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The lattice thermal conductivity (κ) of the thermoelectric materials, Mg2Si, Mg2Sn, and their al-
loys, are calculated for bulk and nanowires, without adjustable parameters. We find good agreement
with bulk experimental results. For large nanowire diameters, size effects are stronger for the alloy
than for the pure compounds. For example, in 200 nm diameter nanowires κ is lower than its bulk
value by 30%, 20%, and 20% for Mg2Si0.6Sn0.4, Mg2Si, and Mg2Sn respectively. For nanowires less
than 20 nm thick, the relative decrease surpasses 50%, and it becomes larger in the pure compounds
than in the alloy. At room temperature, κ of Mg2SixSn1−x is less sensitive to nanostructuring size
effects than SixGe1−x, but more sensitive than PbTexSe1−x. This suggests that further improvement
of Mg2SixSn1−x as a non-toxic thermoelectric may be possible.

PACS numbers: 66.70.Df,63.22.Gh,63.20.dk,84.60.Rb

I. INTRODUCTION

In the last decade, nanostructuring has proven to be a
successful way to improve materials’ thermoelectric fig-
ures of merit (ZT).1,2 In most cases, enhancements in ZT
result from reducing the lattice thermal conductivity. In
particular, semiconductor alloys (or solid solutions) can
be considerably improved, because the mean free paths of
the main heat carrying phonons in these systems are typ-
ically much longer than the electronic mean free paths.
Empirically, it is typically easier to turn a mediocre bulk
thermoelectric into a reasonably good nanostructured
thermoelectric, but it is difficult to improve an already
good bulk thermoelectric. Since many leading thermo-
electrics rely on toxic or expensive elements, improving
the ZT of cheaper and less toxic compounds could lead to
cost-effective and environmentally friendly alternatives.

Since the early investigations of Ioffe3, the best known
thermoelectric material for medium temperature ( 800K)
applications, such as car exhaust energy harvesting, is
highly toxic lead telluride (PbTe). In recent times,
Mg2SixSn1−x alloys have emerged as a possible alterna-
tive to PbTe for medium temperature applications.4,5 A
key question is whether Mg2SixSn1−x can be improved by
nanostructuring, and by how much. Mg2SixSn1−x alloys
have a κ more than 4 times lower than the pure phases.
If the low κ of alloys is due to disorder only, rather than
due to grain boundaries or other natural nanostructure
effects, then engineered nanostructuring could result in
even lower conductivities. A previous empirical model
has predicted important nanostructuring effects through
nanoinclusions, but it assumed that the intrinsic conduc-
tivity of the alloy was only limited by disorder.6 To re-
liably determine the role played by extrinsic scattering
mechanisms in Mg2SixSn1−x alloys, it is important to
have an accurate microscopic treatment of the intrinsic κ
due to phonon-phonon scattering. In this paper we rig-
orously determine κ of Mg2Si, Mg2Sn, and their alloys,
from first principles, as limited by phonon-phonon, iso-

topic impurity, and alloy scattering. We find κ for these
systems in good agreement with experimental measure-
ments. We also examine the role of boundary scattering
in nanowires of Mg2Si, Mg2Sn, and their alloys. We show
that, at room temperature, the κ of nanowires made of
these materials can be reduced by half for nanowires of
small diameter ∼20 nm.

II. METHODOLOGY

We employ the linearized Boltzmann transport equa-
tion for phonons (BTE) to examine κ for both bulk sys-
tems and nanostructures. The second order and the third
order interatomic force constants (IFCs), which deter-
mine the phonon dispersions and scattering properties,
are obtained from ab initio density functional theory cal-
culations.

A. BTE

At thermal equilibrium in the absence of a tempera-
ture gradient, the phonon distribution obeys the Bose-
Einstein distribution function f0(ωλ), where for each
phonon mode, we use the shorthand λ ≡ (p,q), where
p is the branch index, and q is the wavevector. In the
presence of a temperature gradient ∇T , the steady state
phonon distribution function, fλ, can be obtained from
the BTE,7,8

∇T · vλ

∂fλ
∂T

=
∂fλ
∂t

|scatt. (1)

