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We study the ultrametric structure of phase space of onefmsional Ising spin glasses with random power-
law interaction in an external random field. Although in z&ésedd the model in both the mean-field and non-
mean-field universality classes shows an ultrametric sigagPhys. Rev. Lettl02, 037207 (2009)], when a
field is applied ultrametricity seems only present in the mield regime. The results for the non-mean field
case in an external field agree with data for spin glassesestwdthin the Migdal-Kadanoff approximation.
Our results therefore suggest that the spin-glass statet imnggfragile to external fields below the upper critical
dimension.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 64.60.-i

Spin glasses’ are paradigmatic model systems that findthe studied system sizes, suggesting that the spin-glaiss st
wide applicability across disciplines. Although studied i for short-range systems is fragile with respect to extéynal
tensely over the last four decades, our understanding oé sonapplied fields. These results are compared to studies of spin
of their fundamental aspects is still in its infancy. In par- glasses within the Migdal-Kadanoff (MK) approximation.
ticular, the understanding of the nature of the spin-glass
state remains controversial and active discussion hasgeher 1
recently>*2 It is unclear if the mean-field replica symmetry
breaking (RSB) picturé of Parisi describes the non-mean-
field behavior of spin-glasses in an externally-applieddfiel
best. While the droplet theolyr'8states that there is no spin- "
glass state in a field for short-range systems, the mean-field — .
RSB picturé#1%20states that for low enough temperatures = i
T and fieldsH, i.e., below the de Almeida-Thouless lifea
stable spin-glass state emerges. The question lies at the co
of theoretical descriptions and is of immediate importatoce
applications in research fields ranging from, e.g., sogipto . 1
economics where terms linear in the spin variable can emerge -

One way to settle the applicability of the RSB picture to ) ) _ i
short-range spin glasses in a field while avoiding technicaf'C: 1: Dendrogram obtained by clustering 100 configuratitsee
difficulties when measuring observables in a filds by text) for a sample system with = 0.0 (Shern.ngton-Klrkp.atrlck
testing? if the phase space is ultrametric (UM). Unfortu- model) andZ, = 512 atT = 0.36, together with the matrixla s

- ) (grey scale, distance 0 is black). The order of the stateséndpy
nately, the existence of an UM phase structure for sho&an e jeaves of the dendrogram (figure rotated clockwise(y.
spin glasses on hypercubic lattices remains elu&iveainly
because only small systems can be studied numerically. Re-

centresults in zero fiefd suggest that short-range systems are Model.— The 1D Ising chain with long-range power-law
99 2% gesy interactions”?"~2%s described by the Hamiltonian
not UM, whereas other opinions exfst:

More recently? results on one-dimensional (1D) lIsing > = _ZJ__S_S_ _ Z”S' . Jij = (o) €ij 1)
models with power-law interactions showed that short-eang M “ i
spin glasses might be UM after all. Therefore, a natural @rob
for the spin-glass state in a field is to study the UM respons&hereS; € {+1} are Ising spins and the sum ranges over all
of 1D Ising models with power-law interactions when an ex-spins in the system. Thie spins are placed on aring to ensure
ternal field is applied. The model has the advantage in thaperiodic boundary conditions amgj = (L /7) sin(r|i—j|/L)
by tuning the exponent of the power law, the universalityis the geometric distance between the spiasare Gaussian
class can be tuned between a mean-field and a non-mean-fisthdom couplings. The constarft) is choseR® such that for
regime. In addition, large linear system sizes can be simuthe mean-field transition temperatdé'* (0 < 0.5, L, H =
lated, which allows for a better finite-size scaling analyisan  0) = 1. In Eq. (1), the spins couple to site-dependent random
for hypercubic lattice$? fields h; chosen from a Gaussian distribution with zero mean
Our results show that for this model in a field the phaseand standard deviatiq»“nf].(llé2 =H.
space has an UM structure in the mean-field regime. How- The model has arich phase diagram when the expaenisnt
ever, in the non-mean-field regime, when an external fiel&changed?® Both the universality class and the range of the in-
is applied, the UM structure seems to be much weaker foteractions can be continuously tuned. In particutar= 0

il

1<j



gives the Sherrington-Kirkpatrick (SK) mod® whose so-
lution is the mean-field theory for spin glasses and where a
spin-glass state in a field is expected, i.e., an UM signditure
low enoughH and temperature. More importantly?” for
1/2 < o < 2/3 the critical behavior is mean-field-like, while
for2/3 < o < 1litis non-mean field like.

