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Graphene flakes with defective edge terminations: Universal and topological aspects,

and one-dimensional quantum behavior
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School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430

Systematic tight-binding investigations of the electronic spectra (as a function of the magnetic
field) are presented for trigonal graphene nanoflakes with reconstructed zigzag edges, where a succes-
sion of pentagons and heptagons, that is 5-7 defects, replaces the hexagons at the zigzag edge. For
nanoflakes with such reczag defective edges, emphasis is placed on topological aspects and connec-
tions underlying the patterns dominating these spectra. The electronic spectra of trigonal graphene
nanoflakes with reczag edge terminations exhibit certain unique features, in addition to those that
are well known to appear for graphene dots with zigzag edge termination. These unique features
include breaking of the particle-hole symmetry, and they are associated with nonlinear dispersion of
the energy as a function of momentum, which may be interpreted as nonrelativistic behavior. The
general topological features shared with the zigzag flakes include the appearance of energy gaps at
zero and low magnetic fields due to finite size, the formation of relativistic Landau levels at high
magnetic fields, and the presence between the Landau levels of edge states (the socalled Halperin
states) associated with the integer quantum Hall effect. Topological regimes, unique to the reczag
nanoflakes, appear within a stripe of negative energies εb < ε < 0, and along a separate feature
forming a constant-energy line outside this stripe. The εb lower bound specifying the energy stripe
is independent of size.

Prominent among the patterns within the εb < ε < 0 energy stripe is the formation of three-
member braid bands, similar to those present in the spectra of narrow graphene nanorings; they
are associated with Aharonov-Bohm-type oscillations, i.e., the reczag edges along the three sides of
the triangle behave like a nanoring (with the corners acting as scatterers) enclosing the magnetic
flux through the entire area of the graphene flake. Another prominent feature within the εb < ε < 0
energy stripe is a subregion of Halperin-type edge states of enhanced density immediately below
the zero-Landau level. Furthermore, there are features resulting from localization of the Dirac
quasiparticles at the corners of the polygonal flake.

A main finding concerns the limited applicability of the continuous Dirac-Weyl equation, since
the latter does not reproduce the special reczag features. Due to this discrepancy between the tight-
binding and continuum descriptions, one is led to the conclusion that the linearized Dirac-Weyl
equation fails to capture essential nonlinear physics resulting from the introduction of a multiple
topological defect in the honeycomb graphene lattice.

PACS numbers: 73.22.Pr, 73.22.Dj, 68.35.B-, 73.21.Hb

I. INTRODUCTION

A. Edge terminations and their nanoelectronics

potential

Graphene is a single-layer honeycomb lattice of carbon
atoms and exhibits novel behavior due to the relativistic-
like character of quasiparticle (particle-hole) excitations
near the Fermi level (the Dirac neutrality point).1,2 In
addition to the intrinsic interest in this material, the po-
tential of graphene for nanoelectronics applications has
generated considerable amount of research regarding the
physics governing the Dirac electrons in graphene nanos-
tructures. Initially graphene nanoribbons attracted most
of the attention; see, e.g., Refs. 3–5. However, in the
last couple of years the focus is being shifted to studying
zero-dimensional stuctures like graphene quantum dots
and graphene quantum voids (see, e.g., Refs. 6–16), as
well as graphene nanorings (see, e.g., Refs. 17–19).

In addition to the novelty of the relativistic nature
of the trapped quasiparticles, the honeycomb lattice of
graphene provides for a variety of edge terminations

(see below), which have no parallel in the case of semi-
conductor nanosystems. More importantly, it is now
understood20 that the electronic properties of graphene
nanostructures are drastically influenced by the character
of the edge termination.

The physical graphene edges develop along the crystal-
lographic axes of the honeycomb lattice, and they may
exhibit two distinct types of terminations: zigzag or arm-
chair. One-type edges may intersect at angles of 60◦ or
120◦, yielding graphene flakes and voids with regular trig-
onal or hexagonal shapes. Square graphene dots can also
be envisioned, but they have edges of a mixed zigzag and
armchair character. Ring-like trigonal, hexagonal, and
square-like graphene structures are also the focus of in-
tensive theoretical studies.

The theoretical advances regarding the properties of
graphene edges have in turn motivated considerable ex-
perimental efforts aiming at producing graphene edges
with a high-degree of purity with respect to the edge ter-
mination (zigzag or armchair), and remarkable successes
have been already reported; see, e.g., Refs. 20–27.

While the zigzag and armchair edges were known
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for some time from the theoretical studies on graphene
nanoribbons, the recent consideration (anticipated the-
oretically and confirmed through observation) of yet
another physical edge, formed through reconstruction
of the zigzag edge, has added a new dimension to
the research on the electronic properties of graphene
nanostructures.28–31 Indeed, this reconstructed edge,
which is usually called reczag and consists of a succes-
sion of pentagons and heptagons (5−7 defect) according
to the Stone-Wales-defects prescription, has the potential
to yield new distinctive features in the electronic struc-
ture of graphene nanostructures, whether these nanos-
tructures are graphene flakes, voids, or graphene rings.
The reczag edge belongs to a general class of defective for-
mations in graphene: a related defective formation is the
alternation of pentagons and octagons (5−8−5 defect),
which has also been observed experimentally in the last
couple of years and which is expected to behave like a
“quantum wire” within the graphene sheet.20,32

B. Topological aspects: Coexistence of

quantum-wire, ideal-ring, and quantum-dot

singly-connected-geometry behavior

Experimentally, two-dimensional semiconductor quan-
tum dots (SQDs) exhibit usually soft edges,33,34

which can be modeled by a harmonic potential
confinement.35–37 Nevertheless important theoretical
studies concerning topological aspects of nonrelativis-

tic electrons in finite systems under strong magnetic
fields have been performed by assuming hard-wall
boundaries. Well known among such studies are the
investigations38–43 (initiated by Halperin38) regarding
the edge states related to the integer-quantum-Hall-effect
(IQHE) and those44–47 (initiated by Sivan and Imry44)
on the Aharonov-Bohm (AB) oscillations which are su-
perimposed on the de Haas - van Alphen (dHvA) oscil-
lations. Halperin introduced a hard boundary through
an infinite-box-type confining potential, while Sivan and
Imry used a 10 × 10 square-lattice tight-binding (TB)
model.