The left hand side of the equation is a diffusion term
due to a temperature gradient, and the right hand side
is determined by the specific scattering events occur-
ring in the system, such as anharmonic scattering due
to phonon-phonon interactions and harmonic scattering
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due to impurities and defects. For a small tempera-
ture gradient, Eq. (1) can be linearized in ∇T so that
fλ = f0(ωλ)+gλ, where gλ linearly depends on ∇T . It is
convenient to write gλ in terms of phonon lifetimes τλ as
gλ = − dT

dz
vzλ

df0
dT

τλ, where we take the temperature gradi-
ent along the z direction. The BTE can then be written
as9–14

τλ = τ0λ(1 + ∆λ), (2)

where

∆λ ≡
1

N

+
∑

λ′p′′

Γ+
λλ′λ′′ (ξλλ′′τλ′′ − ξλλ′τλ′)

+
1

N

−
∑

λ′p′′

1

2
Γ−
λλ′λ′′ (ξλλ′′τλ′′ + ξλλ′τλ′)

+
1

N

∑

λ′

Γλλ′ξλλ′τλ′ ,

1/τ0λ ≡
1

N
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 , (3)

where N is the number of q sampling in the Brillouin
zone, ξλλ′ ≡ ωλ′vzλ′/ωλv

z
λ. In the summation

∑±
, λ′′ =

(p′′,q ± q′ + K), and K is a reciprocal lattice vector,
which is zero for momentum-conserving Normal processes
and nonzero for resistive Umklapp processes. The three-
phonon scattering rates Γ±

λλ′λ′′ can be expressed as

Γ±
λλ′λ′′ =

h̄π

4

{

f ′
0 − f ′′

0

f ′
0 + f ′′

0 + 1

}

δ(ωλ ± ωλ′ − ωλ′′)

ωλωλ′ωλ′′

|V ±
λλ′λ′′ |

2,(4)

where for simplicity, f ′
0 ≡ f0(ωλ′), etc., and the upper

(lower) row in curly brackets goes with the + (-) sign,
and the δ- function ensures the conservation of energy.
The scattering matrix elements V ±

λλ′λ′′ are given by:13,14

V ±
λλ′λ′′ =

∑

i∈u.c.

∑

j,k

∑

αβγ

Φαβγ
ijk

eαλ(i)e
β
p′,±q′(j)e

γ
p′′,−q′′(k)

√

MiMjMk

,(5)

and depend on the eigenfunctions of the three phonons
involved, and the third order interatomic force constants

Φαβγ
ijk = ∂3E

∂rαi ∂r
β
j ∂r

γ

k

. The atomic indices are given by i,

j and k and the Cartesian components by α, β, and γ.
In the sums, i runs through just one unit cell, which we
shall call the central unit cell; j and k run over the whole
system. rαi and Mi are the α component of the displace-
ment from the equilibrium position and the mass of the
i-th atom respectively. eαλ(i) denotes the α component
of the eigenfunction of mode λ at the i-th atom. These
eigenfunctions are normalized to 1 inside the unit cell.
Generally we have ep,−q = e∗p,q.

We include an isotopic impurity scattering probability
Γλλ′ given by 12,15

Γλλ′ =
πω2

2

∑

i∈u.c.

g(i)|e∗λ(i) · eλ′(i)|2δ(ω − ω′), (6)

where the mass variance, g(i), is given by g(i) =
∑

s fs(i)(1 − Ms(i)/M̄(i))2, with fs(i) and Ms(i) being
the concentration and mass of the s-th isotope of atom
i and M̄(i) the average mass of the i-th atom in the
unit cell. The mass variances for Mg, Si and Sn are
7.399×10−4, 2.007×10−4 and 3.341×10−4, respectively.
We use a virtual crystal approach to treat Mg2SixSn1−x,
where the lattice constant, masses and IFCs of the vir-
tual crystal are taken as the average of those for the
constituent materials depending on the concentration.16

Furthermore, the disorder of IFCs is neglected, and the
alloy mass disorder is included in the same way as the
isotopes.

Eq. (2) is solved numerically for τλ with an iterative

approach. The zeroth order solution τ
(0)
λ = τ0λ , which

neglects ∆λ, is equivalent to the relaxation time approx-
imation (RTA). This iterative procedure is important for
materials like diamond where a significant portion of the
phonon-phonon scattering events are due to Normal pro-
cesses. However, in materials like silicon and germanium
with strong Umklapp scattering, the iterative procedure
leads to less than a 10% increase in the room tempera-
ture thermal conductivity compared to the RTA result13.
For Mg2Si, Mg2Sn, and the alloys studied in this paper,
we also find the iteration is not important, for instance,
the differences are 1.7% and 0.5% for Mg2Si and Mg2Sn
respectively at 300K.

