈ {±1} are Ising spins and the sum ranges over all
spins in the system. TheL spins are placed on a ring to ensure
periodic boundary conditions andrij = (L/π) sin(π|i−j|/L)
is the geometric distance between the spins.ǫij are Gaussian
random couplings. The constantc(σ) is chosen29 such that for
the mean-field transition temperatureTMF

c (σ ≤ 0.5, L,H =
0) = 1. In Eq. (1), the spins couple to site-dependent random
fieldshi chosen from a Gaussian distribution with zero mean
and standard deviation[h2

i ]
1/2
av = H .

The model has a rich phase diagram when the exponentσ is
changed:29 Both the universality class and the range of the in-
teractions can be continuously tuned. In particular,σ = 0



2

gives the Sherrington-Kirkpatrick (SK) model,30 whose so-
lution is the mean-field theory for spin glasses and where a
spin-glass state in a field is expected, i.e., an UM signaturefor
low enoughH and temperaturesT . More importantly,27 for
1/2 < σ < 2/3 the critical behavior is mean-field-like, while
for 2/3 < σ ≤ 1 it is non-mean field like.

Here we study in a fieldH = 0.10 the SK model [σ = 0] to
test our analysis protocol, as well as the 1D chain forσ = 0.60
(also mean-field like), as well asσ = 0.75 (Tc ∼ 0.69,
roughly corresponding to four space dimensions) outside the
mean-field regime. We choose two values ofσ 6= 0 to be able
to discern any trends when the effective dimensionality31 is
reduced. In generaldeff = (2 − η)/(2σ − 1), whereη is the
critical exponent for theshort-rangemodel at space dimen-
sion d = deff . Note thatη is zero in the mean-field regime
and, for example,−0.275(25) for d = 4.32

Numerical Method and Equilibration.—We generate
spin-glass configurations by first equilibrating the systemat
low temperatures and an external random field of standard de-
viation H = 0.1 using the parallel tempering Monte Carlo
method.33,34 Once the system is equilibrated we record states
ensuring that these are well separated in the Markov process
and thus not correlated. In practice, if we equilibrate the sys-
tem for τeq Monte Carlo sweeps, we generate for each dis-
order realization103 states separated byτeq/10 Monte Carlo
sweeps. We test equilibration using the method presented in
Ref. 11. We consider systems sizes up toL = 512, which
is the same maximum size as in the zero-field case studied
previously,12 but numerically much harder than in the zero-
field case because Monte Carlo methods equilibrate consider-
ably slower in a field. For the parallel tempering simulations
Tmin = 0.36 andTmax = 1.40 (16 temperatures). For all
values ofσ studied, and all system sizesL, we generate4000
disorder realizations. ForL = 32, the equilibration time is
2 ·104 Monte Carlo sweeps (MCS), for64, 1.5 ·105 MCS, for
128, 5 · 105, and for256 and512, 106 MCS.

The presented data are forT = 0.36. In Ref. 35 we fixed
T ≈ 0.4Tc for all values ofσ studied to ensure that we are
deep in the spin-glass phase. However, it is unclear if one-
dimensional spin glasses with power-law interactions havea
spin-glass state in a field forσ > 2/3.11,13,36 Using theTc

estimates of Leuzziet al.13 at zero and finite field (H = 0.1)
for thedilutedversion of the model we estimate that if a spin-
glass state exists forH = 0.1 it should suppress the zero-field
Tc by approximately 20%. Forσ = 0.75 it is known that
Tc(H = 0) ≈ 0.69(1).11 ThereforeT = 0.36 corresponds
roughly to a 40% reduction of the critical temperature, i.e.,
deep in the putative spin-glass phase.

We also study spin glasses within the standard MK
approximation,37 i.e., spin glasses on hierarchical lattices.38

Due to the simple lattice structure, the phase space is also ex-
pected to be simple. In fact, as shown rigorously in Ref. 39,
spin glasses on MK lattices are replica symmetric. We used
a variation of the standard MK recursion where, starting from
one bond, iteratively each bond is replaced by2d bonds and
2d−1 spins (d = 3). For details, see, e.g., Refs. 40 and 41.