Finite graphene nanosystems [Graphene QDs (GQDs)
or nanoflakes] offer a broader framework to study such
topological connections. Most importantly, original
trends and phenomena can emerge3,15,16 which have no
analog with the physics of semiconductor QDs. In-
deed, compared to SQDs, Graphene QDs exhibit dis-
tinct features such as: 1) They possess15,16,48 atomi-
cally defined sharp physical boundaries (because of the
abrupt termination of the honeycomb lattice). 2) Due
to the underlying honeycomb lattice of graphene, the
confined electrons are most appropriately described by
TB modeling,3,10,16,49, while at the same time the cor-
responding continuous description reveals that they be-
have as massless relativistic particles obeying the Dirac-
Weyl (DW) equation.16,49–51 3) The natural shapes of
GQDs are not circular, but triangular, hexagonal, or
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FIG. 1. (Color online) Distribution of the hopping matrix
elements tk (see Table I) for the reczag edge.

(a)

(c)(b)

FIG. 2. (Color online) Diagrams of corners used for the equi-
lateral trigonal graphene flakes. (a) corner for zigzag edges.
(b) Type-I corner for reczag edges. (c) Type-II corner for
reczag edges.

rhombus-like;16 as a result, the electronic spectra can
explore geometric symmetries lower than the circular
one.19 4) As we will show below, the presence of defec-
tive edges introduces a quantum-wire and/or ring-type
(doubly-connected-geometry) behavior, in addition to the
singly-connected QD behavior familiar from the theory45

of SQDs with sharp edges.

C. Main findings

The main findings of the paper are:
(I) Beyond the well known features found for graphene

quantum dots with zigzag edge terminations, the elec-
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tronic spectra (as a function of the magnetic field B)
of trigonal graphene nanoflakes with reconstructed edges
(that is, edge termination with 5-7 defects; see Fig. 1 and
Fig. 2) exhibit unique additional regimes; they break the
particle-hole symmetry and are characterized by a non-
linear dispersion of the electron energy versus momen-
tum, associated with a nonrelativistic quantum mechan-
ical description.

(II) The general features shared by graphene flakes
with reczag termination with those having zigzag edges,
include the appearance of energy gaps at zero and low
magnetic fields due to the finite size (designated as re-
gion A, see Fig. 3), the formation of relativistic Landau
levels (labeled as regions B, see Fig. 3) at high magnetic
fields, and the presence between the Landau levels of edge
states (socalled Halperin states, labeled as regions Ci,
see Fig. 3) associated with the IQHE. The characteris-
tic length-scale53 for the Halperin-type edge states is the
cyclotron radius (magnetic length lB) of the electron or-
bit (inversely proportional to the strength of the applied
magnetic field).

(III) The unique regimes that emerge in the spectrum
of GQDs with reczag (reconstructed zigzag) edges in-
clude: (a) several features within a band of negative en-
ergies εb = −0.205t < ε < 0 [region labeled as D be-
low in Fig. 3(c); divisible in regions D1 and D2, see Fig.
4], and (b) a feature forming a constant-energy line at
εc ≈ −0.297t [region labeled as E1, see Fig. 3(c)]. The εb
lower bound of the region D [see (a) above] is independent
of size.

(IV) Prominent among the features within the afore-
mentioned εb = −0.205t < ε < 0 energy stripe is the
formation of three-member braid bands (subregion D1,
see Fig. 4), similar to those present18,19 in the spectra
of narrow graphene nanorings , which were shown to be
associated with Aharonov-Bohm oscillations in graphene
nanosystems.19 This suggests that the reczag edge be-
haves in a manner that is analogous to a nanoring en-
closing the magnetic flux Φ through the entire area of the
graphene flake; Φ will be given in units of Φ0 = hc/e. Ob-
viously the length scale governing the behavior of these
edge states associated with the reczag defective edge is
the characteristic length L of the entire graphene flake.
This analogy is further substantiated with an analysis
using a simple nonrelativistic 1D superlattice model (see
Sec. III B 2) where the corners of the trigonal flake are
modeled by appropriate scatterers.

(V) Another prominent feature within the εb =
−0.205t < ε < 0 energy stripe is a subregion (D2) of
Halperin-type edge states with enhanced density below
the zero-Landau level; see Fig. 4 and Sec. III B 3.

(VI) Furthermore, there are features resulting from lo-
calization of the Dirac quasiparticles at the corners of the
polygonal flake (regions labeled as E1 and E2, see Sec.
III B 4).