With τλ determined, the heat flux can be calculated,
and κ obtained as

κ =
1

NV kBT 2

∑

λ

f0(f0 + 1) (h̄ωλ)
2
(vzλ)

2τλ, (7)

where V is the volume of the unit cell. The bulk κ is a
scalar, for the cubic structures considered here. In nanos-
tructures like nanowires, the phonon lifetimes are posi-
tion dependent due to the presence of the nanowire walls.
For this case, the BTE has an additional space-dependent
term

1 = (τ0λ)
−1τr,λ −∆r,λ + vλ · ∇τr,λ, (8)

where the dependence of ∆r,λ on τr,λ is the same as
that for ∆λ on τλ. Previously we have presented an
approximate iterative solution to Eq.(8).17 Since for
Mg2SixSn1−x, ∆r,λ can be neglected, one has the formal
solution8

τr,λ = τ0λ{1− e
−|

r−rb
τ0vλ

|
Gr,λ}, (9)

where rb is a point on the surface of the nanowire where
a phonon in mode λ can reach moving backwards from r,
and Gr,λ is determined by the boundary conditions. For
completely diffusive boundary scattering, as considered
here, Gr,λ = 1. The average of τr,λ over the cross section,
τ̄λ, can thus be obtained as

τ̄λ = τ0λ

(

1

Sc

∫

Sc

{1− e
−|

r−rb
τ0vλ

|
}ds

)

, (10)
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with Sc being the nanowire cross section. Replacing τλ
with τ̄λ in Eq.(7), determines the nanowire thermal con-
ductivity.

B. Ab initio calculation of IFCs

Both the second and third order IFCs can be calculated
by using either density functional perturbation theory
(DFPT)13,18,19 or a real space finite difference supercell
approach within density functional theory (DFT)20,21.
DFPT is a linear response approach which uses a re-
ciprocal space representation. Since phonons are, by
definition, commensurate with the crystal lattice, they
can be defined in terms of q vectors in the first Brillouin
zone. This makes the DFPT approach computationally
efficient,18 because both electronic structure and phonon
calculations can be done within the first Brillouin zone.
Since Mg2Si and Mg2Sn are polar materials, an addi-
tional linear response calculation of the Born effective
charge and dielectric tensor is required to determine the
non-analytic part of the dynamical matrix at the Γ point
which leads to the LO-TO splitting. For comparison,
we calculate the second order IFCs using both methods.
The phonon frequencies, velocities, and eigenvectors are
then obtained by diagonalizing the dynamical matrix.
While harmonic force constants can be obtained with
DFPT in standard plane wave packages such as Quan-
tum Espresso, the ability to calculate anharmonic IFCS
is not available in widely distributed codes. To determine
the third order IFCs, we use a real space finite difference
method:

Φαβγ
ijk =

∂3E

∂rαi ∂r
β
j ∂r

γ
k

=

[

∂2E

∂rβj ∂r
γ
k

(rαi = h)−
∂2E

∂rβj ∂r
γ
k

(rαi = −h)

]

/2h

=
1

4h2

[

F γ
k

(

rαi = h

rβj = −h

)

− F γ
k

(

rαi = h

rβj = h

)

+F γ
k

(

rαi = −h

rβj = h

)

− F γ
k

(

rαi = −h

rβj = −h

)

]

,

(11)

where h is a small displacement from the equilibrium po-
sition, and F γ

k is γ component of the force felt by the
k-th atom. Not all of the force constant elements are
independent of each other. Φαβγ

ijk should satisfy permu-
tation symmetry and the space group symmetry of the
system. Consider a general space group symmetry oper-
ation

∑

α Tα′αRα
i + bα

′

= Rα′

Tb(i), where T and b stand

for the point group operator and translation operator re-
spectively, and Tb(i) specifies the atom to which the i-th
atom is mapped under the corresponding operation. The
third order IFCs tensor should satisfy the following rela-

tion,

Φα′β′γ′

Tb(i);Tb(j);Tb(k) =
∑

αβγ

Tα′αT β′βT γ′γΦαβγ
ijk . (12)

Mg2Si and Mg2Sn belong to the space group Fm3̄m, for
which all the elements of Tα′α are integers. Therefore,
the dependence of the IFC elements is relatively simple,
one element being related to another by plus, minus, or
zero. If an element is the opposite of itself, it should
vanish.

