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We analyze the quantum efficiency of a microwave photon detector based on a current-biased
Josephson junction. We consider the Jaynes-Cummings Hamiltonian to describe coupling between
the photon field and the junction. We then take into account coupling of the junction and the
resonator to the environment. We solve the equation of motion of the density matrix of the resonator-
junction system to compute the quantum efficiency of the detector as a function of detection time,
bias current, and energy relaxation time. Our results indicate that junctions with modest coherence
properties can provide efficient detection of single microwave photons, with quantum efficiency in
excess of 80%.

PACS numbers: 85.25.Cp, 03.67.Lx, 03.65.Yz

I. INTRODUCTION

Quantum optical photodetectors have contributed sig-
nificantly to the development of quantum optics and
atomic physics1 and now play an essential role in op-
tical quantum information applications such as quantum
computing and quantum key distribution2–4. Recently,
circuit quantum electrodynamics (cQED) has emerged
as a novel paradigm for the study of radiation-matter in-
teraction in mesoscopic systems5–7. Moreover, cQED is
an attractive candidate for scalable quantum computing
and transmission of quantum information8–10. Following
the original proposal, a variety of cQED architectures
demonstrating strong coupling between single photons
and superconducting integrated circuits have been real-
ized experimentally11,12. This work has paved the way
for the development of a superconducting microwave pho-
ton detector13–15 with possible applications to quantum
information processing and communication16.
The microwave photon detector is based on the

current-biased Josephson junction (JJ): the JJ is biased
so that absorption of a single microwave photon induces a
transition to the voltage state, producing a large and eas-
ily detected classical signal14. While these detectors are
straightforward to operate and show potential for scala-
bility, performance is degraded by spurious dark counts
due to quantum tunneling events in the absence of an
absorbed photon; moreover, energy relaxation within the
detector results in photon loss and leads to a reduction
in measurement efficiency.
In this work, we theoretically determine the quantum

efficiency of a microwave photon detector based on a
current-biased JJ. Previous analysis14,15,17 of this system
was focused on a wave-packet formulation of the pho-
ton field in a transmission line coupled to the detector.
Here we study the probability of photon detection by a
JJ coupled to a microwave cavity mode that is loaded
with a fixed number of photons18. We solve the equation
of motion for the density matrix of the cavity-JJ sys-
tem to obtain detector efficiency for different values of
operation time, current bias, and relaxation time of the
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FIG. 1: (a) Schematic circuit diagram of JJ-based microwave
photon detector coupled to a resonator. (b) Potential energy
landscape of the detector when bias current is close to the
critical current of the JJ . The junction is initialized in the
|g〉 state and upon absorbing an incident photon transitions
to the |e〉 state, which rapidly tunnels to the continuum.

junction. Our results indicate that a JJ with decay time
around 10 ns can detect a single microwave photon in
the cavity with an efficiency greater than 80%, for read-
ily achievable circuit parameters. We also find that the
detector efficiency increases significantly with increasing
energy relaxation time T1 of the junction, suggesting that
a highly efficient single microwave photon detector is at-
tainable for moderate improvements in junction quality.

II. JOSEPHSON-JUNCTION BASED PHOTON

DETECTOR

The circuit diagram of the JJ-cavity system is shown
in Fig. 1(a). The JJ is biased with a current I close to
the critical current I0. The junction Hamiltonian can
be written in terms of the charge operator Q̂ and the

operator δ̂ of the phase difference across the JJ19:

ĤJJ =
Q̂2

2C
+ U(δ̂) , U(δ̂) = −I0Φ0

2π

(

cos δ̂ − I

I0
δ̂

)

.

(1)
Here C is the junction capacitance and Φ0 = h/2e is the
magnetic flux quantum. For I . I0, the potential energy
landscape U(δ) takes on a “tilted washboard” shape, with
a few discrete energy levels in shallow minima separated
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FIG. 2: (Color online) Switching probability P1 (P0) vs. pho-
ton detection time for initial states |1, g〉 (|0, g〉). Parame-
ters used in this plot are: junction T1 = 10 ns, barrier height
∆U/~ωp = 2, vacuum Rabi frequency Ω/2π = 200MHz, and
cavity decay time 1/κ = 1µs. Here the detuning between the
cavity and the junction ∆ = 0. The solid blue curve is the
quantum efficiency η1 ≡ P1 − P0 (see text). The maximum
quantum efficiency of the detector is 50% for an optimal de-
tection time of 45 ns (the optimal point is marked by the filled
blue circle).

from the continuum by a barrier, see Fig. 1(b). We trun-
cate the junction Hamiltonian to the ground |g〉 and first
excited states |e〉 and obtain the following Hamiltonian
for the JJ:

ĤJJ = ~ωegΠ̂e , (2)

where Π̂e = |e〉〈e| is the projection operator to the ex-
cited state and ωeg = (εe − εg)/~.

