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We analyse the magnetic structure of the antiferromagnetic order induced in Pauli limited d-wave
superconductors by Zeeman coupling to magnetic field. We determine the phase diagram in the H-T
plane, and find that the magnetic phase, which is stabilized at low temperatures and just below the
upper critical field, can have two realizations depending primarily on the shape of the underlying
Fermi surface. The double-Q magnetic ordering may persist over the entire coexistence range.
Alternatively, there may exist a weak first order transition from a double-Q structure at lower fields
to a single-Q modulation at higher fields. Together with the calculations of the NMR line-shape
these results suggest the second scenario as a serious candidate for describing the superconducting
state of CeCoIn5.
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I. INTRODUCTION.

Understanding of the emergence and stability of com-
peting orders in correlated systems has been a major
focus of research. Static long-range order changes the
excitation spectrum of itinerant systems, and the result-
ing energy gain determines which instability dominates.
A single order parameter appears in simple cases, but
electron-electron interactions can also favor several dis-
tinct phases in many materials. The competition between
different ordering phenomena make these phases sensitive
to applied pressure, chemical doping and magnetic field.

Heavy fermion CeCoIn5 presents one of the most
prominent and puzzling examples of such complex behav-
ior. At ambient pressure it is a very clean singlet d-wave
superconductor with lines of nodes in the gap function.
Upon doping, superconductivity coexists with and then
is pre-empted by an antiferromagnetic (AFM) order. The
isostructural CeRhIn5 is an AFM metal. At low temper-
atures and fields, H, just below the Pauli limited upper
critical field Hc2, CeCoIn5 enters a thermodynamic phase
that was initially conjectured1 to be the first realization
of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state,
where the superconducting (SC) order parameter oscil-
lates in real space with a length scale proportional to the
ratio betweenH and the Fermi velocity. However, experi-
ments showed that superconductivity coexists with static
long-range incommensurate AFM order in this phase2–7,
even though no AFM order is found upon suppression
of SC by doping, magnetic field, or pressure8–11. Incom-
mensurability and small ordered moment are consistent
with itinerant, or spin-density wave (SDW) magnetism,
which normally competes for the electronic states with
superconductivity. The inescapable conclusion that in
CeCoIn5 superconductivity enables antiferromagnetism
challenged our views.

The existing theories fall broadly into two categories.
The first assumes that the spatial variation of the SC or-
der under applied field (due to the FFLO modulation)
yields a higher single-particle density of states (DOS)

in the regions where superconductivity is suppressed,
and nucleates a SDW12–15. However, single NMR line
shape indicates homogeneous magnetism5,16, and, to-
gether with independence of the SDW wave vector on
the field6, suggests that the origin of the SDW instabil-
ity is not related to this modulation (although the FFLO
state may still exist16). The second category investigates
how a strong Pauli limiting in a nodal superconductor
may promote a uniform SDW state17–21. We recently
showed21 that a two-dimensional d-wave superconductor
under a Zeeman (paramagnetic) field is generically un-
stable towards formation of a SDW at the wave vectors
±Q± connecting the opposite nodes of the SC order pa-
rameter. The instability is due to nearly perfect nesting
of field-induced pockets of Bogoliubov quasiparticles, and
explains the incommensurate and field-independent SDW
wave vector, as well as the direction of the local moment
normal both to the applied field and to the structural
layers.

The main challenge to these theories is the structure
of the SDW state. Very generally, if the instability origi-
nates from magnetic scattering of quasiparticles between
the nodal regions, the staggered magnetization, mQ, of
a d-wave superconductor has Fourier components for the
four wave vectors ±Q± connecting the “nested” pairs of
nodal points, i.e. along each of the two orthogonal di-
rections, 110 and 11̄0. We term this structure double-Q
(2Q). The 2Q SDW gaps all four pockets of Bogoliubov
quasiparticles thus leading to the greatest energy gain.
Therefore, it is always more stable for weak-coupling and
hence lower fields21. However, the NMR lineshape5,16 is
consistent solely with a single-Q (1Q) SDW modulation.
We conjectured previously that the 1Q state may be sta-
bilized by moving away from the weak-coupling limit,
but, to our knowledge, no resolution of this discrepancy,
which is generic to the theories of SDW instability of the
nodal superconductors, has been offered.

