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As the processing power available for scientific computing grows, first principles Born-
Oppenheimer molecular dynamics simulations are becoming increasingly popular for the study of a
wide range of problems in materials science, chemistry and biology. Nevertheless, the computational
cost of Born-Oppenheimer molecular dynamics still remains prohibitively large for many potential
applications. Here we show how to avoid a major computational bottleneck: the self-consistent-field
optimization prior to the force calculations. The optimization-free quantum mechanical molecular
dynamics method gives trajectories that are almost indistinguishable from an “exact” microcanoni-
cal Born-Oppenheimer molecular dynamics simulation even when low pre-factor linear scaling sparse
matrix algebra is used. Our findings show that the computational gap between classical and quan-
tum mechanical molecular dynamics simulations can be significantly reduced.

PACS numbers:

I. INTRODUCTION

The past three decades have witnessed a dramatic in-
crease in the use of the molecular dynamics simulation
method1,2. While it is unquestionably a powerful and
widely used tool, its ability to calculate physical prop-
erties is limited by the quality and the computational
complexity of the interatomic potentials. Among compu-
tationally tractable models, the most accurate are explic-
itly quantum mechanical with interatomic forces calcu-
lated on-the-fly using a nuclear potential energy surface
that is determined by the electronic ground state within
the Born-Oppenheimer approximation2–4. In Hartree-
Fock5,6 or density functional theory7–10, the electronic
ground-state density is given through a self-consistent-
field (SCF) optimization procedure, which involves it-
erative mixed solutions of the single-particle eigenvalue
equations and accounts for details in the charge distri-
bution. Since the interatomic forces are sensitive to the
electrostatic potential11, molecular dynamics simulations
are often of poor quality without a high degree of self-
consistent-field convergence. This is unfortunate since
the iterative self-consistent-field procedure is computa-
tionally expensive and in practice always approximate.

Recently there have been efforts to reduce the com-
putational cost of the self-consistent-field optimization
without causing any significant deviation from “exact”
Born-Oppenheimer molecular dynamics simulations12–14.
In this article we go one step further, and in analogy to
time-dependent techniques such as Ehrenfest molecular
dynamics15–17 or the Car-Parrinello method2,18–23, we
show how the electronic ground state optimization can
be circumvented fully without any noticeable reduction
in accuracy in comparison to “exact” Born-Oppenheimer
molecular dynamics.

Our optimization-free dynamics is based on a reformu-
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lation of extended Lagrangian Born-Oppenheimer molec-
ular dynamics35 in the limit of vanishing self-consistent-
field optimization. The method is presented within a
general free energy formulation that is valid also at fi-
nite electronic temperatures and should be applicable
to a broad class of materials. In addition to the re-
moval of the costly self-consistent-field optimization we
also demonstrate compatibility with low pre-factor lin-
ear scaling electronic structure theory24–26. The com-
bined scheme provides a very efficient, energy conserving,
low-complexity method for performing accurate quantum
molecular dynamics simulations.

II. FAST QUANTUM MECHANICAL
MOLECULAR DYNAMICS

A. Born-Oppenheimer molecular dynamics

Born-Oppenheimer molecular dynamics based on den-
sity functional theory can be described by the Lagrangian

LBO(R, Ṙ) =
1

2

∑
k

MkṘ
2
k − U [R; ρ], (1)

where the potential energy,

U [R; ρ] = 2
∑
i∈occ

εi −
1

2

∫∫
ρ(r)ρ(r′)

|r′ − r|
dr′dr

−
∫
Vxc[ρ]ρ(r)dr + Exc[ρ] + Ezz[R],

(2)

is calculated at the self-consistent electronic ground state
density, ρ(r), for the nuclear configuration R = {Rk}9,10.
Here, εi are the (doubly) occupied eigenvalues of the ef-
fective single-particle Kohn-Sham Hamiltonian,

H[ρ] = −1

2
∇2 + Vn(R, r) +

∫
ρ(r′)

|r′ − r|
dr′ + Vxc[ρ], (3)

where Vxc[ρ] is the exchange correlation potential,
Vn(R, r) the external (nuclear) potential, and − 1

2∇
2 the
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kinetic energy operator. Ezz[R] is the electrostatic ion-
ion repulsion and Exc[ρ] the exchange correlation energy.

If the electron density deviates from the ground state
density ρ by some small amount δρ, the error in the
potential energy is essentially of the order δρ2, de-
pending on the particular formulation used for calculat-
ing U [R; ρ + δρ]33,34,47. However, since the Hellmann-
Feynman theorem is valid only at the ground state den-
sity, we do not have a simple expression for the forces
that avoids calculating derivatives of the electronic den-
sity, ∂(ρ + δρ)/∂Rk. In practical calculations, the ac-
curacy of the potential energy can therefore not be ex-
pected to hold also for the forces and a high degree of
self-consistent-field convergence is therefore typically re-
quired.

B. Extended Lagrangian molecular dynamics

Here we outline how we can circumvent the self-
consistent-field procedure in Born-Oppenheimer molec-
ular dynamics. Instead of recalculating the ground state
density before each force evaluation with an iterative op-
timization procedure, the idea here is to use an aux-
iliary density n(r), as in extended Lagrangian Born-
Oppenheimer molecular dynamics35–39, which evolves
through a harmonic oscillator centered around the
ground state density ρ(r). Based on a general free energy
formulation of extended Lagrangian Born-Oppenheimer
molecular dynamics39 in the limit of vanishing self-
consistent-field optimization, we define the extended La-
grangian:

L(R, Ṙ, n, ṅ) =
1

2

∑
k

MkṘ
2
k − U [R;n] + TeS[R;n]

+
1

2
µ

∫
ṅ(r)2dr− 1

2
µω2

∫
(ρ(r)− n(r))

2
dr.