(VII) A main finding concerns the limited applicability
of the continuous Dirac-Weyl equation. As we explicitly
show in Sec. IV, the general features, e.g., the relativistic

Landau levels, and the Halperin-type edge states, are also
present in the continuum-DW reczag spectra. However,
concerning the unique features found via TB calculations,
only the feature of the Halperin-type edge states with an
enhanced density spectrum (D2 region) maintains also
in the continuum spectra; the rest of the special reczag
features [see (III), (IV), and (VI) above] are missing in
the continuum- DW spectrum. Due to this major dis-
crepancy between the TB and continuum descriptions,
we are led to conclude that the linearized DW equation
fails to capture essential nonlinear physics (i.e., a nonlin-
ear dispersion of energy versus momentum54 coexisting
with the Dirac cone), resulting from the introduction of a
nontrivial (multiple) topological defect55–59 (e.g., recon-
structed reczag edge) in the honeycomb graphene lattice.

D. Plan of paper

In addition to this section, the Introduction consisted
of three other ones: The first (Sec. I A) provided back-
ground information concerning the different graphene
edge terminations and their nanoelectronics potential,
while the second (Sec. IB) introduced the topological
aspects. The main findings of this paper were outlined
in Sec. I C.
The remaining of the paper is organized as follows:
Sec. II recapitulates briefly the tight-binding and con-

tinuum Dirac-Weyl methodologies.
Our main results from the tight-binding calculations

are presented in Sec. III. This section is further divided
in two parts: Sec. III A describes the general features
of the spectra of trigonal flakes which are shared with
GQDs having other edge terminations (e.g., zigzag or
armchair). The special features which are unique to the
reczag edge termination are presented in Sec. III B. For
a synopsis of these general and special features, see the
section describing the main findings (Sec. I C). Three
different sizes of trigonal graphene flakes are considered
in Sec. III, with the two smaller sizes being discussed in
Sec. III C.
The corresponding continuous Dirac-Weyl description

for a circular reczag GQD is elaborated and contrasted
to the TB results in Sec. IV.
A summary and discussion of our results is given in

Sec. V.
Finally the Appendix presents the explicit expressions

for the transfer matrices employed in Sec. III B 2.

II. METHODOLOGY

In previous publications, we studied primarily
graphene quantum dots and graphene nanorings with
zigzag edge terminations. In this paper, we carry out
systematic investigations of the electronic properties of
graphene flakes with reczag edge terminations and the
shape of a regular triangle (see Fig. 1 and Fig. 2), and
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FIG. 3. (Color online) (a) TB single-particle spectrum for a zigzag trigonal graphene dot as a function of the magnetic field (the
magnetic flux Φ over the whole dot). (b) Shape of the corresponding equilateral trigonal graphene dot with zigzag edges; it has
61 hexagons in the outer row along each side (the total number of carbon atoms is 3966). (c) TB single-particle spectrum for a
type-I reczag trigonal graphene dot as a function of the magnetic field (the magnetic flux Φ over the whole dot). (d) Shape of
the corresponding trigonal graphene dot with reczag edges (type-I corner); it has 60 hexagons in the outer unreconstructed row
along each side (the total number of carbon atoms is 4731). Energy in units of the tight-binding hopping-parameter t = 2.7 eV.
Lengths in units of the honeycomb graphene lattice constant a = 0.246 nm. The magnetic flux is given in units of Φ0 = hc/e.

for the cases of zero-magnetic, low-magnetic, and high-
magnetic fields. In particular, we study the excitation
spectra using independent-particle treatments, i.e., we
use both the tight-binding approach and the semiana-
lytic continuum Dirac-Weyl equations; see, e.g., Refs. 16
and 19.

1. Basic elements of TB approach

To determine the single-particle spectrum [the energy
levels εi(B)] in the tight-binding calculations for the

graphene nanoflakes, we use the hamiltonian

HTB = −
∑

<i,j>

t̃ijc
†
i cj + h.c., (1)

with <> indicating summation over the nearest-neighbor
sites i, j. The hopping matrix element

t̃ij = tij exp

(

ie

h̄c

∫

rj

ri

ds ·A(r)

)

, (2)

where ri and rj are the positions of the carbon atoms i
and j, respectively, and A is the vector potential associ-
ated with the applied perpendicular magnetic field B. In
the case of a zigzag edge termination, tij = t = 2.7 eV.
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In the case of the reconstructed reczag edge, four addi-
tional values (see Fig. 1) for the hopping matrix elements
must be considered for carbon pairs participating in the
defective edge.28,31 These values are listed in Table I.
The diagonalization of the TB hamiltonian [Eq. (1)]

is implemented with the use of the sparse-matrix solver
ARPACK.52 We note here that, unlike the continuous
Dirac-Weyl equations,16,17 both the K and K ′ valleys
are automatically incorporated in the tight-binding treat-
ment of graphene sheets and nanostructures.

2. Basic elements of continuous Dirac-Weyl equations

In polar coordinates, the low-energy noninteracting
graphene electrons (around a given K or K ′ point) are
most often described via the continuous DW equation.49

Circular symmetry leads to conservation of the total
pseudospin49 ̂ = m̂ + σ̂z , where m̂ is the angular mo-
mentum and σ̂z the spin of a Dirac electron. The reczag
edge does not couple the two valleys,31 and as a result, we
seek solutions for the two components ΨA(r) and ΨB(r)
or Ψ′

A(r) and Ψ′
B(r) of the single-particle electron orbital

(a spinor). The indices A and B denote the two graphene
sublattices and the unprimed and primed symbols are as-
sociated with the K and K ′ valleys.
Below we focus on the K valley; similar equations ap-

ply also to the K ′ valley. In polar coordinates, one has:

ψm(r) =

(

ΨA(r)
ΨB(r)

)

=

(

eimθχA(r)
iei(m+1)θχB(r)

)

. (3)

The angular momentum m takes integer values; for sim-
plicity in Eq. (3) and in the following, the subscript m is
omitted in the sublattice components ΨA, ΨB and χA,
χB.
With Eq. (3) and a constant magnetic field B (symmet-

ric gauge), the DW equation reduces (for the K valley)
to

d

dx
χB +

1

x

(

m+ 1 +
x2

2

)

χB = εχA

d

dx
χA −

1

x

(

m+
x2

2

)

χA = −εχB; (4)

where the reduced radial coordinate x = r/lB with

lB =
√

h̄c/(eB) the magnetic length. The reduced
single-particle eigenenergies ε = E/(h̄vF /lB), with vF
the Fermi velocity.
The solutions of the DW equations for both valleys in

the case of a circular GQD with a reczag edge is presented
in detail in Sec. IV.