Below we show that interference between Bogoliubov
quasiparticles from the neighborhood of different pock-
ets is the relevant factor that determines the magnetic
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structure. The phase diagram contains a transition line
between 2Q and 1Q magnetic orders for a range of pa-
rameters away from the weak-coupling limit. This tran-
sition has weak thermodynamic signatures (such as the
specific heat anomaly) but manifests itself very clearly in
the change of the NMR lineshape. Unambiguous obser-
vation of such a change would strongly favor the current
theory for the emergence of the SDW order in CeCoIn5.

II. MAGNETIC STRUCTURE OF THE
COEXISTENCE PHASE

We consider a mean-field Hamiltonian for a d-wave su-
perconductor under Zeeman magnetic field,

H = HBCS +HM +
N |∆0|2

V
+ 2NJ(m2

Q+
+m2

Q−
),

HBCS =
∑
k,σ

(εk − hσ) c†kσckσ −
∑
k

(∆kc
†
k↑c
†
−k↓ + H.c.)

HM =−J
∑

k,ν={±}

(mQν c
†
k−Qν↑ck↓ +mQ̄ν

c†k+Qν↑ck↓ + H.c.) .

Here εk = 2t (cos kx + cos ky) + 4t′ cos kx cos ky−µ is the
band energy, h = gµBH/2 is the Zeeman splitting , N is
the number of lattice sites, and ∆k = ∆0 (cos kx − cos ky)
is the superconducting order parameter. J denotes mag-
netic interaction, and we explicitly separated the four
(equal in magnitude) wave-vectors ±Qν : ν = ± in-
dicates a different pair of ”nested” gap nodes, while
Qν and Qν = −Qν are the two vectors connecting
a given pair, see inset of Fig.1(a). Below we select
Q± = (7π/6,±7π/6) by fixing the chemical potential
to µ = εQ+/2. The self-consistency equations are

∆0 =
V

N

∑
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(cos kx − cos ky)
〈
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†
−k↓

〉
, (1)

mQ =
1

N

∑
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〈
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〉
, (2)

where 〈· · · 〉 denotes the thermodynamic average for H,
and V is the pairing interaction in the d-wave channel.

The four order parameter components mQ lead to the
following real space distribution of magnetic moments

mx
r =

1

2

∑
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[
mQν

eiQν ·r +mQν
e−iQν ·r

]
,

my
r =

i

2

∑
ν={±}

[
mQνe

iQν ·r −mQν
e−iQν ·r

]
. (3)

The easy axis in CeCoIn5 is perpendicular to the lay-
ers22, so the field in the plane clearly favors the staggered
moment along the easy direction, in agreement with ex-
periment22,23. We therefore assume such collinear spin
ordering, |mQν

| = |mQν
|, and choose the easy axis as the

spin x-direction (crystal c-axis), mQν
= m∗

Qν

. There is a
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FIG. 1: Thermodynamic phase diagrams for (a) t′/t = 0,
V/t = 3, J/t = 4, and (b) t′/t = 0.2, V/t = 0.8, J/t = 2.4.
Open and closed circles represent first and second order phase
transition, respectively. Crosses represent the transition from
single-Q or double-Q to uniform superconductivity for L =
432. The inset of (a) shows the nesting vectors Q± and the
Fermi surfaces at t′/t = 0 (dashed line) and t′/t = 0.2 (solid
line), with V/t = 0, and J/t = 0.

zero phase mode for each value of ν due to the incommen-
surate nature of the ordered phase. Without loss of gen-
erality we choose the amplitudes mQ to be real numbers,
i.e., we fix both phases at zero. Two possible magnetic
structures can be stabilized under these conditions. The
1Q structure, in which only one of the two amplitudes,
mQν

, is finite, corresponds to a SDW that is modulated
along the direction parallel to the corresponding Qν vec-
tor. The 2Q structure , |mQ+

| = |mQ− |, is modulated
along both 110 and 11̄0.