(4)
While the potential and entropy terms, U and S, are
well defined at the ground state density9, i.e. when
n = ρ, there are several different options when n de-
viates from ρ, e.g. the Harris-Foulkes functional33,34,47.
In a more general case, the potential energy and entropy
term may therefore also be determined by n(r) implic-
itly through an additional function σ[n(r)], i.e. U [R;n] ≡
U [R;n, σ[n]] and S[R;n] ≡ S[R;n, σ[n]]. Here σ[n(r)] is
a temperature dependent density given from the diag-
onal part of the real-space representation of the (dou-
bly occupied) density matrix, which is given through a
Fermi-operator expansion9 of the effective single-particle
Hamiltonian, H[n], i.e.

σ(r) ≡ σ[n(r)] = 2
(
eβ(H[n]−µ0I) + 1

)−1∣∣∣∣
r=r′

. (5)

At zero electronic temperature the Fermi-operator ex-
pansion corresponds to a step function with the step
formed at the chemical potential, µ0. In our Lagrangian

above, µ and ω are fictitious mass and frequency pa-
rameters of the harmonic oscillator and β is the inverse
electronic temperature, i. e. β = 1/(kBTe). The pur-
pose of the entropy-like term S[R;n] is here to make the
derived forces of our dynamics variationally correct for
a given entropy-independent density, n(r), at any elec-
tronic temperature. This approach is different from the
regular formulation where the density is determined by
the entropy through the minimization of the electronic
free energy functional9,40–42.

1. Equations of motion

The molecular trajectories corresponding to the ex-
tended free energy Lagrangian L in Eq. (4) are deter-
mined by the Euler-Lagrange equations of motion,

MkR̈k = −∂U [R;n]

∂Rk

∣∣∣∣
n

+ Te
∂S[R;n]

∂Rk

∣∣∣∣
n

− µω2

2

∂

∂Rk

∫
(ρ(r)− n(r))

2
dr

∣∣∣∣
n

,

(6)

and

µn̈(r) = µω2 (ρ(r)− n(r))

− δU [R;n]

δn

∣∣∣∣
R

+ Te
δS[R;n]

δn

∣∣∣∣
R

,
(7)

where the partial derivatives are taken with respect to
constant density, n, or coordinates, R. The limit µ → 0
gives us the equations of motion of our extended La-
grangian dynamics,

MkR̈k = − ∂U [R;n]

∂Rk

∣∣∣∣
n

+ Te
∂S[R;n]

∂Rk

∣∣∣∣
n

(8)

n̈(r) = ω2
(
ρ(r)− n(r)

)
, (9)

where we have defined S[R;n] such that

δU [R;n]

δn

∣∣∣∣
R

= Te
δS[R;n]

δn

∣∣∣∣
R

. (10)

As is shown in the Appendix (Sec. VII A), the corre-
sponding property for ∂S/∂Rk is also of importance for
the calculation of the Pulay force in Eq. (8). Notice
that these equations still require a full self-consistent
field optimization, since the auxiliary density n(r) evolves
around the ground state density ρ(r).

Since the nuclear degrees of freedom do not depend on
the mass parameter µ in Eqs. (8) and (9), the total free
energy,

Etot =
1

2

∑
k

MkṘ
2
k + U [R;n]− TeS[R;n], (11)
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is a constant of motion in the limit of vanishing µ. More-
over, if Etot is close to the exact ground state free energy
for approximate densities n(r), we can also expect that
the forces of the extended Lagrangian dynamics should
be accurate.

The forces in Eq. (8) are calculated at the approximate,
unrelaxed, density n(r) using a Hellmann-Feynman-like
expression, where the partial derivatives are taken with
respect to a constant density n(r). This is possible only
because n(r) appears as an independent dynamical vari-
able. In general, as mentioned above, this can not be
assumed, since the Hellmann-Feynman force expression
is formally applicable only at the ground density. A more
detailed derivation of explicit force expressions is given
in the Appendix.

2. Entropy contribution

Depending on the particular functional form chosen for
the potential energy term, U(R;n), we may not have ac-
cess to a simple explicit expression of S[R;n] that fulfills
Eq. (10). In this case an approximate entropy term has
to be used. This has no effect on the dynamics in Eqs. (8)
and (9), since the forces remain exact by definition. An
approximation of the entropy term therefore only affects
the estimate of the constant of motion, Etot, in Eq. (11).

We have found that the regular expression for the elec-
tronic entropy9,

S[R;n] = −2kB
∑
i

{fi ln(fi) + (1− fi) ln(1− fi)} ,

(12)
which formally is defined only at the ground state den-
sity, i.e. when n = ρ, typically provides a highly accurate
approximation also for approximate densities as will be
illustrated in the examples below. Here fi are the occu-
pation numbers of the states, i.e. the eigenvalues of the
density matrix in Eq. (5). These are determined by the
Fermi-Dirac distribution of the single-particle eigenvalues
εi of the Hamiltonian H[n], i.e.

fi =
[
eβ(εi−µ) + 1

]−1
. (13)

By comparing the calculation of Etot in Eq. (11) using
the approximate entropy term, S[R;n], in Eq. (12) to
“exact”, fully optimized, Born-Oppenheimer molecular
simulations, we can estimate the accuracy of our dynam-
ics.