For practical purposes, a cutoff radius is defined such
that atoms further than the cutoff are considered non-
interacting. Here, we choose a cutoff radius of 0.85a,
where a is the lattice constant, that is, up to fourth
nearest neighors are included for Mg, and up to third
nearest neighbors are included for Si or Sn. We have
previously tested the effects of nearest neighbor cutoff
radius for Si, Ge, GaAs, and GaP, and find κ insensitive
to the inclusion of more interactions. Application of sym-
metries dramatically reduces the number of independent
IFCs that must be determined. Within this cutoff radius,
there are 233 nonzero independent anharmonic elements
to be calculated out of a total of 57753 elements. Due to
this truncation, the calculated IFCs do not exactly sat-
isfy the sum rules required by translational invariance.
This invariance plays a critical role in determining the
zone-center phonon-phonon scattering rates and is thus
enforced via different approaches, which will be addressed
in the next section.

C. Enforcement of the third order IFC sum rules

Due to the fact that the system energy does not change
if the system as a whole is displaced, we have the sum
rules for third order IFCs

∑

k

Φαβγ
ijk = 0. (13)

This equation is still valid if the summation is over i or
j due to the permutation symmetry.

The directly calculated force constants from any ab

initio package do not exactly satisfy all the sum rules,
though the sums in Eq. (13) are typically small if not
zero. Since these sum rules are crucial to obtain the cor-
rect scattering rates at low frequencies, they have to be
enforced by changing the original calculated force con-
stants slightly. There are different methods to do so. For
example, a small set of anharmonic IFCs for interactions
only within the unit cell can be changed to satisfy the sum
rules similar to the typical "acoustic sum rule" applied to
the second order IFCs in standard DFPT packages. How-
ever, this violates other system symmetries. The trans-
lational invariance conditions can also be satisfied by a
minimization of the sum of the square of the sums given
in Eq. (13) in a high dimensional parameter space. This
results in the enforcement of the sum rule while maintain-
ing permutation and point group symmetries. It can also
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be done by solving an optimization problem. The idea
of the latter method is to add a compensation di to each
independent non-zero element φi, where i ranges from 1
to the total number of independent non-zero elements,
such that the sum rule condition can be satisfied. In or-
der to guarantee that the compensation is small, some
additional constraints need to be considered. Here we
minimize the sum of the squares of the compensation for
each independent non-zero element. This is not the only
choice; for instance, the sum of the squares of the com-
pensations for all the dependent non-zero elements could
be minimized. We use here the former case, and the en-
forcement of sum rules turns out to be a minimization of
a quadratic polynomial subject to constraints, which can
be easily done by using the Lagrange multipliers method.
In previous work, we have used a similar Lagrange mul-
tiplier technique to symmetrize first principles harmonic
force constants.22

The sums are not linearly independent, and the in-
dependent sums can be found numerically. Since all the
force constants can be deduced from the independent ele-
ments, the sums can be written in terms of these elements
as

∑

j

Aijφj = Bi, (14)

where Aij are integers in the case of a cubic system, and
j ranges from 1 to the total number of independent sums.
Since the sum rules have to be satisfied, the constraints
on the compensation are

gi ≡
∑

j

Aijdj +Bi = 0. (15)

The function to be minimized is

f =
1

2

∑

j

d2j . (16)

After introducing the Lagrange multiplier λi, the expres-
sion of dj in terms of λi is obtained from

∂(f +
∑

i λigi)

∂dj
= 0, (17)

from which it follows

dj = −
∑

i

λiAij . (18)

Substituting this relation into Eq. (15), we have
∑

j

Cijλj = Bi, (19)

with Cij =
∑

m AimAjm. λj can be obtained by solving
the linear equation arrays, and dj is further obtained by
using Eq. (18). When dj is added to the independent
IFC elements, φj , the sum rules are completely satisfied
and the compensations are minimized. Different methods
lead to similiar results.