TABLE I. DFT extracted values for the hopping matrix el-
ements tk (see Fig. 1) in the TB modeling of a reczag edge,
according to Ref. 28.

t1/t t2/t t3/t t4/t
0.91 0.99 0.97 1.5

III. TIGHT-BINDING DESCRIPTION FOR

RECZAG TRIGONAL FLAKES

A. General features

An example for a trigonal quantum flake is given in
Fig. 3 where the single-particle spectrum (as a function
of the magnetic field) of a dot with reczag edges (and
type-I corners; see Fig. 2) is compared to that of a dot
of similar size, but with unreconstructed zigzag edges.
Various aspects of trigonal GQDs with pure zigzag edges
have been studied earlier;11,13,60 however, for complete-
ness and to allow ready comparisons to be made, we dis-
play and briefly comment on the corresponding spectrum
[see Fig. 3(a)]. In particular, we have marked main fea-
tures (or regimes) of the zigzag spectrum as follows: The
regime of zero and low-magnetic fields is denoted by “A”;
it exhibits energy gaps due to finite-size effects. The
regime of Landau levels (LLs) formed at high magnetic
fields is denoted by “B” (only the n = 0 and n = −1 lev-
els are denoted). The “Ci’s” denote the edge states15,16

which connect the |i − 1|-th and |i|-th LLs. The general
regimes A, B, and C are also present in the spectra of
trigonal flakes with reczag edges, as an inspection of Fig.
3(c)] readily reveals.
We note that the three regimes A, B, and Ci have

corresponding analogs in the case of a QD with nonrela-
tivistic electrons confined by a hard-wall boundary.44–47

These analogies exist despite the well-known differences
arising from the relativistic nature of Dirac electrons,
e.g., the energies of the Landau levels in graphene are
En = sgn(n)vF

√

2eh̄B|n|, n = 0,±1,±2, . . ., (square-
root B-dependence) compared to En = h̄ωc(n + 1/2),
n = 0, 1, 2, . . ., [with h̄ωc = eB/(m∗c), linear depen-
dence on B] for the case of a nonrelativistic 2D electron
gas. Such analogs emerge from underlying universal and
topological properties of the 2D finite systems under high
magnetic fields, i.e., when lB ≡

√

h̄c/(eB) < L with L
being a characteristic length of the nanosystem. Nat-
urally, the energy of the LLs depends on the cyclotron
orbit alone, and thus it is independent of the size and
shape of the dot. But also, this size-and-shape indepen-
dence is shared to a large degree61 by the Halperin-type
edge states between LLs,38 whose energy can be derived
(to the lowest order) from a semiclassical or WKB quan-
tization of a single arc of the skipping orbits, both for
nonrelativistic41–43 and Dirac electrons.53

Of interest for the present study are the Aharonov-
Bohm-type refinements concerning the Halperin-type
edge states investigated44–47 for the case of SQDs. In-
deed, Refs. 44 and 45 argued that, in the case of the
finite, singly-connected QDs, the Halperin-type edge
states form an effective ring; in a semiclassical picture
they correspond to grazing orbits (see also Ref. 62), rem-
iniscent of the whispering gallery trajectories63 investi-
gated at low magnetic fields. As a result the associated
spectra must exhibit a dependence on the total magnetic
flux through the area of the QD, which leads to the emer-
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FIG. 4. (Color online) (a) An enlarged section of the regime
marked as D in Fig. 3(c), showing the TB single-particle spec-
trum for a reczag trigonal graphene dot (with type-I corners),
as a function of the magnetic field (the magnetic flux Φ over
the whole dot). (b) The TB spectrum for the corresponding
reczag trigonal GQD with type-II corners. Energy in units of
the tight-binding hopping-parameter t. The magnetic flux is
given in units of Φ0 = hc/e.

gence of AB-type oscillations in the total Landau magne-
tization of the dot. Specifically these high-B AB oscilla-
tions are superimposed on the much larger de Haas - van
Alphen ones, and they tend to decrease as B increases.

It is apparent, that similar high-B AB-type effects are
also present in the case of GQDs with zigzag and reczag
terminations: for example, for the GQDs associated with
Figs. 3(a) and 3(c), it suffices to calculate the Lan-
dau magnetization assuming a zero-temperature canoni-
cal ensemble and a number, N , of Dirac electrons large
enough so that the corresponding Fermi level εF > 0.2t.