Ultrametricity.— Ultrametricity appears in different
fields or research ranging from linguistics to the taxonomy of
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FIG. 2: (Color online) DistributionP (K) for different system sizes
(all panels have the same horizontal and vertical scale) andan exter-
nal random fieldH = 0.1. (a) Data for the SK model. The distribu-
tion diverges very slightly forK → 0 andL → ∞ thus signaling an
UM phase structure. (b) Data forσ = 0.60 (mean-field universality
class). There is still a weak hint of a divergence forK → 0. (c) Data
for σ = 0.75 (non-mean-field universality class). There is no clear
sign of a divergence inP (K) for K → 0. Note that whenH = 0
data forσ = 0.75 show a clear signature for UM behavior.12 Error
bars are smaller then the symbol size.

animal species and is a key component of Parisi’s mean-field
solution of the SK model.1,14,42Therefore, if a spin glass has
no UM phase-space structure there is a strong indication that
Parisi’s mean-field picture might not work for this system.
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FIG. 3: (Color online) VarianceVar(K) of P (K) as a function of
system sizeL for different values ofσ. The data can be fit to a power
law (dashed lines). In the mean-field regime (SK andσ = 0.6) a
fit to a constant is unlikely (see text). The power-law decay of the
variance as a function of system size suggests a divergence inP (K)
for K → 0. Forσ = 0.75 the data are compatible with a constant
(solid line) or a very weak power-law behavior.

In an UM space43 the triangle inequalitydαγ ≤ dαβ +
dβγ is replaced by a stronger condition wheredαγ ≤
max{dαβ, dβγ}, i.e., the two longer distances must be equal
and the states lie on an isosceles triangle. Here,dαβ represents
the distance between two pointsα andβ in phase space.

We use the approach developed in Ref. 12 which is closely
related to the one used by Hedet al. in Ref. 22. For each
disorder realization we produceM = 103 equilibrium config-
urations. These are sorted using the average-linkage agglom-
erative clustering algorithm.44 The clustering procedure starts
with M clusters containing each exactly one configuration.
Distances are measured in terms of the hamming distance
dαβ = (1 − |qαβ |), whereqαβ = N−1

∑
i S

α
i S

β
i is the spin

overlap between configurations{Sα} and{Sβ}. Iteratively
the two closest clustersCa andCb are merged into one cluster
Cd, reducing the number of clusters by one. The distances of
the new clusterCd to the other remaining clusters have to be
calculated: The distance between two clusters is the average
distance between all pairs of members of the clusters. The it-
erative procedure stops when only one cluster remains, the re-
sults are then typically structured in a tree-like structure called
a dendrogram (see Fig. 1). To probe for a putative UM space
structure, we randomly select three configurations from the
hierarchical cluster structure (see Ref. 22), resulting inthree
mutual distances. Next, we sort these hamming distances
dmax ≥ dmed ≥ dmin and computeK = (dmax−dmed)/̺(d),
where̺(d) is the width of the distance distribution. If the
phase space is UM, then we expectdmax = dmed for L → ∞.
ThusP (K) → δ(K = 0) for L → ∞ and the for the variance
of the distributionVar(K) → 0 for L → ∞.

Results.— Figure 2(a) shows the distributionP (K) for
the SK model (σ = 0), T = 0.36, andH = 0.10. There
is a slight hint for a divergence forK → 0. Similar results are
found for the mean-field regime withσ = 0.60 [Figure 2(b)].
The UM signature in a field is considerably weaker than when
no field is applied.12 While for the SK model there is still a
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FIG. 4: (Color online) VarianceVar(K) of P (K) as a function of
system sizeL for spin glasses on MK lattices. The data are com-
patible with a constant behavior, showing that there is no UMphase
space structure for spin glasses within the MK approximation. The
solid line is a guide to the eye.

faint sign of a divergence, for larger values ofσ it is hard to
see if the distributions diverge forK → 0 andL → ∞. Fig-
ure 2(c) shows data forσ = 0.75, T = 0.36, andH = 0.10
where no clear sign of a divergence is present, suggesting that
phase space might not be UM outside the mean-field regime.