III. RESULTS AND DISCUSSION

We calculated the ab initio harmonic IFCs, Born ef-
fective charges, and dielectric tensor based on DFPT us-
ing the Quantum Espresso package23. For comparison,
we also used the Siesta package24to calculate harmonic
IFCs based on the supercell approach. The local density
approximation (LDA) was used to describe the electron
exchange and correlation energy in both cases. The an-
harmonic IFCs were calculated using both packages sep-
arately and based on the supercell technique. Quantum
Espresso uses a plane wave basis set while Siesta uses a
numerically truncated localized basis set, which enables
faster calculation.

A. Phonon Dispersions

Preceding all IFC calculations, structural relaxations
were performed to determine the minimum energy unit
cell for both Mg2Si and Mg2Sn. A 24×24×24 Monkhorst-
Pack k-point mesh was used to sample the Brillouin
zone in the electronic structure calculations to deter-
mine the self-consistent charge density and potential. For
the Quantum Espresso calculations, a plane wave cutoff
of 80 Ry and a 800 Ry energy cutoff was used for the
charge density and potential. A von Barth-Car norm-
conserving pseudopotential25 was used to describe silicon
and Bachelet-Hamann-Schlüter pseudopotentials26 were
used to describe magnesium and tin. Phonon calculations
based on DFPT sampled the interatomic force constants
on an 8×8×8 Monkhorst-Pack q-point mesh which were
then interpolated to determine the full phonon disper-
sion. In the case of the real space Siesta calculations,
we used a double zeta polarized basis set to describe
the localized orbitals in all calculations. A mesh cut-
off of 400 Ry was used to avoid eggbox effects which
can cause errors in the calculated forces24. In the case
of Mg2Sn, as discussed below, we also found that grid
cell sampling24 was required for accurate phonon disper-
sions. For both Mg2Si and Mg2Sn, a 5×5×5 supercell
with a 4x4x4 Monkhorst-Pack k-point grid was used for
real space calculations that gave reasonable agreement
with the plane wave result and experiments.

Given the renewed interest in Mg2X thermoelectrics,
several groups have recently calculated the phonon dis-
persion of these systems from first principles27–30. Many
of these calculations use either a sparse 4×4×4 DFPT
q-point mesh or a smaller supercell for real space calcu-
lations which is sufficient for identifying general features
of the phonon dispersion. However, coarser grids can
lead to underestimates of the phonon velocities and dif-
ficulty predicting the flat dispersions in the transverse
acoustic branches near the X and L symmetry points.
An accurate phonon dispersion is critical for determin-
ing the phonon velocities and phonon-phonon interac-
tions required for thermal conductivity calculations. In
this work, our calculations include longer range inter-
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FIG. 1: (color online). Phonon dispersion for Mg2Si along dif-
ferent symmetry lines. The dispersion calculated using den-
sity functional perturbation theory with an 8×8×8 q-point
grid is given by the solid blue lines. The orange lines denotes
the phonon dispersion calculated using the real space force
constant approach with a 5×5×5 supercell. Experimental re-
sults from Hutchings et al.31 taken at room temperature are
denoted by black squares.

atomic force constants with stricter convergence criteria
to better describe the phonon dispersion.

Figure 1 shows the calculated phonon dispersion us-
ing both the plane wave DFPT technique (blue curves)
and the supercell approach (orange curves) for Mg2Si
with Hutchings et al ’s neutron diffraction results31 (black
squares). Overall, the agreement between the two ap-
proaches and experimental data is quite good. The super-
cell approach, which lacks the Born effective charges and
dielectric tensor, does not reproduce the LO-TO splitting
at the Γ point in the high frequency optical branches.
The biggest difference occurs along the Γ-K-X symme-
try line where the DFPT approach does a better job of
matching experiment compared to the supercell approach
for the transverse acoustic branches. This may be due to
the fact that the DFPT approach includes longer range
interactions, effectively a 8×8×8 supercell, compared to
the real space 5×5×5 supercell calculation. It should be
noted that the lower optical branches are fairly dispersive
which indicates that the optical modes have a significant
group velocity.