We stress that our findings regarding trigonal flakes
with reczag edges go beyond (see III B) the general fea-
tures described above. Indeed, one of our main findings
is that trigonal flakes support, in addition to the high-
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FIG. 5. (Color online) An enlarged section of the regime
marked as D1 in Fig. 4(a) showing the TB single-particle
spectrum for a reczag trigonal graphene dot (with type-I cor-
ners), as a function of the magnetic field (the magnetic flux
Φ over the whole dot). The horizontal arrows highlight the
alternation 2-1-1-2 (1-2-2-1) in the state degeneracy between
two successive braid bands at Φ/Φ0 = n (Φ/Φ0 = n + 1/2),
n = 0, 1, 2, . . .. (b) An example (for reasons of comparison) of
a TB single-particle spectrum for a narrow trigonal graphene
ring with zigzag edge terminations. Such nanorings were used
in Ref. 19 to study the Aharonov-Bohm oscillatory patterns
in graphene nanosystems.

B, singly-connected-dot AB behavior, oscillatory behav-
ior similar to the low-B Aharonov-Bohm effect, famil-
iar from semiconductor64–67 and graphene nanorings.17,19

The coexistence, in the same nanostructure, of these two
distinct AB behaviors (associated with singly-connected
and doubly-connected geometries) has no analog in previ-
ously considered nanosystems, and it is a special feature
unique to graphene defective edges.
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B. Unique features due to the reczag edge

Having discussed the common general features shared
by both the zigzag and reczag trigonal graphene flakes
(see Sect. III A), we turn now to study the unique fea-
tures emerging solely in the case of reczag trigonal flakes.
An inspection of the electronic spectra in Figs. 3(a) and
3(c) shows that the main differences arise from the pres-
ence of the two regimes denoted as D and E1 in the
case of the reczag dot. In particular, the regime D con-
sists of the features within a band of negative energies
εb = −0.205t < ε < 0, while the regime E1 consists of a
constant-energy line at εc ≈ −0.297t. (The reconstructed
reczag edge violates particle-hole symmetry, while as is
well known the zigzag edge preserves it.) We found that
the lower energy bound εb of the D regime is indepen-
dent of the size and shape (e.g., hexagonal versus trigo-
nal flake), as well as of the type of corners (type-I versus
type-II, see Fig. 2); εb depends only on the values of the
TB hopping matrix elements tk (see Table I).
An enlarged section of the electronic spectrum in Fig.

3(c) (case of type-I corner) is displayed in Fig. 4(a), while
the corresponding section for a trigonal reczag QD with
type-II corners is displayed in Fig. 4(b). From a com-
parison of the two cases in Fig. 4, we conclude that the
main features in the region D maintain: they show rather
small variations between the type-I and type-II corners.
The larger variation is exhibited by the E1 regime (not
shown in Fig. 4). Indeed the E1 line for the type-II cor-
ners has moved to a positive energy εc ≈ 0.120t. The
enlarged spectra in Fig. 4 suggest a further division of
the D regime into features denoted as D1, D2, and E2.
(The grouping of the E2 feature with the E1 feature will
become apparent below; see Sec. III B 4).
Because of the similarity between the electronic spectra

of the two types of corners, it will be sufficient below to
restrict our further analysis of spectral features to the
case of type-I corners [see Fig. 4(a) and Fig. 3(c)].

1. Region D1: Ideal-ring, low-B-type edge states and

Aharonov-Bohm oscillations

The main feature of the D1 region are the many en-
ergy bands consisting of three-curve braid patterns, an
enlargement of which is displayed in Fig. 5(a). These
braid bands are quite similar to the ones displayed by the
low-B electronic spectra of a narrow trigonal graphene
nanoring with zigzag edges [see Fig. 5(b)], which were
investigated19 recently in the context of the AB effect.
Based on this similarity and the findings of Ref. 19, we
infer that these braid bands are associated with the for-
mation of a second type of edge states, in addition to
the Halperin-type ones. This second type edge states are
localized (in the radial direction) within the physical de-
fective reczag edge and exhibit behavior associated with
a quantum wire. In particular, in the case of a trigonal
reczag-GQD, the three wire segments along the sides of

ε=-0.2042

ε=-0.2005

ε=-0.1868

ε=-0.2042

ε=-0.2005

ε=-0.1868

A B

(a)

(b)

(c)

FIG. 6. (Color online) TB electron densities (modulus) of
reczag edge states participating (counting from the bottom)
in the first (a), second (b), and fourth (c) braid bands of re-
gion D1 [see Fig. 5(a)], at Φ = 15.9Φ0 . The A (red) and B
(blue) sublattices are plotted separately. Green color denotes
the density on the outer carbon dimers resulting from the edge
reconstruction and connected by the hopping matrix element
t4 in Fig. 1. (Note that the color codings between Fig. 1 and
the current Fig. 6 are unrelated). The presence of azimuthal
(along the sides of the triangle) nodes in the electronic densi-
ties is clearly visible. The number of nodes changes by unity
from one braid band to the next, increasing with increasing
energy. This behavior (including the fact that all three states
within each braid band maintain the same number of nodes)
is quite analogous to that of the edge states of a trigonal
graphene nanoring at low magnetic fields (see Fig. 7 below).
Energies in units of t = 2.7 eV.

the triangle are coupled pairwise (via electron tunneling
at the corners) and form a trigonal quantum nanoring.
Henceforth, we will adopt the term reczag edge states
to designate these states, which are associated with the
physical defective edge.

To gain further insight into the similarity of the reczag
edge states to the graphene-ring states, we display in
Fig. 6 the probability densities at Φ/Φ0 = 15.9 (φ/Φ0 =
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FIG. 7. (Color online) TB electron densities (modulus) of
edge states of the zigzag ring participating (counting from
the bottom) in (a) the first and (b) the third braid bands in
Fig. 5(b)], at Φ/Φ0 ∼ 6. The A (red) and B (blue) sublattices
are plotted separately. The azimuthal nodes in the electronic
densities are clearly visible. The number of nodes changes by
one from one braid band to the next, increasing with increas-
ing energy. Energies in units of t = 2.7 eV. The ring has a
total of 906 carbon atoms.