We solved Eqs. (1)-(2) on a finite square lattice of lin-
ear sizes up to L = 864 and for different values of band
parameters and coupling constants. Above we chose
the set of four incommensurate ordering wave vectors,
(±Q,±Q), of the form Q = (n+1)π/n with n = 6. With
this choice the number of sites in the new unit cell is 2n2.
Hence to solve the mean field Hamiltonian H, we need
to diagonalize a matrix of size 8n2 at each k-point of
the original Brillouin Zone (the additional factor of four
arises from the spin index and from the anomalous terms
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that create or annihilated pairs with opposite momenta).
For our choice of n = 6, we diagonalized matrices of di-
mension 288 × 288 and then summed over momentum
space to compute the free energy density:

fMF = −kBT
L2

ln [Tre−βH]. (4)

We found two distinct types of phase diagrams that are
shown in Figs. 2. Both of them show the 2Q ordering at
low temperatures and moderately high fields. However,
while this phase persists throughout the whole magnetic
region for some parameter values, as is shown in Fig. 1(a),
in other cases the SDW phase exhibits a transition be-
tween 1Q and 2Q structures [see Fig. 1(b)]. The transi-
tion between uniform SC and normal (N) phases is the
same in both situations: second order at low fields/high
temperatures, and first order at high fields/low tempera-
tures; this behavior is generic for two-dimensional param-
agnetically limited superconductors. The transition from
the normal to the magnetically ordered SC phase remains
of first order, while the onset of SDW in the SC phase oc-
curs via a second order transition. Finally, a weak first or-
der phase transition line separates the 1Q and 2Q phases.
Since neutron scattering23 and NMR measurements5 of
CeCoIn5 clearly indicate the presence of a 1Q phase at
high fields, this latter case is relevant21, and we now dis-
cuss the origin and the properties of the 1Q/2Q transition
in detail.

Recall that in the weak-coupling (low field) regime, the
SDW order arises from nesting between opposite pockets
of Bogoliubov quasiparticles (eigenstates ofH0+HBCS)21

generated by the Zeeman term in a nodal superconduc-
tor24. The stability of the 2Q phase arises from the de-
coupling of the mean field equations (2) for the four am-
plitudes mQ, which requires the same amplitude |mQ|
of all the components to fully gap the four nodal pock-
ets. Numerical solutions for all sets of parameters always
yield the 2Q order at the lowest fields, in agreement with
this argument.

The lowest order interaction term of a Ginzburg-
Landau expansion of the free energy is |mQ+

|2|mQ− |2.
Diagrammatically, the coefficient of this term involves
a product of four propagators of the Bogoliubov quasi-
particles at momenta separated by ±Q±, with the main
contribution when all four momenta are near the Fermi
surface pockets. Since the ordering wave vectors Q± are
incommensurate, the near-nodal Bogoliubov quasiparti-
cles do not satisfy this requirement and give a small con-
tribution to this coefficient. In contrast, once the pockets
grow to include areas away from the nodes, near (±π, 0)
and (0,±π) points, the constraint is satisfied. Therefore
the coefficient of the |mQ+

|2|mQ− |2 is small at low fields,
but, as the field increases and the pockets grow, the two
components of the magnetization begin to interfere de-
structively, leading to an increase in the energy of the
2Q phase relative to that of the 1Q phase. To test this
argument we computed the average occupation number
of Bogoliubov quasiparticles with a given wave-vector k

FIG. 2: Density of Bogoliubov quasi-particles 〈γ†k↑γk↑〉 for

t′/t = 0.2, V/t = 0.8, J/t = 2.4, and T/t = 10−4 with L =
864. Shaded panels (c), (d), and (h) correspond to the lowest
free energy solution of the self-consistent equations (2) at a
given magnetic field value.