The calculated phonon dispersion of Mg2Sn using
Quantum Espresso and Siesta (Fig. 2) displays some
interesting features which deserve a brief discussion.
Mg2Sn is a small band gap semiconductor. However,
density functional theory is well known to underestimate
band gaps and, in the case of Mg2Sn, both Quantum
Espresso and Siesta predict a semi-metal with a Fermi
surface containing a small hole pocket at the Γ point and
small electron pocket at the X point. Recent work by
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FIG. 2: (color online). The Mg2Sn phonon dispersion is
shown along different symmetry lines. The solid blue lines
denotes the dispersion calculated using density functional per-
turbation theory with an 8×8×8 q-point grid. The phonon
dispersion calculated using the real space force constant ap-
proach with a 5×5×5 supercell is given by a solid orange
lines. Experimental results from Kearney et al.32 taken at
room temperature are denoted by black squares. Experimen-
tal errors are comparable to the size of the black squares.

another group has also noted this metallic behavior33.
This raises the question of whether this change in elec-
tronic structure will affect the calculated phonon dis-
persion. However, we find that the calculated phonon
dispersions using both Quantum Espresso (DFPT) and
Siesta (real space approach) show good agreement with
the room temperature data from Kearney et al.

32. The
LO-TO splitting at the Γ point is also well represented.
While the real space supercell calculations do a reason-
ably good job of reproducing the experimental phonon
dispersions along the high symmetry lines, we found that
using grid cell sampling in the Siesta calculations was es-
sential to avoid the egg-box effect24 and accurately pre-
dict TA acoustic branches near the X point.

B. Thermal Conductivity

For the thermal conductivity calculations, only the
phonon frequencies and velocities determined by the
Quantum Espresso package were used because they gave
a better fit to experimental phonon dispersions in both
cases. The third order IFCs calculated by using Quantum
Espresso and Siesta are quite close, with only around 1%
difference for the larger IFC elements. Fig. 3 shows the
room temperature scattering rates 1/τ0λ contributed by
only three-phonon processes for LA modes of Mg2Si along
Γ − K direction in the Brillouin zone calculated using
these different packages. The differences of the scatter-
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lines). The low frequency scattering rates follow well the ex-
pected ω

2 dependence.

ing rates are quite small, especially for low frequencies,
which leads to very close κ’s. The low frequency scat-
tering rates follow the expected ω2 dependence.34 With
the Quantum Espresso third order IFCs we calculate κ
of 11.30 W/mK, while using Siesta we calculate 10.93
W/mK at room temperature for Mg2Si. In the latter
part of the paper, the presented calculation results were
obtained by using the Quantum Espresso IFCs.

Phonon-isotope scattering can play an important role
in determining κ.35,36 Including naturally occurring iso-
tope concentrations we find that the room temperature κ
is reduced by 10% and 4% in Mg2Si and Mg2Sn respec-
tively, compared with the isotopically pure compounds.
The isotope effect is mainly due to Mg isotopes, which
has a larger mass variance than Si and Sn.

Fig. 4 shows the calculated κ(T ) for Mg2Si and Mg2Sn
with experimental values. The reported experimen-
tal values for Mg2Si are scattered in a relatively wide
range,37–42 and our calculated results lie within the range
of κ’s measured in experiments. Experimentally, the lat-
tice κ were extracted from the measured total κ using
the Wiedemann-Franz law. Data taken from Ref. 37 are
the total thermal conductivity including the electronic
contribution, which accounts for less than 4% for Mg2Sn
at room temperature.42 Due to the neglect of the bipo-
lar contribution to the electronic thermal conductivity,
there is a spurious increase at high temperatures in the
extracted lattice κ in Ref. 42. The calculated results
roughly scale inversely with temperature, similar to the
experimental data. It has been previously reported that
using fully relativistic pseudopotentials, including spin-
orbital interactions, could lead to calculated κ’s for PbSe
and PbTe that are two times larger than those obtained
using nonrelativistic pseudopotentials.43 Considering the
relatively small discrepancies with the experimental data
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FIG. 4: (color online). Calculated lattice κ vesus tempera-
ture for (a)Mg2Si and (b)Mg2Sn, compared with experimental
data of Martin et al.37, Tani et al.38, Yang et al.39, Akasaka et

al.40, Nemoto et al.41, and Chen et al.42. Data of Martin et al.

is the total thermal conductivity and the other experimental
data is the extracted lattice thermal conductivity.

obtained here, the use of fully relativistic pseudopoten-
tials might not be important for Mg2Si and Mg2Sn.