0.0037) for several of the reczag states [with energies
belonging to successive braid bands starting with the
lowest-in-energy one; see Fig. 5(a)]; φ denotes the mag-
netic flux through a single hexagon of the honeycomb
graphene lattice. Probability densities at Φ/Φ0 ∼ 6
(φ/Φ0 = 0.003) for two characteristic states of the narrow
trigonal graphene nanoring with zigzag edges (considered
in Ref. 19) are displayed in Fig. 7. It is apparent that the
electronic densities in Fig. 6 (reczag flake) are restricted
near the physical boundary of the flake, and thus they
correspond to formation of edge states. In addition, the
presence of azimuthal (along the sides of the triangle)
nodes in these electronic densities is clearly visible, and
the number of nodes changes by unity from one braid
band to the next, increasing with increasing energy. This
behavior (including the fact that all three states within
each braid band maintain the same number of azimuthal
nodes) is quite analogous to that of the edge states of a
trigonal graphene nanoring at low magnetic fields (see
Fig. 7).

The similarities between the reczag edge states and the
low-B states of graphene nanorings indicates that the
reczag edge behaves like a quantum wire. Naturally, this
quantum-wire behavior places the reczag edge states in
a separate category, different from that of the Halperin-
type edge states. In Sec. III B 2 below, we will further
elaborate on the quantum-wire aspects of the reczag edge
states using a simple one-dimensional superlattice model.
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FIG. 8. (Color online) (a) Schematic diagram of the unit sub-
cell associated with a single side of the trigonal graphene flake
with reczag edge terminations. V2 denotes the height of the
potential barrier which mimicks the scatterer at the corners
of the trigonal reczag flake. (b) Schematic diagram of the
unit cell associated with the magnetic-field virtual lattice; it
involves all three sides of the equilateral triangle, and thus it
consists of three unit subcells in a series. (c)-(d) The function
f(E) = Tr[T(E)]/2 [see the r.h.s. of Eq. (7)], which is asso-
ciated with the unit cell [shown in (b)] of the magnetic-field
virtual superlattice, as a function of the energy variable E. In
calculating f(E), the parameters for the unit subcell [shown
in (a)] were taken as: L1 = 12.5 nm, L2 = 1.5 nm, V1 = 0, and
V2 = 0.1 eV. The relevant values of f(E) lie within ±1 (i.e.,
within the dotted lines). (c) f(E) in the range 0 ≤ E ≤ V2.
(d) f(E) in the range V2 ≤ E ≤ 4V2. Energy in units of eV.

2. A simple semianalytic model for the reczag edge states

In this section we show that the main qualitative fea-
tures of the braid bands in the D1 region can be repro-
duced using a simple nonrelativistic 1D superlattice ap-
proach. Indeed, in this approach, each side of the trig-
onal reczag flake is modeled as a unit subcell consisting
of a two-region piece-wise potential [see Fig. 8(a)]. In
particular, the first and wider region was chosen to have
a length of L1 = 12.5 nm and a zero potential height,
V1 = 0. The second region models the scatterer’s behav-
ior of the triangle’s corner and was taken to be a narrow
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FIG. 9. (Color online) Single-particle spectrum (as a function
of the total flux Φ) from the semianalytic superlattice model
considered in Sec. III B 2. The parameters for the unit subcell
mimicking each reczag side of the trigonal graphene flake are:
L1 = 12.5 nm, L2 = 1.5 nm, V1 = 0, and V2 = 0.1 eV. Note
that the total length L1+L2 = 14 nm is similar to the length
of the trigonal flake in Fig. 3. The height of the potential
barrier defining the scatterers at the corners (V2) is roughly
one fifth of the width (0.2t) of the D region [see Fig. 3(c)].
Energies in units of eV. The magnetic flux is given in units of
Φ0 = hc/e.

potential barrier; we chose L2 = 1.5 nm and V2 = 0.1
eV. Note that the total length L = L1 + L2 = 14 nm is
similar to the length of the side of the equilateral trian-
gle in Fig. 3, while the height of the potential barrier is
roughly one fifth of the width (0.2t) of the D region (see
Fig. 3). Naturally, due to the simplicity of the model, we
did not attempt to achieve a full quantitative agreement
with the TB spectra.
Following Ref. 68, one constructs first the transfer ma-

trices M1 and M2 (see the Appendix) for the regions 1
and 2 of the unit subcell portrayed in Fig. 8(a). Then
the transfer matrix (Ts) for the unit subcell is simply the
product of the two matrices M1 and M2, i.e.,

Ts = M1M2. (5)

A magnetic field perpendicular to the plane generates
a flux Φ over the entire area of the flake. Thus all three
sides of the triangle must be considered in the study of
magnetic-field effects. To this end, and following Ref. 64,
we consider the equivalent problem of a magnetic-field
virtual superlattice. In our case, however, the unit cell

of the virtual lattice is more complex; it consists of three
unit subcells in a series [see Fig. 8(b)] in order to account
for the three scatterers at the corners. Then the transfer
matrix for the unit cell is given by

T = Ts

3. (6)