C. Fast quantum mechanical molecular dynamics

As in extended Lagrangian Born-Oppenheimer molec-
ular dynamics, the irreversibility of regular Born-
Oppenheimer molecular dynamics that is caused by the
self-consistent-field optimization, can be avoided, since

the density n(r) can be integrated using a reversible ge-
ometric integration algorithm35,36,44,45, e.g. the Verlet
algorithm as in Eq. (16) below. This prevents the un-
physical drift in the energy and phase space of regular
Born-Oppenheimer molecular dynamics12–14 and our dy-
namics will therefore exhibit long-term stability of the
free energy Etot in Eq. (11).

A main problem so far is that we still need to calcu-
late the self-consistent ground state density ρ(r) in the
integration of n(r) in Eq. (9). Fortunately, various ge-
ometric integrations of the auxiliary density n(r) in Eq.
(9) are stable also for approximate ground state density
estimates of ρ(r), as long as the approximation of ρ(r) is
at least infinitesimally closer to the exact ground state
compared to n(r). Using an integration time step of δt,
this stability holds if the value of the dimensionless vari-
able κ = δt2ω2 is chosen to be appropriately small36,45,46.
For energy functionals that are convex in the vicinity of
the ground state density we may therefore replace ρ(r)
in Eq. (9) by a linear combination (1− c)n+ cσ43, which
gives us the approximate equations of motion

MkR̈k = − ∂U [R;n]

∂Rk

∣∣∣∣
n

+ Te
∂S[R;n]

∂Rk

∣∣∣∣
n

, (14)

and

n̈(r) = ω2
(
σ(r)− n(r)

)
, (15)

where the constant ω2 has been rescaled by c. The Verlet
integration of Eq. (15), including a weak dissipation to
avoid an accumulation of numerical noise36,37,

nt+δt = 2nt − nt−δt + δt2ω2 (σt − nt) + α

K∑
k=0

cknt−kδt,

(16)
is therefore stable if a sufficiently small positive value of
κ = δt2ω2 is chosen36. Thus, without any self-consistent-
field optimization of ρ(r), the previously optimized values
of κ in Ref.36,45,46 should be rescaled by a positive factor
≤ 1. Certain ill behaved (non-convex) functionals with
self-consistent-field instabilities43 can not be treated in
this framework.

The proposed molecular dynamics as given by Eqs.
(14) and (15) is the central result of this paper. The
equations of motion do not involve any ground state
self-consistent-field optimization prior to the force eval-
uations and only one single diagonalization or density
matrix construction is required in each time step. The
frequency ω of the electronic density is well separated
from the nuclear vibrational oscillations. Using a value
of δtω =

√
κ ≈ 1 and an integration time step δt, which is

∼ 1/15 of the period of the nuclear motion, the frequen-
cies differ by a factor of 5. As will be demonstrated in
the examples below, the scheme is also fully compatible
with linear scaling electronic structure theory24,25. This
compatibility is crucial in order to simulate large sys-
tems. The removal of the costly ground state optimiza-
tion, in combination with low-complexity linear scaling
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FIG. 1: Total energy fluctuations, Eq. (11), using “exact” (4
SCF/step) Born-Oppenheimer molecular dynamics (BOMD),
and the fast quantum mechanical molecular dynamics, Eqs.
(14) and (15), (Fast-QMMD), with (τ > 0) or without (τ =
0) thresholding applied in the low pre-factor linear scaling
solver26. The simulations were performed with the molecular
dynamics program latte using self-consistent-charge density
functional based tight-binding theory in an orthogonal formu-
lation at Te = 0, i.e. as in Eqs. (57), (58) and (60).

solvers, provide a computationally fast quantum mechan-
ical molecular dynamics (Fast-QMMD) that can match
the fidelity and accuracy of regular Born-Oppenheimer
molecular dynamics.

There are several alternative approaches to derive or
motivate the equations of motion of the fast quantum
mechanical molecular dynamics, Eqs. (14) and (15), and
details of the dynamics may vary depending on the choice
of the functional form of U(R;n). However, the particu-
lar derivation presented here is the most transparent and
general approach that we have found so far.

The equations of motion are given in terms of the elec-
tron density, but they should be generally applicable to
a large class of methods, such as Hartree-Fock theory,
which is analyzed in the Appendix (Sec. VII A), or plane
wave pseudo-potential methods37. Here we will demon-
strate our fast quantum mechanical molecular dynam-
ics scheme using self-consistent-charge density functional
tight-binding theory47–50, as implemented in the elec-
tronic structure code latte51, either with an orthogonal
or a non-orthogonal representation and both at zero and
at finite electronic temperatures. With this method we
can easily reach the time and length scales necessary to
establish long-term energy conservation and linear scal-
ing of the computational cost. Details of the computa-
tional method and our particular choices of U(R;n) are
given in the Appendix.
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FIG. 2: Panel a) shows the x-plane phase space trajectory of
a single carbon atom (C) based on an “exact” (4 SCF/step)
Born-Oppenheimer molecular dynamics (BOMD, dashed line)
and the fast quantum mechanical molecular dynamics (Fast-
QMMD, solid line). Panel b) shows the fluctuations in the net
auxiliary charge ni(t) and ground state charge qi(t) for the
same carbon atom (i=C). The numerical threshold τ is ap-
plied in the linear scaling solver26. The simulations were per-
formed with the program latte using self-consistent-charge
tight-binding theory in an orthogonal formulation at zero elec-
tronic temperature, i.e. as in Eqs. (57), (58) and (60).

TABLE I: Wall clock timings of the fast quantum mechanical
molecular dynamics (Fast-QMMD) simulations in compari-
son to Born-Oppenheimer molecular dynamics (BOMD) (4
SCF/step), without (τ = 0) and with (τ > 0) a low pre-factor
linear scaling solver for the density matrix26 with threshold
tolerance τ . The program (latte in its orthogonal formula-
tion at Te = 0) was executed on a single core of a 2.66 GHz
Quad-Core Intel Xeon processor.