It is evident in Fig. 4 that κ for Mg2Si is larger than
that for Mg2Sn. Interestingly, we find that the phonon
lifetimes of Mg2Sn are larger than those for Mg2Si for
the same q points in the Brillouin zone. However, the
larger group velocities in the acoustic branches of Mg2Si
play a more important role and result in it having larger
κ than that in Mg2Sn. Optical modes account for more
than 30% and 18% of the total κ at room temperature for
Mg2Si and Mg2Sn respectively, and even more at higher
temperatures, which means that the contribution of opti-
cal modes cannot be simply neglected, as is often done in
many materials. Moreover, the optical modes provide im-
portant scattering channels for the heat-carrying acoustic
modes as demonstrated in diamond, GaN, PbTe, PbSe,
etc.13,36,43

It is instructive to examine the distribution of phonon
mean free paths (MFPs) in Mg2Si, Mg2Sn and alloys. A
clear view of the MFP distribution is provided by the nor-
malized "cumulative thermal conductivity", κl/κ which
represents the fraction of heat carried by phonons with
MFPs shorter or equal to l.44 We plot the normalized cu-
mulative thermal conductivity for Mg2Si, Mg2Sn as well
as Mg2Si0.6Sn0.4 in Fig. 5. For the alloy case, harmonic
scattering due to mass differences is increased, resulting
in a reduced κ. For low frequency phonon modes with
large MFPs the anharmonic scattering dominates so the
main reduction of κ with alloying comes from high fre-
quency modes with small MFPs. As a result, the normal-
ized cumulative thermal conductivity of Mg2Si0.6Sn0.4 al-
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FIG. 5: (color online). Solid lines: normalized cumu-
lative thermal conductivity of bulk Mg2Si, Mg2Sn and
Mg2Si0.6Sn0.4 at room temperature, as a function of the mean
free path. Dashed lines: room temperature thermal conduc-
tivities of Mg2Si, Mg2Sn and Mg2Si0.6Sn0.4 nanowires as a
function of diameter, normalized by their corresponding bulk
values.

loy is lower than that for pure systems at large MFPs.
On the other hand, there are more phonon modes with
MFP smaller than a given short MFP in alloys, leading
to a larger fraction of heat carried by modes with short
MFPs. The curves for the pure phase and the alloy are
expected to cross for the intermediate MFPs.

The cumulative function is a useful tool for under-
standing the size dependence of κ in nanowires, since one
expects that phonons with MFPs much longer than the
boundary size will be strongly scattered by the boundary,
thus limiting considerably their contribution to the con-
ductivity. In Fig. 5 we also show κ’s of Mg2Si, Mg2Sn,
and Mg2Si0.6Sn0.4 nanowires along [001] growth direc-
tion normalized to their corresponding bulk values. The
normalized κ’s of nanowires and the cumulative thermal
conductivity match reasonably well. For instance, similar
to the cumulative thermal conductivity, the normalized
κ’s of Mg2Si and Mg2Sn nanowires are almost identi-
cal above 100 nm. The κ’s of Mg2Si0.6Sn0.4 nanowires
show a larger percentage decrease with decreasing diam-
eters above 20 nm than Mg2Si and Mg2Sn, which is re-
flected in the cumulative thermal conductivity. In 200nm
nanowires κ is lower than its bulk value by 30%, 20%, and
20% for Mg2Si0.6Sn0.4, Mg2Si, and Mg2Sn respectively.
The cumulative thermal conductivity picture also sug-
gests a 50% reduction of the κ’s of nanowires at 20nm
for all three systems, which is confirmed by the actual
calculation. For nanowires less than 20 nm thick, the
relative decrease surpasses 50%, and it becomes larger in
the pure compounds than in the alloy, since there is less
heat carried by phonons with MFPs larger than 20nm in
the alloy.