over the entire Brillouin zone for the parameters where
2Q/1Q transition exists. The results, shown in Fig. 2,
clearly indicate that the 1Q phase becomes stable as soon
as the overlap between particle-hole clouds from differ-
ent pockets becomes strong. Therefore, the main physical
parameter that decides between the two possible scenar-
ios shown in Figs. 1(a) and (b) is the barrier between
orthogonal pockets which, in turn, depends on the shape
of the Fermi surface. Recall that the SDW phase appears
for values of the magnetic interaction J ≥ 0.85 − 0.9Jc,
where Jc is the critical value when the normal state be-
comes unstable towards magnetic order 21; this result
remains valid for any Fermi surface shape. We verified
that, for a Fermi surface where 2Q-1Q transition exists,
the 1Q phase persists over a wide range of values of the
pairing interaction V , although once V is significantly
reduced, the 1Q region becomes too narrow to be found
numerically in our calculation. At the same time, for the
Fermi surface where only 2Q order is found, such as that
used in the main panel of Fig. 1(a), no changes in the
interaction can induce the 1Q phase.

Given that the 1Q and 2Q phases can only exist to-
gether in the phase diagram, we analyse the phase tran-
sition between the two. Figures 3(a-c) show the so-
lutions of Eqs.(1)-(2) at low T for the parameters in
Fig. 1(b). While both the SC and the SDW order pa-
rameters show a significant jump at the transition from
the normal paramagnetic phase, the change in ∆0 at
the 1Q-2Q transition is extremely small, and the re-
duction in mQ+

is compensated by the concomitant in-
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FIG. 3: Mean-field solutions for t′/t = 0.2, V/t = 0.8,
J/t = 2.4, and T/t = 0.003 with L = 432. (a) Order pa-
rameters (∆0, mQ+ , and mQ−) and the spatially-averaged

magnetization |mr|. (b) Free energy densities fMF/t for dif-
ferent solutions of self-consistent equations (2). (c) Entropy
s (computed by taking the derivative of the free energy den-
sity as a function of temperature) as a function of magnetic
field. (d) Expected shape of the NMR spectrum, see text for
details.

crease in mQ− , so that the spatially-averaged magnetiza-

tion |mr|
2
≡ (1/Ld)

∑
rm

2
r = (m2

Q+
+m2

Q−
)/2, remains

nearly unchanged. This is also clear from the almost un-
noticeable kink in the free energy density at the transition
line. As a result, the latent heat at the transition between
N and 1Q phases is much larger than the latent heat at
the 1Q-2Q transition (see Fig. 3(c)). In other words, the
1Q-2Q transition, while first order, has very weak ther-
modynamic signatures, and is difficult to detect by bulk
measurements. On the other hand, probes sensitive to
the local magnetic structure, such as neutron scattering
or NMR, should be able to clearly distinguish these two
different phases. Figure 3(d) shows the predicted quali-
tative change of the NMR line shape across the transition
in the magnetic structure of the Q-SDW phase and for
different values of the magnetic field. We plot the density

distribution of the local magnetization for incommensu-
rate ordering, and are not including the details of the
dipolar and hyperfine interactions that would be needed
for a quantitatively accurate determination of the NMR
line shape. Our main goal is to demonstrate the quali-
tative difference between the signals in the 1Q and the
2Q phases: while the 1Q phase leads to a double-horn
NMR line shape characteristic of unidirectional modula-
tion, the profile in the 2Q phase has a maximum at the
center (the logarithmic Van-Hove singularity). The NMR
line shape as a function of increasing field, see Fig. 3(d),
is very consistent with recent measurements from two
different groups5,16.

III. CONCLUSIONS

In summary, we presented a theory for the magnetic
structure of the low-temperature and high field phase of
Pauli limited nodal superconductors such as CeCoIn5.
Our main finding is that such materials are expected
to broadly fall into two classes depending predominantly
on the shape of the underlying Fermi surface: those ex-
hibiting only the phase in which the local moments are
modulated along the two orthogonal directions connect-
ing opposite nodes of the superconducting gap, and those
exhibiting a transition between such a doubly modulated
phase and SDW order along a single inter-nodal direc-
tion. The origin of the transition is in the destructive
interference of scattering processes of Bogoliubov quasi-
particles with two orthogonal wave-vectors. Thermody-
namic signatures of the 2Q-1Q transition are very weak,
and therefore local magnetic probes are best suited for
probing it. The NMR line shape in our analysis is in
a good agreement with recent data. It would be highly
desirable to further test the proposed transition using
neutron scattering.
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