Polyethene chain C100H202 Efficiency
BOMD (τ = 0) 7.5 s/step
Fast-QMMD (τ = 0) 1.5 s/step
Fast-QMMD (τ = 10−5) 0.61 s/step

Liquid Methane (CH4)100 Efficiency
BOMD (τ = 0) 12.5 s/step
Fast-QMMD (τ = 0) 2.5 s/step
Fast-QMMD (τ = 10−5) 0.35 s/step

III. EXAMPLES

A. Orthogonal representation

Figure 1 shows the fluctuations in the total energy (ki-
netic plus potential) using the fast quantum mechani-
cal molecular dynamics, Eqs. (14) and (15), as imple-
mented in Eqs. (57), (58) and (60), and an “exact” Born-
Oppenheimer molecular dynamics35, for liquid methane
(density = 0.422 g/cm3) at room temperature. The cal-
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culations were performed with the latte molecular dy-
namics program using periodic boundary conditions and
an integration time step of δt = 0.5 fs. Since the molecu-
lar system is chaotic, any infinitesimally small deviation
will eventually lead to a divergence between different sim-
ulations. However, even after hundreds of time steps and
over 300 fs of simulation time the total energy curves are
virtually on top of each other as is seen in the inset. The
same remarkable agreement is seen in Fig. 2, which shows
the projected phase space of an individual carbon atom
and the fluctuations of its net charge. In this case the C
atom was displaced compared to the simulation in Fig. 1
to further enhance the charge fluctuations.

B. Linear scaling

The fast quantum mechanical molecular dynamics
scheme is also stable in combination with approximate
linear scaling sparse matrix algebra24,25. Using the re-
cursive second order spectral projection method for the
construction of the density matrix26 with a numerical
threshold, τ = 10−5, below which all elements are set to
zero after each individual projection, we notice excellent
accuracy and stability in Fig. 1 without any systematic
drift in the total energy.

Despite their high efficiency and low computational
pre-factor compared to alternative linear scaling elec-
tronic structure methods52, it has been argued that re-
cursive purification algorithms are non-variational and
therefore incompatible with forces of a conservative
system25, which is necessary for long-term energy con-
servation. As is evident from Figs. 1 and 2, this is
not a problem. The graphs are practically indistinguish-
able from “exact” Born-Oppenheimer molecular dynam-
ics, without any signs of a systematic drift in the to-
tal energy. The corresponding linear scaling compati-
bility with microcanonical simulations was recently also
demonstrated for self-consistent-field-optimized extended
Lagrangian Born-Oppenheimer molecular dynamics27.

The gain in speed using the fast quantum mechani-
cal molecular dynamics scheme in comparison to Born-
Oppenheimer molecular dynamics is illustrated by the
wall-clock timings shown in Tab. I.

C. Non-orthogonal representation

For non-orthogonal representations at finite electronic
temperatures, a Pulay force term and a finite approxi-
mate entropy contribution to the total free energy have
to be included. Figures 3 and 4 illustrate the total energy
fluctuations for the fast quantum mechanical molecular
dynamics simulations of a hydrocarbon chain as imple-
mented in latte using Eqs. (50), (51) and (55), with
the approximate entropy term in Eq. (56). The elec-
tronic temperature of the examples in Figure 3 is set
to zero, kBTe = 0 eV, and for the examples in Fig. 4,
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FIG. 3: Total energy fluctuations, Eq. (11), using “exact” (4
SCF/step) Born-Oppenheimer molecular dynamics (BOMD),
and the fast quantum mechanical molecular dynamics, Eqs.
(14) and 15), (Fast-QMMD), with (τ = 10−5) or without (τ =
0) thresholding applied in the low pre-factor linear scaling
solver26. The simulations were performed with the molecular
dynamics program latte in the non-orthogonal formulation
at kBTe = 0 eV, i.e. as implemented in Eqs. (50), (51) and
(55) with the entropy term approximated by S = 0.

kBTe = 2 eV. In the first time step the initial nuclear
temperature, Tinit, was set to 300 K using a Gaussian
distribution of the velocities. Despite the approximation
of ρ in Eq. (15) and the approximate estimate of the en-
tropy contribution to the free energy there is virtually no
difference seen between the fast quantum mechanical and
the Born-Oppenheimer molecular dynamics simulations.

As in the orthogonal case, the non-orthogonal formula-
tion of our fast quantum mechanical molecular dynamics
is fully compatible with linear scaling complexity in the
construction of the density matrix at Te = 0 K. In Fig.
3 the reduced complexity simulation shows no significant
deviation from “exact” Born-Oppenheimer molecular dy-
namics. At finite electronic temperatures, the linear scal-
ing construction of the Fermi operator28,42 has not yet
been implemented.

D. Long-term stability and conservation of the
total energy

To assess the long-term energy conservation and the
stability we use a test system comprised of 16 molecules
of isocyanic acid, HNCO, at a density of 1.14 g cm−3.
The system was first thermalized to a temperature of
300 K over a simulation time of 12.5 ps by the rescaling
of the nuclear velocities. The simulations used an inte-
gration time step, δt, of 0.25 ps. The simulations were
performed using self-consistent tight-binding theory47–50

with a non-orthogonal basis as implemented in latte,
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FIG. 4: Total free energy fluctuations, Eq. (11), using “ex-
act” (4 SCF/step) Born-Oppenheimer molecular dynamics
(BOMD), and the fast quantum mechanical molecular dy-
namics, Eqs. (14) and (15), (Fast-QMMD). The simulations
were performed with the molecular dynamics program latte
using the non-orthogonal formulation at an electronic temper-
ature of kBTe = 0.5 eV, i.e. as implemented in Eqs. (50), (51)
and (55) with the entropy term approximated by Eq. (56).

using Eqs. (50), (51) and (55) with the entropy term ap-
proximated by Eq. (56).