Here we study in a field = 0.10 the SK model§ = 0] to
test our analysis protocol, as well as the 1D chaimwfer 0.60
(also mean-field like), as well a8 = 0.75 (1. ~ 0.69,
roughly corresponding to four space dimensions) outside th
mean-field regime. We choose two valuesrcf 0 to be able
to discern any trends when the effective dimension#lity
reduced. In general.g = (2 — n)/(20 — 1), wheren is the
critical exponent for theshort-rangemodel at space dimen-
siond = d.g. Note thatn is zero in the mean-field regime
and, for example;-0.275(25) for d = 4.32

Numerical Method and Equilibration.—We generate
spin-glass configurations by first equilibrating the systm
low temperatures and an external random field of standard de-
viation H = 0.1 using the parallel tempering Monte Carlo
method334 Once the system is equilibrated we record states
ensuring that these are well separated in the Markov process
and thus not correlated. In practice, if we equilibrate & s
tem for 7., Monte Carlo sweeps, we generate for each dis-
order realizatiori0® states separated by, /10 Monte Carlo
sweeps. We test equilibration using the method presented in
Ref. 11. We consider systems sizes uplte= 512, which .
is the same maximum size as in the zero-field case studied K
previously*? but numerically much harder than in the zero- 1.6

field case because Monte Carlo methods equilibrate corsider - é -
ably slower in a field. For the parallel tempering simulasion A L =128
Tmin = 0.36 and T, = 1.40 (16 temperatures). For all = L =256
values ofo studied, and all system sizés we generatd000 o L=sl
disorder realizations. Fat = 32, the equilibration time is =
2-10* Monte Carlo sweeps (MCS), f6#, 1.5 - 10° MCS, for &

128, 5 - 10, and for256 and512, 10 MCS.

The presented data are for= 0.36. In Ref. 35 we fixed
T =~ 0.4T., for all values ofos studied to ensure that we are
deep in the spin-glass phase. However, it is unclear if one-
dimensional spin glasses with power-law interactions teave
spin-glass state in a field for > 2/3.1%21336Using theT,
estimates of Leuzzt al'3 at zero and finite fieldff = 0.1) K
for thedilutedversion of the model we estimate that if a Spin- 1 2. (color online) DistributionP () for different system sizes
glass state exists fdf = 0.1 it should suppress the zero-field (a)| panels have the same horizontal and vertical scalepareter-
T. by approximately 20%. Fos = 0.75 it is known that  nal random fieldd = 0.1. (a) Data for the SK model. The distribu-
T.(H = 0) ~ 0.69(1).* ThereforeT' = 0.36 corresponds tion diverges very slightly folx — 0 andL — oo thus signaling an
roughly to a 40% reduction of the critical temperature,, i.e. UM phase structure. (b) Data fer= 0.60 (mean-field universality
deep in the putative spin-glass phase. class). There is still a weak hint of a divergence for— 0. (c) Data

We also study spin glasses within the standard MKfqr o =075 (non-me_an-fleld universality class). There is no clear
approximatior?’ i.e., spin glasses on hierarchical lattié8s. '9" of a divergence i°(K) for K — 0. Note that wherfl = 0
Due to the simple lattice structure, the phase space is &iso edata forg = 0.75 show a clear signature for UM behavidrError

: ! . . bars are smaller then the symbol size.

pected to be simple. In fact, as shown rigorously in Ref. 39,
spin glasses on MK lattices are replica symmetric. We used
a variation of the standard MK recursion where, startingifro
one bond, iteratively each bond is replacedfybonds and  animal species and is a key component of Parisi’s mean-field
291 spins ¢ = 3). For details, see, e.g., Refs. 40 and 41.  solution of the SK model2442 Therefore, if a spin glass has

Ultrametricity.— Ultrametricity appears in different no UM phase-space structure there is a strong indicatidn tha
fields or research ranging from linguistics to the taxonorny o Parisi's mean-field picture might not work for this system.
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FIG. 3: (Color online) Varianc&/ar(K) of P(K) as a function of ~ FIG. 4: (Color online) Varianc&ar (k) of P(K) as a function of
system sizd. for different values ofr. The data can be fitto a power System sizeL for spin glasses on MK lattices. The data are com-
law (dashed lines). In the mean-field regime (SK and= 0.6) a patible with a constant behavior, showing that there is no fphese
fit to a constant is unlikely (see text). The power-law dechthe  Space structure for spin glasses within the MK approxinmatithe
variance as a function of system size suggests a divergerieeri)  solid line is a guide to the eye.
for K — 0. Foro = 0.75 the data are compatible with a constant
(solid line) or a very weak power-law behavior.
faint sign of a divergence, for larger valuesoft is hard to
see if the distributions diverge fdf — 0 andL — ~o. Fig-

In an UM spac®® the triangle inequalityl,, < d,.s +  ure 2(c) shows data far = 0.75, T = 0.36, andH = 0.10
dg~ is replaced by a stronger condition whetlg, <  where no clear sign of a divergence is present, suggestatg th
max{dag,ds}, i.e., the two longer distances must be equalphase space might not be UM outside the mean-field regime.
and the states lie on an isosceles triangle. H&rgrepresents Hence, drawing conclusions from tfi¥ K') data is not suf-
the distance between two poirtsand in phase space. ficient. A better probe is given by the varian¥er(K) of