The coupling of the cavity with the JJ is modeled by
the Jaynes-Cummings (JC) Hamiltonian20:

ĤJC = ~ωr

(

â†â+
1

2

)

+~ωegΠ̂e+
~Ω

2
(â†σ̂−+âσ̂+) , (3)

where ωr is the cavity resonance frequency, Ω is the vac-
uum Rabi frequency, and â†(â), σ̂+(σ̂−) are the creation
(annihilation) operators of the cavity and the junction,
respectively.

The time evolution of the density matrix ρ̂(t) of the
cavity-JJ system coupled to its environment is governed
by the following equation:

dρ̂(t)

dt
=

1

i~

[

ĤJC , ρ̂(t)
]

+ L̂γ [ρ̂(t)] + L̂κ[ρ̂(t)] + L̂T [ρ̂(t)] ,

(4)

where L̂γ [ρ̂(t)] and L̂κ[ρ̂(t)] are superoperators that cap-
ture damping in the JJ and the cavity at low tempera-
tures T ≪ ~ωeg, ~ωr

21:

L̂κ[ρ̂(t)] = κ

(

âρ̂â† − 1

2
{â†â, ρ̂}

)

, (5a)

L̂γ [ρ̂(t)] = γ

(

σ̂−ρ̂σ̂+ − 1

2
{σ̂+σ̂−, ρ̂}

)

. (5b)

To account for switching of the ground and the first
excited states of the JJ to the voltage state, we introduce
the tunneling superoperator LT [ρ̂(t)]

22–25:

L̂T [ρ̂(t)] = −
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, (6)

where Γe,g are the tunneling rates from the ground (|g〉)
and first excited (|e〉) states of the junction. If we ap-
proximate the potential in Eq. (1) by a cubic potential,
then the tunneling rate of the ground and the first ex-
cited states of the cubic potential can be computed by
WKB approximation:

Γj = ωp/2π[432∆U/~ωp]
j+1/2/πj/2 exp[−36∆U/5~ωp] ,

where Γj=0 ≡ Γg and Γj=1 ≡ Γe represent the tunnel-
ing rates from the |g〉 and |e〉 states of the JJ, respec-
tively. The ratio Γe/Γg ≈ 250∆U/~ωp. Here ∆U =

4I0Φ0/3
√
2π(1− I/I0)

3/2 is the barrier height and ωp =

21/4
√

2πI0/CΦ0(1− I/I0)
1/4 is the plasma frequency of

the cubic potential. The junction frequency ωeg is related
to the plasma frequency by ωeg ≃ ωp(1 − 5~ωp/36∆U).
The tunneling rate of the first excited state of the junc-
tion is then given by Γe ≈ 500 Γg = 7.3 × 107 s−1 for
∆U/~ωp ≈ 2.

III. QUANTUM EFFICIENCY

The system is originally prepared in a pure state
ρ̂n(0) = |n, g〉 〈n, g| with n photons in the cavity and the
junction in the ground state |g〉. We assume n photons
are loaded into the cavity in a manner similar to that de-
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FIG. 3: (Color online) Quantum efficiency η1 vs. detuning
∆/Ω for optimal detection time obtained at ∆ = 0 for var-
ious bias points: ∆U/~ωp = 2 (solid blue), 1.9 (dashed-dot
black), and 1.8 (dashed red). The bandwidths of the detector
are 1.6Ω (solid blue), 2Ω (solid black) and 2.3Ω (solid red),
respectively. The remaining parameters are as in Fig. 2.

scribed by Hofheinz et al.26, with loading rate faster than
the interaction rate between the JJ and the cavity. With
this assumption, the detector efficiency is unaffected by
how photons are loaded into the cavity. We numerically
solve the above equation for the time evolution of the
density matrix to compute the occupation probabilities
of the cavity and junction states. The probability that
the JJ has switched to the voltage state at time t is given
by