Fast quantum mechanical molecular dynamics and
“exact” Born-Oppenheimer molecular dynamics simula-
tions with 4 self-consistent field cycles per time step were
performed over 250,000 time steps (62.5 ps) with Te = 0
K and kBTe = 0.5 eV. The latter temperature is small
with respect to the HOMO-LUMO gap of HNCO, which
is about 6.0 eV, yet the entropy term, Eq. (12) or Eq.
(56), contributes about 0.19 eV to the total energy ow-
ing to the partial occupation of states in the vicinity of
the chemical potential. Trajectories computed at Te = 0
K with “exact” Born-Oppenheimer molecular dynamics
and the fast quantum mechanical molecular dynamics
method without (τ = 0) and with (τ = 10−5) linear scal-
ing constructions of the density matrix are presented in
Fig. 5. The standard deviation of the fluctuations of the
total energy about its mean and an estimate of the level
of the systematic drift of the total energies are presented
in Table II. These data show that the fast quantum me-
chanical molecular dynamics simulations yield trajecto-
ries that are effectively indistinguishable from the “ex-
act” Born-Oppenheimer trajectories. Moreover, as was
seen above, the fast quantum mechanical molecular dy-
namics scheme appears to be fully compatible with lin-
ear scaling construction of the density matrix and the
resulting approximate forces, since this trajectory differs
from the “exact” Born-Oppenheimer molecular dynam-
ics trajectory only by a small-amplitude random-walk of
the total energy about its mean27. The systematic drift
in energy is several orders of magnitude smaller than in
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FIG. 5: Total energy versus time for liquid isocyanic acid
with a nuclear temperature of 300 K and Te = 0 K computed
with “exact” Born-Oppenheimer MD and the Fast QMMD
method with exact and approximate linear scaling density
matrix constructions. The numerical threshold τ is applied
in the linear scaling solver26 below which all matrix elements
are set to zero after each iteration.

previous attempts to combine linear scaling solvers with
regular Born-Oppenheimer molecular dynamics29–32.

The trajectories computed with an electronic temper-
ature corresponding to kBTe = 0.5 eV differ qualitatively
from those computed with zero electronic temperature.
Figure 6 and Table II show that while the “exact” Born-
Oppenheimer trajectory conserves the free energy to an
extremely high tolerance over the duration of the simula-
tion, the total free energy in the fast quantum mechanical
molecular dynamics simulation exhibit random-walk be-
haviour about the mean value. Although the fast quan-
tum mechanical molecular dynamics simulations involve
an approximate expression for the entropy, we find that
this alone cannot account for the level of fluctuations ob-
served. Instead, we have found that the rescaling of the
κ value in the integration, Eq. (16), affects this random-
walk. By changing the rescaling factor to 3/4, instead
of 1/2 as in all the other examples, the amplitude of the
random walk is significantly reduced. Nevertheless, the
fast quantum mechanical molecular dynamics trajecto-
ries at finite electronic temperature exhibit systematic
drifts in the total energy that are negligible and the fluc-
tuations of the total energy about the mean are of the
same order as those that arise from the application of the
approximate linear scaling method at Te = 0 K.

IV. CONVERGENCE PROPERTIES

The fast quantum mechanical molecular dynamics
scheme, Eqs. (14) and (15), can also be analyzed in
terms of the convergence to “exact” Born-Oppenheimer
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FIG. 6: Total free energy versus time for liquid isocyanic acid
with a nuclear temperature of 300 K and kBTe = 0.5 eV com-
puted with “exact” Born-Oppenheimer molecular dynamics
(BOMD) and the fast quantum mechanical molecular dynam-
ics (Fast-QMMD) method with κ rescaled by 3/4 instead of
1/2.

TABLE II: Standard deviation, σ, of the total energy about
its mean value and the upper bound of the systematic drift
of the total energy, Edrift, computed from “exact” Born-
Oppenheimer molecular dynamics (BOMD) and fast quantum
mechanical molecular dynamics (Fast-QMMD) simulations of
liquid isocyanic acid. The simulation were performed with the
latte program in the non-orthogonal formulation, i.e. as im-
plemented in Eqs. (50), (51) and (55) with the entropy term
approximated by Eq. (56).

kBTe σ Edrift

(eV) (µeV) (µeV/atom/ps)
Fast-QMMD (τ = 0) 0.315 5.10× 10−3

0.0 Fast-QMMD (τ = 10−5) 0.702 0.285
BOMD (4 SCF/step) 0.358 9.94× 10−3

Fast-QMMD (1/2)κ 2.47 1.43
0.5 Fast-QMMD (3/4)κ 0.786 7.85× 10−2

BOMD (4 SCF/step) 0.361 8.50× 10−2

molecular dynamics as a function of the finite integra-
tion time step δt. By comparing the deviation in forces,
net Mulliken charges, and the total energy, between the
fast quantum mechanical molecular dynamics scheme
and an “exact” Born-Oppenheimer molecular dynamics
as a function of δt we can study the consistency between
the two methods. Figure 7 shows the difference between
a fully converged “exact” Born-Oppenheimer molecular
dynamics simulation and the fast quantum mechanical
molecular dynamics scheme as measured by the root
mean square deviation over 200 fs of simulation time. We
find that the deviation of the nuclear forces, the charges
{qi}, as well as the total energy difference are of the or-
der δt2 with a small pre-factor. This convergence demon-