We use the approach developed in Ref. 12 which is closely’(K) as a function of system size, Fig. 3*° The variance
related to the one used by Hed al. in Ref. 22. For each of the distribution for the SK model clearly decays with a
disorder realization we produdé = 103 equilibrium config-  power lawVar(K) ~ b/L" [b = 0.49(4), v = 0.13(2), Q-
urations. These are sorted using the average-linkageragglo factor~ 0.28].4647If we restrict the fit tol. > 128 we obtain
erative clustering algorithrff: The clustering procedure starts b = 0.58(7) and~y = 0.16(2) with a Q-factor~ 0.487. A fit
with M clusters containing each exactly one configurationto a constant give® = 0 if the fit is performed for all data or
Distances are measured in terms of the hamming distanaestricted tol. > 128. A fit to a constant+power-law behav-
dop = (1 = |qag|), Wwhereg,s = N1 > ggsf is the spin  ior Var(K) ~ a + b/L" gives a constani compatible with
overlap between configuratiods$®} and {S”}. Iteratively ~ zero and a clear power-law decay. Therefore, and as expected
the two closest clusters, andC;, are merged into one cluster the SK model shows an ultrametric phase space structure for
C4, reducing the number of clusters by one. The distances cimall externally-applied magnetic fields.
the new cluster’; to the other remaining clusters have to be  Similar results are obtained fer = 0.60 where a fit to a
calculated: The distance between two clusters is the ageragpower law is very likely withb = 0.395(6), v = 0.074(3),
distance between all pairs of members of the clusters. The iand @ = 0.989 [restricted toL > 128 we obtainb =
erative procedure stops when only one cluster remainsethe r0.374(1), v = 0.064(1), and@ = 0.983]. However, a fit
sults are then typically structured in a tree-like struetalled  to a constant give§ < 1075 [0.124 restricted toL, > 128].
a dendrogram (see Fig. 1). To probe for a putative UM spac¥Ve also attempted a fit to a constant+power-law behavioy, i.e
structure, we randomly select three configurations from thé&/ar(K) ~ a + b/L7. We obtaina = 0.18(2) > 0 with
hierarchical cluster structure (see Ref. 22), resultinthmee ) = 0.989. This suggests that we might be at a marginal
mutual distances. Next, we sort these hamming distancgegime (i.e., close to the upper critical dimension).
dmax > dmed > dmin @nd computédl = (dax—dmea)/ 0(d), Foro = 0.75 a fit to a very weak power law with =
wherep(d) is the width of the distance distribution. If the 0.30(1)andy = 0.014(6) is found with@ = 0.897. Thus, the
phase space is UM, then we expégt = dieq fOr L — co. exponenty is extremely small, only within about two standard
ThusP(K) — §(K = 0) for L — oo and the for the variance deviations from zero. Correspondingly, a fit to a constant is
of the distributionVar(K) — 0 for L — oo. equally probable witl) = 0.811. Similar results are obtained

Results.— Figure 2(a) shows the distributioR(K) for ~ for L > 128 whereb = 0.33(2) and~y = 0.028(9) with
the SK model § = 0), T = 0.36, andH = 0.10. There @ = 0.811, and() = 0.766 for a fit to a constant. A fit to
is a slight hint for a divergence fatr — 0. Similar results are a constant+power-law behavior gives a power-law exponent
found for the mean-field regime with = 0.60 [Figure 2(b)]. ~ consistent with zero within error bars.
The UM signature in a field is considerably weaker than when Summarizing, either ultrametricity in the non-mean-field
no field is applied? While for the SK model there is still a regime is completely lost in a field or strongly weakened;sug
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gesting a marginal signal fer = 0.60. Larger systems would exponentr that governs the decay of the power-law interac-
be needed to fully discern the behavior, however they are outons and therefore their range we can tune the system out of
of reach with current technology. Note that for diluted sys-the mean-filed universality class. Using a hierarchicadtel
tems larger system sizes are possible, but the finite-dizetef ing method and analyzing the resulting distance matrices we
are stronger, resulting in no overall benefit. show that when a field is applied the system is only clearly
Within the MK approximation the distribution8(K) also UM in the mean-field regime, unlike in the zero-field case
show no divergence fok — 0. Figure 4 shows the vari- where an UM signal was found for valuescothat correspond
ance of the distributions as a function of the system size foto space dimensions above and below the upper critical dimen
very large lattices. There is no discernible decrease with asion. Therefore, our results suggest that the spin-glass ist
increasing number of spins, i.e., no UM structure of phasdragile to an externally-applied field below the upper chiti
space. In fact, a fit to a power-law behavior results in a slopelimension. Larger systems would be needed to determine if
compatible with zero, i.e., a constant behavior. This is@o b the UM signature for = 0.75 (corresponding approximately
expected because the model is defined on a hierarchical lais four space dimensions) persists in a field or not.
tice. However, a direct comparison to the resultssfe 0.75
strengthens the evidence of a potential non-UM structure fo H.G.K. acknowledges support from the SNF (Grant
the latter case, in agreement with recent resfils. No. PP002-114713) and the NSF (Grant No. DMR-1151387).
Summary and Conclusion.—\We have studied numeri- \We thank Texas A&M University, the Texas Advanced Com-
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