Pn(t) = 1− Tr [ρ̂n(t)]. (7)

We consider the following set of parameters for the JJ-
cavity system, typical of those realized in experiments14:
JJ frequency ωeg/2π = 4.8GHz, junction decay rate γ =
108 s−1, cavity decay rate κ = 106 s−1, and vacuum Rabi
frequency Ω/2π = 200MHz.
In Fig. 2, we plot switching probabilities P1(t), P0(t)

of the junction for initial states |1, g〉 (solid red) and
|0, g〉 (solid black), respectively. In this simulation, the
parameters we consider are ∆U/~ωp = 2 and we set
the detuning between the cavity and the JJ to zero,
i.e., ∆ ≡ ωr − ωeg = 0. The switching probability P1

in Fig. 2 features steps whose periodic occurrence is a
manifestation of Rabi oscillations of the JJ with period
2π/Ω = 5ns. This result is consistent with the pic-
ture that switching of the JJ halts momentarily when
the junction returns to the ground state in course of the
Rabi oscillations.
Next, we discuss the presence of the wide plateau of

P1 in Fig. 2. The occurrence of this plateau can be un-
derstood from the fact that switching of the junction is
briefly frozen when the junction relaxes to the ground
state due to dissipation. The JJ then switches to the
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FIG. 4: (Color online)(a) Quantum efficiency η1 vs. photon
detection time for ∆U/~ωp = 2 and for various decay times
of the junction: T1 = 10ns (solid blue), T1 = 20 ns (dashed
green), T1 = 50 ns (dash-dotted red), and T1 = 500 ns (dotted
black). For T1 = 500 ns, the maximum quantum efficiency is
94%. (b) Quantum efficiency η1 vs. photon detection time
for junction T1 = 10 ns for various bias points of the junc-
tion: ∆U/~ωp = 2 (dotted blue), 1.9 (dash-dotted green), 1.8
(dashed red) and 1.7 (solid black). The maximum quantum
efficiency is 84% for ∆U/~ωp = 1.7. The remaining parame-
ters are as in Fig. 2.

voltage state after time ∼ 1/Γg, the characteristic time
scale for switching of the junction in the case of zero
photons. The height of this plateau can be estimated as
Γe/

(

Γe+γ
)

≈ 0.5, which agrees with the numerical result
in Fig. 2.

In order to determine the quantum efficiency of the de-
tector, we must properly treat dark counts due to quan-
tum tunneling from the |0, g〉 state in the absence of pho-
ton absorption. The quantum efficiency η1 of the detector
is defined as the difference between the switching proba-
bilities for an initial state with one photon P1(t), and for
an initial state with no photons P0(t): η1 ≡ P1(t)−P0(t).
The quantum efficiency is shown in Fig. 2 by the solid
blue curve. For our choice of parameters Γe ≃ γ, the
detector has maximum efficiency of about 50% for the
optimal detection time td around 45 ns.

Next, we demonstrate that the bandwidth of the
Josephson microwave photon detector is broadened due
to the finite lifetime of the junction excited state. Here,
we vary the frequency ωr of the cavity and compute the
quantum efficiency of the detector for the optimal detec-
tion time td obtained at zero detuning ∆ = 0. The detec-
tor bandwidth is then given by the detuning at which the
quantum efficiency of the detector is reduced to half the
efficiency obtained at zero detuning. For a dissipation–
free junction, the detector bandwidth is approximately
given by the vacuum Rabi frequency. However, in the
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FIG. 5: (Color online) Efficiency ηn to detect a photon vs.
detection time for n = 1 (solid blue), 2 (dashed blue), and
3 (dash-dotted blue) photons in the cavity. The rest of the
parameters are as in Fig. 2. For three photons in the cavity,
the efficiency to detect a photon is 85%.

presence of dissipation and tunneling, the first excited
state of the junction is broadened by ∼ γ + Γe. This
broadening of the energy level roughly accounts for the
increased bandwidth of the detector. We find that band-
widths are factors of 1.6, 2 and 2.3 larger than the vac-
uum Rabi frequency for bias points ∆U/~ωp = 2, 1.9
and 1.8, respectively, as shown in Fig. 3. As we lower
the ratio ∆U/~ωp, the tunneling rate Γe of the first ex-
cited state of the junction increases. This in turn causes
further broadening of the junction excited state thereby
increasing the bandwidth of the detector.