-3 -2 -1
log

2
(dt) (fs)

-20

-18

-16

-14

-12

-10

lo
g 2(R

M
SD

)

Force
Charge
Energy

Naphthalene (C
10

H
8
)

FIG. 7: The root mean square deviation (RMSD) between the
fast quantum mechanical molecular dynamics, Eqs. (14)-(15),
and “exact” (4 SCF/step) Born-Oppenheimer molecular dy-
namics, for the nuclear forces, the net Mulliken charges and
the total energy for a Naphthalene molecule at room temper-
ature. The simulation were performed with the latte molec-
ular dynamics program using self-consistent-charge tight-
binding theory in an orthogonal formulation at Te = 0, i.e. as
implemented in Eqs. (57), (58) and (60) with S = 0..

strates a consistency between the fast quantum mechan-
ical scheme and Born-Oppenheimer molecular dynam-
ics using Verlet integration, where the optimization-free
scheme behaves as a well controlled and tunable approxi-
mation. As in “exact” Born-Oppenheimer molecular dy-
namics, the dominating error is governed by the local
truncation error arising from the choice of finite integra-
tion time step δt, which is much larger than any difference
between the fast quantum mechanical molecular dynam-
ics and Born-Oppenheimer molecular dynamics.

V. SUMMARY AND CONCLUSIONS

Based on a free energy formulation of extended La-
grangian Born-Oppenheimer molecular dynamics in the
limit of vanishing self-consistent-field optimization, we
have derived and demonstrated a fast quantum mechani-
cal molecular dynamics scheme, Eqs. (14) and (15), which
with a high precision can match the accuracy and fidelity
of Born-Oppenheimer molecular dynamics. In addition
to the removal of the self-consistent-field optimization we
have also demonstrated compatibility with low pre-factor
linear scaling solvers. The combined scheme provides a
very efficient, energy conserving, low-complexity method
to perform accurate quantum molecular dynamics simu-
lations. Our findings show how the computational gap
between classical and quantum mechanical molecular dy-
namics simulations can be reduced significantly.
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VII. APPENDIX

A. Calculating the forces in Hartree-Fock theory

Here we present some details of the fast quantum me-
chanical molecular dynamics, Eqs. (14) and (15), using a
simple but general Hartree-Fock formalism, which should
be directly applicable to a broad class of hybrid and semi-
empirical electronic structure schemes. Instead of the
auxiliary density variable n(r) we will here use the more
general density matrix P . In this formalism the extended
free-energy Lagrangian in Eq. (4) is given by

L(R, Ṙ;P, Ṗ ) =
1

2

∑
k

MkṘ
2
k − U [R;P ] + TeS[R;P ]

+
1

2
µTr[Ṗ 2]− 1

2
µω2Tr[(Dgs − P )2],

(17)
with the potential energy chosen as

U [R;P ] = 2Tr[hD(P )] + Tr{D(P )G[D(P )]}, (18)

and ground state (gs) density matrix Dgs. S[R;P ] is
an unspecified electronic entropy term, which will be de-
termined by the requirement to make the derived forces
variationally correct, and Te is the electronic tempera-
ture. The Fockian (or the effective single-particle Hamil-
tonian) is

F [P ] = h+G[P ], (19)

with the short-hand notation, G[P ] = 2J [P ] − K[P ],
where J [P ] and K[P ] are the conventional Coulomb and
exchange matrices, and h is the matrix of the one-electron
part5,6. The temperature dependent density matrix

D(P ) = Z
(
eβ(F

⊥[P ]−µ0I) + 1
)−1

ZT , (20)

which corresponds to σ[n] in Eq. (5), is given as a Fermi
function of the orthogonalized Fockian,

F⊥[P ] = ZTF [P ]Z. (21)

Here Z and its transpose ZT are the inverse Löwdin
or Cholesky-like factors of the overlap matrix, S, deter-
mined by the relation

ZTSZ = I. (22)

At zero electronic temperature (Te = 0 K) the Fermi-
operator expansion in Eq. (20) is given by the Heaviside
step function, with the step formed at the chemical po-
tential µ0, separating the occupied from the unoccupied
states.

The Euler-Lagrange equations of motion of L in Eq.
(17) are given by

MkR̈k = − ∂U
∂Rk

∣∣∣∣
P

+ Te
∂S
∂Rk

∣∣∣∣
P

− 1

2
µω2 ∂

∂Rk
Tr[(Dgs − P )2]

∣∣∣∣
P

,

(23)

and

µP̈ = µω2(Dgs − P )− ∂U
∂P

∣∣∣∣
R

+ Te
∂S
∂P

∣∣∣∣
R

. (24)

A cumbersome but fairly straightforward derivation (see
Ref.42 for a closely related example), using the relation
and notation ZRk

= ∂Z/∂Rk = −(1/2)S−1SRk
Z, and

defining the S term such that

Te
∂S
∂Pij

∣∣∣∣
R

= 2Tr
[
F⊥[D]D⊥Pij

]
(25)

and

Te
∂S
∂Rk

∣∣∣∣
P

= 2Tr
[
F⊥[D]D⊥Rk

]
, (26)

gives the equations of motion

MkR̈k = −2Tr[hRk
D]− Tr[DGRk

(D)]

+Tr[(DF [D]S−1 + S−1F [D]D)SR]

− 1

2
µω2 ∂

∂Rk
Tr[(Dgs − P )2]

∣∣∣∣
P

,

(27)

and

µP̈ = µω2(Dgs − P ). (28)

Notice that because of matrix symmetry Pij is not in-
dependent form Pji. The partial derivatives of matrix
elements Pij are therefore both over Pij and Pji. In the
limit µ→ 0, we get the final equations of motion for the
fast quantum mechanical molecular dynamics scheme,

MkR̈k = −2Tr [hRk
D]− Tr [DGRk

(D)]

+Tr
[
(DF [D]S−1 + S−1F [D]D)SRk

]
,

(29)

P̈ = ω2 (D(P )− P ) , (30)

where we have included the substitution of Dgs with
D(P ) in the same way as in Eq. (15), i.e. with ω2

rescaled by a constant c ≤ 1. The notation for the
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partial derivative of the two-electron term is defined as
GRk

(D) = ∂G(D)/∂Rk|D, i.e. under the condition of
constant density matrix D.