To form the magnetic-field superlattice, the unit cell
must be repeated ad-infinitum. This is equivalent to
imposing periodic boundary conditions on a succession
of finite lattice blocks with N unit cells and taking the
limit N → ∞. Accordingly,68 the dispersion relation de-
termining the energy bands of the virtual superlattice is
given by

cos(2πΦ/Φ0) = Tr[T(E)]/2, (7)

where we used the fact that the equivalent Bloch
wave vector for the magnetic-field superlattice is K =
2πΦ/(3LΦ0), 3L being the width of the unit cell (see
Ref. 64).
The energy bands resulting from the dispersion rela-

tion in Eq. (7), with the specific parameter values men-
tioned in the beginning of this section, are displayed in
Fig. 9. A comparison with the braid bands in Figs. 4(a)
and 5(a) (D1 region of the TB spectra) shows that the
simple 1D model reproduces the essential trends of the
TB braid bands. Specifically, the common trends are
as follows: (I) The alternation 2-1-1-2 (1-2-2-1) in the
state degeneracy between two successive braid bands at
Φ/Φ0 = n (Φ/Φ0 = n+1/2), n = 0, 1, 2, . . . [see the hor-
izontal arrows in Fig. 5(a) and Fig. 9]. (II) The width
of the braid bands increases with increasing energy. (III)
In contrast, the energy gaps separating the braid bands
decrease with increasing energy. (IV) At high enough en-
ergies, the braid bands tend to merge into a single pat-
tern having “chicken-wire” topology, familiar from the
well-known ideal-metal-ring energy spectrum;69 this last
feature is present in the TB spectra of Fig. 4 in the region
0 ≤ Φ/Φ0 < 8.0.
We note that in the context of the simple 1D model

of this section, these trends can be further understood
from an inspection of the behavior of the f(E) function
plotted in Fig. 8(c) and Fig. 8(d). Indeed, for a given Φ,
the single-particle energies plotted in Fig. 9 correspond
to the crossing points of the f(E) curve with a horizontal
straight line having an ordinate f = cos(2πΦ/Φ0) < 1. In
particular, the trend No. IV above is associated with the
asymptotic behavior of the f(E) function; this asymp-
totic behavior at high energies (above the barrier height
V2) corresponds to the fact that the tunneling particle
behaves like a free fermion and it does not feel strongly
the effect of the scatterers.

3. Region D2: Dense spectrum of Halperin-type edge states

We focus now on the region marked as D2 in Fig. 4(a).
The single-particle spectra in this region consist of en-
ergy curves similar to those of the Halperin-type edge
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FIG. 10. (Color online) TB electron densities (modulus)
of two characteristic states for the D2 regime of the reczag
flake at Φ/Φ0 = 15.9. (a) a state with near-zero energy
ε = −0.1272 × 10−4t exhibiting bulk zero-Landau-level be-
havior. (b) a state with lower energy ε = −0.2207 × 10−1t
exhibiting Halperin-edge behavior. Compared to Fig. 6, the
absence of azimuthal nodes in the electronic densities here is
noticeable. Energies in units of t = 2.7 eV. The total number
of carbon atoms is 4731. The A (red) and B (blue) sublat-
tices are plotted separately. Green color denotes the density
on the outer carbon dimers resulting from the edge recon-
struction and connected by the hopping matrix element t4 in
Fig. 1.

states in region C1 (which connect the n = 1 and n = 0
graphene Landau levels). A main difference, however,
between these two regions is that the spectrum in D2
is more dense compared to that in region C1. For ex-
ample, at Φ/Φ0 = 15.9, we found that within the range
|ε| ≤ 0.4414t, there are 20 states in the D2 region, but
only 10 states in the C1 region above the zero-energy line.
We note that the density of states in the C1-region of a
reczag flake is similar to that in the C1-region of a zigzag
flake with comparable size. As a result, because all the
states in region D2 converge to the zero-energy Landau
level, the degeneracy (density of states per unit magnetic
flux) of this Landau level is higher in the case of a trigo-
nal reczag flake compared to that of a pure zigzag flake.
This behavior raises naturally the question of whether
the conductance properties of the anomalous49–51 rela-
tivistic IQHE will be impacted. We will, however, defer
elaborating on this question until the section on the con-
tinuous Dirac-Weyl description (Sec. IV).

To further investigate the properties of region D2, we
display (for Φ/Φ0 = 15.9) in Fig. 10 electron densities

ε=-0.6826E-01 ε=-0.6826E-01

ε=-0.2968 ε=-0.2968

(a)

(b)

A B

FIG. 11. (Color online) TB electron densities (modulus) of
two characteristic states for the E1 and E2 regimes of the
reczag flake at Φ/Φ0 = 15.9. Note the concentration of the
electron densities at the corners of the triangle. (a) a state
in the E2 regime with energy ε = −0.6826 × 10−1t. (b) a
state in the E1 regime with energy ε = −0.297t. Energies in
units of t = 2.7 eV. The A (red) and B (blue) sublattices are
plotted separately. Green color denotes the density on the
outer carbon dimers resulting from the edge reconstruction
and connected by the hopping matrix element t4 in Fig. 1.

for a couple of characteristic states in this region. Com-
pared to Fig. 6, the absence of azimuthal nodes in their
electronic densities is noticeable. Specifically,, in Fig.
10(a) we consider a state with near-zero energy (ε =
−0.1272×10−4t). This state exhibits a zero-Landau-level
behavior familiar from a graphene sheet,49 and accord-
ingly, one sublattice component (here the B-sublattice)
vanishes everywhere. This contrasts with the special case
of the zero-Landau-level states in a zigzag flake, which
are of a mixed bulk-edge character, with the bulk and
edge components residing on different sublattices.15,16

In Fig. 10(b), we consider a state with lower energy
ε = −0.2207× 10−1t, which is representative of the pris-
tine Halperin-type double-edge states between the n = 0
and n = 1 Landau levels discussed in Refs. 15 and 16 for
GQDs with zigzag edge terminations.