Hence, drawing conclusions from theP (K) data is not suf-
ficient. A better probe is given by the varianceVar(K) of
P (K) as a function of system sizeL, Fig. 3.45 The variance
of the distribution for the SK model clearly decays with a
power lawVar(K) ∼ b/Lγ [b = 0.49(4), γ = 0.13(2), Q-
factor∼ 0.28].46,47 If we restrict the fit toL ≥ 128 we obtain
b = 0.58(7) andγ = 0.16(2) with a Q-factor∼ 0.487. A fit
to a constant givesQ = 0 if the fit is performed for all data or
restricted toL ≥ 128. A fit to a constant+power-law behav-
ior Var(K) ∼ a + b/Lγ gives a constanta compatible with
zero and a clear power-law decay. Therefore, and as expected,
the SK model shows an ultrametric phase space structure for
small externally-applied magnetic fields.

Similar results are obtained forσ = 0.60 where a fit to a
power law is very likely withb = 0.395(6), γ = 0.074(3),
and Q = 0.989 [restricted toL ≥ 128 we obtainb =
0.374(1), γ = 0.064(1), andQ = 0.983]. However, a fit
to a constant givesQ < 10−5 [0.124 restricted toL ≥ 128].
We also attempted a fit to a constant+power-law behavior, i.e.,
Var(K) ∼ a + b/Lγ. We obtaina = 0.18(2) > 0 with
Q = 0.989. This suggests that we might be at a marginal
regime (i.e., close to the upper critical dimension).

For σ = 0.75 a fit to a very weak power law withb =
0.30(1) andγ = 0.014(6) is found withQ = 0.897. Thus, the
exponentγ is extremely small, only within about two standard
deviations from zero. Correspondingly, a fit to a constant is
equally probable withQ = 0.811. Similar results are obtained
for L ≥ 128 whereb = 0.33(2) and γ = 0.028(9) with
Q = 0.811, andQ = 0.766 for a fit to a constant. A fit to
a constant+power-law behavior gives a power-law exponent
consistent with zero within error bars.

Summarizing, either ultrametricity in the non-mean-field
regime is completely lost in a field or strongly weakened, sug-



4

gesting a marginal signal forσ = 0.60. Larger systems would
be needed to fully discern the behavior, however they are out
of reach with current technology. Note that for diluted sys-
tems larger system sizes are possible, but the finite-size effects
are stronger, resulting in no overall benefit.

Within the MK approximation the distributionsP (K) also
show no divergence forK → 0. Figure 4 shows the vari-
ance of the distributions as a function of the system size for
very large lattices. There is no discernible decrease with an
increasing number of spins, i.e., no UM structure of phase
space. In fact, a fit to a power-law behavior results in a slope
compatible with zero, i.e., a constant behavior. This is to be
expected because the model is defined on a hierarchical lat-
tice. However, a direct comparison to the results forσ = 0.75
strengthens the evidence of a potential non-UM structure for
the latter case, in agreement with recent results.48

Summary and Conclusion.—We have studied numeri-
cally the low-temperature configuration landscape of long-
range spin-glasses with power-law interactions. By tuningthe

exponentσ that governs the decay of the power-law interac-
tions and therefore their range we can tune the system out of
the mean-filed universality class. Using a hierarchical cluster-
ing method and analyzing the resulting distance matrices we
show that when a field is applied the system is only clearly
UM in the mean-field regime, unlike in the zero-field case
where an UM signal was found for values ofσ that correspond
to space dimensions above and below the upper critical dimen-
sion. Therefore, our results suggest that the spin-glass state is
fragile to an externally-applied field below the upper critical
dimension. Larger systems would be needed to determine if
the UM signature forσ = 0.75 (corresponding approximately
to four space dimensions) persists in a field or not.
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