The last term in Eq. (29), which includes the basis-set
dependence SRk

is the Pulay force term that here is given
in a generalized form that is valid also for non-idempotent
density matrices at finite electronic tememperatures42.

B. Approximate Entropy contribution

The S[R;P ] term is defined such that the two con-
ditions in Eqs. (25) and (26) are fulfilled. At the self-
consistent ground state density, i.e. when P = D = Dgs,
both these conditions are automatically satisfied by the
corresponding regular ground state (gs) electronic en-
tropy contribution to the free energy9,

Sgs[R;P ] = Sgs[R;D⊥(P )]

= −2kBTr[D
⊥ ln(D⊥) + (I −D⊥) ln(I −D⊥)],

(31)

where the relation between D⊥ and D is given by the
congruence transformation

D = ZD⊥ZT . (32)

A related derivation is given in Ref.42. Using the ap-
proximate estimate Sgs[R;P ] in Eq. (31) when P and D
deviate from the ground state gives,

Te
∂S
∂Pij

∣∣∣∣
R

= 2Tr
[
F⊥[P ]D⊥Pij

]
,

Te
∂S
∂Rk

∣∣∣∣
P

= 2Tr
[
F⊥[P ]D⊥Rk

]
,

(33)

which only approximately fulfills the conditions in Eqs.
(25) and (26). It is possible to show that the error is
linear in δP = D−P by a linearization of F⊥[D] around
P . Since D(P ) and P can be assumed to be close to the
ground state, δP is small. From the scaling result illus-
trated in Fig. 7 the error should therefore be quadratic
in the integration time step, i.e. ∼ δt2. We may therefore
approximate the total free energy using Sgs[R;P ], which
is zero at Te = 0 K. However, for the exact formulation
and derivation of the equations of motion, Eqs. (29) and
(30), the entropy contribution, TeS[R;P ], is unknown,
both at finite and zero temperatures. As is seen in the
equations of motion, Eqs. (29) and (30), this does not
affect the forces or the dynamics, only the estimate of
the constant of motion,

Etot =
1

2

∑
k

MkṘ
2
k + U [R;P ]− TeS[R;P ], (34)

is approximated. By comparing the approximate Etot

to optimized “exact” Born-Oppenheimer molecular dy-
namics simulations, the accuracy of the dynamics can be
estimated.

C. Alternative potential energy forms

As an alternative to the potential energy, U(R;P ), in
Eq. (18) we may chose other functional forms that are
equivalent at the ground state, i.e. when P = D = Dgs.
By using the Harris-Foulkes-like relation33,34,

Tr[DG(D)] ≈ Tr[(2D − P )G(P )], (35)

which has an error of second order in δP = D − P , we
may, for example, choose

U [R;P ] = 2Tr[hD(P )] + Tr{[2D(P )− P ]G(P )}, (36)

as our potential energy term. In this case, the equations
of motion at Te = 0 corresponding to Eqs. (29) and (30)
become

MkR̈k = −2Tr [hRk
D]− Tr{[2D − P ]GRk

(P )}

+Tr
[
(DF [P ]S−1 + S−1F [P ]D)SRk

]
,

(37)

and

P̈ = ω2 (D − P ) , (38)

with the constant of motion

Etot =
1

2

∑
k

MkṘ
2
k + 2Tr[hD]

+Tr{(2D − P )G(P )} − TeS(R;P ).

(39)

The entropy term that makes the nuclear forces varia-
tionally correct is here fulfilled by the expression in Eq.
(31). With this choice of potential our dynamics only
requires one Fockian or effective single particle Hamito-
nian construction per time step. Unfortunately, the error
in the Pulay force has been found to be large compared
to Eq. (29). The dynamics in Eqs. (37) and (38) should
therefore be used only for orthogonal representations, i.e.
when the overlap matrix S = I.

D. Self-Consistent-Charge Density Functional
Tight-Binding Theory

In self-consistent-charge density functional based tight-
binding theory47–50 the continuous electronic density,
σ(n), or the density matrix, D(P ), in Eq. (18) is replaced
by the net Mulliken charges q[n] = {qi} for each atom i,
where n = {ni} are the dynamical variables correspond-
ing to P . The potential energy functional U in Eq. (18)
is then reduced to

U [R;n] = 2
∑
i∈occ

εi−
1

2

∑
i,j

qi(n)qj(n)γij+Epair[R]. (40)

Here εi are the (doubly) occupied eigenvalues of the
charge dependent effective single-particle Hamiltonian

Hiα,jβ [n] = hiα,jβ

+(1/2)
∑
kβ′

(
Siα,kβ′V eekβ′,jβ + V eeiα,kβ′Skβ′,jβ

) (41)
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where

V eejβ,kβ′ =
∑
l

ql(n)γjlδjkδβ′β , (42)

hiα,jβ is a parameterized Slater-Koster tight-binding
Hamiltonian, Siα,jβ the overlap matrix, i and j are
atomic indices and α and β are orbital labels51. The
net Mulliken charges are given by

qi[n] = 2
∑
α∈i

(
%⊥iα,iα − %0

⊥
iα,iα

)
, (43)

with the density matrix

%⊥ = %⊥[n] =
(
eβ(H

⊥[n]−µ0I) + 1
)−1

, (44)

using the orthogonalized Hamiltonian

H⊥[n] = ZTH[n]Z. (45)