The diameter at which κ is reduced by half is quite
different from material to material. It is 5nm, 20nm, and

0 0.2 0.4 0.6 0.8 1
x

0

2

4

6

8

10

12

κ 
(W

m
-1

K
-1

)

Bulk
20 nm nanowires
Thermoeletrics handbook
Zhang et al
Chen et al
Tani et al

FIG. 6: (color online). Room temperature κ of Mg2SixSn1−x

as a function of x for both bulk materials (solid line) and 20
nm nanowires along [001] growth direction (dashed line), com-
pared with experimental data taken from the Thermoelectrics
handbook4, Zhang et al.5, Chen et al.42 and Tani et al.38.

larger than 200nm for PbSexTe1−x, Mg2SixSn1−x, and
SixGe1−x respectively17,43 at room temperature, which
means that κ of Mg2SixSn1−x is less sensitive to nanos-
tructuring size effects than SixGe1−x, but more sensitive
than PbTexSe1−x. Actually the bulk κ’s of these materi-
als increase in the same order, and the relation between
the thermal conductivity and the degree of difficulty to
reduce the thermal conductivity in nanostructures is not
a coincidence. Larger thermal conductivity arises typ-
ically because of weaker intrinsic phonon-phonon scat-
tering, which causes phonons to have larger MFPs, and
these can be more easily blocked by boundaries of a sim-
ilar size. Therefore the lower the intrinsic thermal con-
ductivity, the harder it is to reduce it further in nanos-
tructures. This can serve as an empirical guide for engi-
neering thermal transport in nanostructures.

The calculated room temperature κ’s of Mg2SixSn1−x

as a function of x are plotted in Fig. 6 for both bulk
materials and 20 nm nanowires. Experimental values for
bulk alloys are also plotted.4,5,38,42. The agreement with
experiments is reasonably good at the intermediate con-
centrations. The theory obtains a minimum κ of 2.07
W/K-m, which is close to the experimental minimum
1.89 W/K-m. A small amount of alloying can reduce κ’s
of pure compounds significantly, and such behavior was
observed in many materials.16,43,45–47 In nanowires, the
reduction of κ with alloying is not as strong as in bulk sys-
tems because boundary scattering plays a significant role,
relatively weakening the mass difference scattering.48–50

In nanowires of Mg2SixSn1−x , the x value at which κ is
minimized is slightly different from that for the bulk sys-
tems shifting from 0.6 for bulk to 0.7 for 20 nm nanowires.
At higher temperature, the anharmonic scattering be-
comes stronger and weakens the role played by the alloy
scattering as well, and therefore κ(x) becomes smoother,
similarly as for the nanowires.
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Ref. 5 found that κ of alloy Mg2SixSn1−x can be fur-
ther decreased by doping with Sb, and suggested that
the decrease is due to intrinsic nanodots rather than
the enhanced mass difference. We consider further dop-
ing Mg2Si0.3925Sn0.6Sb0.0075. Since the concentration of
Sb is not large, we neglect the possible changes in the
IFCs and treat the doping of Sb as a simple mass differ-
ence scattering. The calculated κ is decreased by only
1%, confirming that the mass difference is not the only
mechanism for the effect of doping upon κ observed in
Ref. 5. The non-doped material’s room temperature κ
reported in Ref.5 was 1.87 W/m-K, within 18% of our
calculated value 2.26 W/m-K. This implies that even if
there were some natural nanostructuring (i.e. naturally
occurring nanoinclusions) in the undoped samples, pur-
posely nanostructuring in Mg2SixSn1−x, via nanowires
or added nanoinclusions can still decrease the thermal
conductivity of the compounds by a meaningful amount.

IV. CONCLUSION

We have calculated the κ of Mg2SixSn1−x alloys and
pure phases via a microscopic, ab initio Boltzmann trans-
port approach without fitting parameters. Given an ac-
curate treatment of intrinsic anharmonic phonon scatter-
ing, we have evaluated the thermal conductivity reduc-
tion in these compounds due to nanostructure size effects,
focusing in particular on nanowires. We find the relative
decrease of κ in these compounds and alloys due to nanos-
tructuring to be less than in Si, Ge and SixGe1−x, but

more than in PbTe, PbSe and PbTexSe1−x. In nanowires
below a characteristic size of 20nm thickness, the pure
phases begin to display larger reductions than the al-
loy. At that typical size, κ for all cases is shown to de-
crease to about half its bulk value at room temperature.
This suggests that Mg2SixSn1−x may still benefit from
nanostructuring in order to achieve its full potential as a
thermoelectric material. Accurate, predictive determina-
tion of intrinsic phonon-phonon scattering through this
ab initio method will allow for more reliable predictions
of the role of nanostructuring on ZT in other thermoelec-
tric compounds.
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