Next, we analyze the effect of dissipation and bias point
on the efficiency of the detector. In Fig. 4(a), we plot the
quantum efficiency of the detector for different values of
the junction relaxation time T1 from 10 ns to 500 ns,
keeping all other parameters the same as in Fig. 2. We
find that the quantum efficiency increases with increasing
junction relaxation time T1 and reaches 94% for T1 =
500ns and for a detection time around 95 ns.

The change in bias current I of the junction modifies
the ratio of barrier height ∆U to the junction plasma
frequency ωp. Taking different values of this ratio, we
compute the efficiency of the detector at fixed relaxation
time T1 = 10 ns; the results are shown in Fig. 4 (b). Upon
decreasing the ratio ∆U/~ωp, the potential well becomes
shallower, leading to enhanced tunneling out of the first
excited state and increased efficiency of the detector. Our
simulation results indicate that a significant improvement
in detector efficiency is achieved when the tunneling rate
exceeds the dissipation rate of the junction. We find that
for the bias point ∆U/~ωp = 1.7, the efficiency of the
detector is about 84% for a detection time around 9 ns.

Finally, we analyze the efficiency of the detector to de-
tect single photons when the cavity is loaded with n > 1
photons. Generalizing the previous case of a single pho-

ton in the cavity, the efficiency to detect a single mi-
crowave photon in a cavity loaded with n photons is given
by ηn = Pn(t) − P0(t). In Fig. 5, we plot the efficiency
at fixed bias point ∆U/~ωp = 2 and T1 = 10 ns for dif-
ferent numbers of photons in the cavity: n = 1 (solid
blue), 2 (dashed blue), and 3 (dash-dotted blue). We
find that detection efficiency increases with the increas-
ing number of photons in the cavity and reaches 85%
for three photons in the resonator. This result is con-
sistent with previous studies14,17 that reported a higher
detection efficiency, for the same parameters as above,
when a continuous flux of photons was incident on the
detector. For the case of a single photon in the cavity,
the detector returns to the ground state after the photon
is absorbed by the environment, and no further excita-
tion of the junction is possible. However, when multiple
photons are present in the cavity, other photons are avail-
able to induce excitation if the junction relaxes, thereby
increasing the probability of photon detection. We note
that for multiple photons in the cavity, the measured effi-
ciency η can also be used to estimate the average number
of photons in the cavity.

IV. DISCUSSION AND CONCLUSIONS

In conclusion, we have presented a model to determine
the quantum efficiency of a microwave photon detector
based on a current-biased JJ. We have demonstrated that
the efficiency to detect a single photon loaded in a cavity
has maximal value Γe/(Γe+γ). We have also determined
that the bandwidth of the detector is characterized by
the sum of the vacuum Rabi frequency and the broaden-
ing of the first excited state of the JJ due to tunneling
and relaxation processes. Our simulations indicate that
for currently used JJ photon detectors, the quantum effi-
ciency is about 50% for the bias point ∆U/~ωp = 2 and
about 85% for ∆U/~ωp = 1.7. We have finally investi-
gated the probability to detect a photon in the case of a
multiphoton initial resonator state and have found that
the detection efficiency quickly approaches 100% as the
initial number of photons increases, consistent with pre-
vious studies14,17 of a continuous flux of photons incident
on the detector.
Recently, Peropadre et al.15 proposed a phenomenolog-

ical model for the JJ-based microwave photon detector
that fails to address specific microscopic details of ex-
perimentally realized detectors14. Specifically: (1) Per-
opadre et al. treat tunneling from the excited state of
the junction by a non-hermitian term in the junction
Hamiltonian; this is not consistent with the standard
form of quantum tunneling. (2) These authors do not
consider tunneling from the low-energy state of the junc-
tion, which is responsible for dark counts of the detector.
(3) Finally, their model does not take into account the rel-
atively strong relaxation from the excited to the ground
state of the junction. This relaxation corresponds to a
T1 time of order of a few nanoseconds in present devices,
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which are strongly coupled to a 50 Ω readout line, and
is responsible for a significant suppression of detector ef-
ficiency14. If the relaxation time were above 500 ns, the
efficiency would reach nearly 100%, see Fig. 4(a).
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