Here %0 is the density matrix of the corresponding sepa-
rate non-interacting atoms. The de-orthogonalized den-
sity matrix is

% = %[n] = Z%⊥[n]ZT , (46)

and as above, the congruence transformation factors are
defined through

ZTSZ = I, (47)

where S is the basis set overlap matrix.
The electron-electron interaction in Eq. (40) is deter-

mined by γij , which decays like 1/R at large distances
and equals the Hubbard repulsion for the on-site interac-
tion. Epair[R] is a sum of pair potentials, φ(R), that pro-
vide short-range repulsion. The radial dependence, ζ(R),
of the Slater-Koster bond integrals, elements of the over-
lap matrix, and the φ(R) are all represented analytically
in latte by the mathematically convenient form,

ζ(R) = A0

4∏
i=1

exp (AiR
i), (48)

where A0 to A4 are adjustable parameters that are fitted
to the results of quantum chemical calculations on small
molecules. To ensure that the off-diagonal elements of h
and S and the φ(R) in our self-consistent tight-binding
implementation decay smoothly to zero at a specified dis-
tance, Rcut, we replace the ζ(R) by cut-off tails of the
form,

t(R) = B0 + ∆R(B1 + ∆R(B2

+ ∆R(B3 + ∆R(B4 + ∆RB5)))) (49)

at R = R1, where ∆R = R − R1 and B0 to B5 are
adjustable parameters. The adjustable parameters are
parameterized to match the value and first and second
derivatives of t(R) and ζ(R) at R = R1 and to set the
value and first and second derivatives of t(R) to zero at
R = Rcut.

1. Non-orthogonal representation at Te ≥ 0

The fast quantum mechanical molecular dynamics
scheme, Eqs. (29) and (30) or Eqs. (8) and (9), using
self-consistent tight-binding theory in its non-orthogonal
formulation is given by

MkR̈k = −2Tr [%HRk
]

+
1

2

∑
i,j

qiqj
∂γij
∂Rk

+
∑
i,j

qiγij
∂qj
∂Rk

∣∣∣∣
%

+Tr[(S−1H[q]%+ %H[q]S−1)SRk
]− ∂Epair[R]

∂Rk
,

(50)

and

n̈i = ω2 (qi − ni) , (51)

where

HRk
=

∂H

∂Rk

∣∣∣∣
%

(52)

and

SRk
=

∂S

∂Rk
. (53)

The partial derivatives of qj and H in Eqs. (50) and
(52) are with respect to a constant density matrix % in
its non-orthogonal form, i.e. including an S dependence
of qj ,

∂qj
∂Rk

∣∣∣∣
%

= 2
∑
α∈j

(%SRk
)jα,jα . (54)

The total energy is given by

Etot =
1

2

∑
k

MkṘ
2
k + 2

∑
i∈occ

εi

−1

2

∑
i,j

qiqjγij + Epair[R]− TeS[R;n],

(55)

with the entropy contribution to the free energy approx-
imated by

S[R;n] ≈ −2kB
∑
i

{fi ln(fi) + (1− fi) ln(1− fi)} .

(56)
Here fi = fi[n] are the eigenstates of the Fermi operator
expansion %⊥[n] of H⊥[n] in Eq. (44).

2. Orthogonal representation at Te = 0

For orthogonal formulations, i.e. when S = I, and at
zero electronic temperature, Te = 0, we will base our
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dynamics on the equations of motion in Eqs. (37) and
(38). In this case the fast quantum mechanical molecular
dynamics scheme, Eqs. (50)-(51), is given by

MkR̈k = −2Tr [%HRk
] +

1

2

∑
i,j

(
ninj

∂γij
∂Rk

)
−∂Epair[R]

∂Rk
,

(57)

n̈i = ω2 (qi − ni) , (58)

where

{HRk
[n]}iα,jβ =

∂hiα,jβ
∂Rk

+
∑
l

nl
∂γil
∂Rk

δijδαβ . (59)

The density matrix is given directly from the step func-
tion of the Hamiltonian, % = θ(µ0I −H[n]), without any
de-orthogonalization that requires the calculation of the
inverse factorization of the overlap matrix, Eq. (47). The
constant of motion, Etot, is approximate by

Etot =
1

2

∑
k

MkṘ
2
k + 2

∑
i∈occ

εi

−1

2

∑
i,j

(2ni − qi)njγij + Epair[R].

(60)

3. General remarks

Apart from the first few initial molecular dynam-
ics time steps, where we apply a high degree of self-
consistent-field convergence and set n = q, no ground
state self-consistent-field optimization is required. The
density matrix, %, and the Hamiltonian, H, necessary in
the force calculations (and for the total energy) are cal-
culated only once per time step in the orthogonal case
with one additional construction of the Hamiltonian re-
quired in non-orthogonal simulations. The numerical in-
tegration of the equations of motion in Eq. (14) is per-
formed with the velocity Verlet scheme and in Eq. (15)
with the modified Verlet scheme in Eq. (16) as described
in Ref.36. For the examples presented here we used the
modified Verlet scheme including dissipation (α > 0)
with K = 5 and the constant κ = δt2ω2 as given in Ref.36

was rescaled by a factor 1/2 in all examples except for
one of the test cases in Fig. 6.
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