The enhanced density of TB states in the D2 region
maintains also in the spectra derived from the continuous
Dirac-Weyl equation in the case of a circular disk with
reczag edges (see Sec. IV below).
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FIG. 12. (Color online) (a) TB single-particle spectrum for a very small (with type-I corners) reczag trigonal graphene dot,
as a function of the magnetic field (the magnetic flux Φ over the whole dot). (b) Shape of the equilateral trigonal graphene
dot which corresponds to (a); it has 10 hexagons in the outer unreconstructed row along each side (the total number of carbon
atoms is 195). (c) TB single-particle spectrum for a larger (with type-I corners) reczag trigonal graphene dot, as a function of
the magnetic field (the magnetic flux Φ over the whole dot). (d) Shape of the trigonal graphene dot which corresponds to (c); it
has 38 hexagons in the outer unreconstructed row along each side (the total number of carbon atoms is 1819). The thick black
line in (c) denotes the Fermi level in the canonical ensemble corresponding to N = 60 holes (spin included). Energy in units of
the tight-binding hopping-parameter t = 2.7 eV. Lengths in units of the honeycomb graphene lattice constant a = 0.246 nm.
The magnetic flux is given in units of Φ0 = hc/e.

4. Regions E1 and E2: States localized at the corners

The states belonging to the E1 and E2 regimes are
grouped together. Indeed, as revealed from the electron
densities displayed in Fig. 11, they are localized (to one
degree or the other) at the corners of the triangle. As
seen from Fig. 4(a), the E2 feature consists of three states
whose energy curves form a single braid, similar to the
braids in region D1. One of the states in this triad (with
energy ε = −0.6826× 10−1t at Φ/Φ0 = 15.9) is plotted
in Fig. 11(a). Because of the localization at the corners,
the quantum-wire model of Sec. III B 2 is not appropriate
for the E2 regime. However, as discussed in Sec. IV A
of Ref. 70 (see in particular Figs. 6 and 7 therein), a
simple Hückel model involving three localized Gaussian

wave functions at the corners of an equilateral triangle is
able to reproduce qualitatively the braiding behavior of
the energy curves as a function of the magnetic field.

The states in the E1 regime behave in a different way;
in fact, their energies as a function of B do not form
a braid, but an approximate straight line located at
εc ≈ −0.297t. In the C2 region (between the n = −2 and
n = −1 Landau levels), there are three such states with
very close energies [at Φ/Φ0 = 15.9, these energies are
−0.2957t, −0.2968t, and −0.2976t; the state correspond-
ing to the second energy here is plotted in Fig. 11(b)]. In
the C1 region (between the n = −1 and n = 0 Landau
levels), only two of these states exist. At present, we are
unaware of any simple model describing such a behavior.

Because the corners were shown earlier to act as scat-
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FIG. 13. (Color online) (a) Reczag flake: An enlarged part of the TB single-particle spectrum shown in Fig. 12(c), as a function
of the magnetic field (the magnetic flux Φ over the whole dot). The shape of the corresponding reczag flake is displayed in Fig.
12(d). (b) Reczag flake: Landau magnetization (at zero temperature) for N = 60 holes (spin included) exhibiting Aharonov-
Bohm oscillations superimposed on larger ones generated by the rapid variation of the background Halperin-type edge states
which cross the braid bands. The thick black line in (a) denotes the corresponding Fermi level in the canonical ensemble. (c)
Zigzag flake: A similar part of the TB single-particle spectrum for the corresponding zigzag trigonal flake (with 38 hexagons
in the outer row along each side), as a function of the magnetic flux Φ. (d) Zigzag flake: Landau magnetization for N∗ = 4
effective holes (spin included); the absence of Aharonov-Bohm oscillations is apparent. The thick black line in (c) denotes the
corresponding Fermi level in the canonical ensemble. For a meaningful comparison, this Fermi level was chosen to fall within
the εb = −0.205t < ε < 0 energy band. Note that for the reczag flake this energy band contains the special D region; for the
zigzag flake this energy band is reduced to being part of region C1. The total number of holes is N = N0+N∗, where N0 is the
number of strictly zero-energy states present in the zigzag trigonal flake (also, see text). Energy in units of the tight-binding
hopping-parameter t = 2.7 eV. The magnetic flux is given in units of Φ0 = hc/e.

terers (see Sec. III B 2), the appearance of states that
are localized at (or attracted towards) the corners may
seem counterintuitive at a first glance. This behav-
ior, however, originate from the relativistic nature of
the graphene massless Dirac quasiparticles for which the
scatterers may also act as centers of attraction due to
Klein tunneling.71,72 In this context, we mention Ref. 73,
where similar localized wave functions under the repul-
sive potential barrier defining a circular graphene antidot
were reported.

C. Smaller trigonal shapes and Aharonov-Bohm

oscillations

Of interest is the question of the size-dependence of
the spectra of the reczag trigonal flakes. The size of
the flake investigated in previous sections [with sixty
hexagons along each side, see Fig. 3(d)] is sufficiently
large for the main features of the spectra to have been
fully developed. We thus briefly investigate here smaller

sizes. Indeed, Fig. 12(a) displays the spectrum of a very
small trigonal reczag flake with 10 hexagons along each
side [see the corresponding shape in Fig. 12(b)], while
Fig. 12(c) displays the spectrum of an intermediate-size
flake with 38 hexagons along each side [see the associated
shape in Fig. 12(d)].

The spectrum for the very small flake [Fig. 12(a)]
exhibits rather large differences from that of the large
flake [Fig. 3(c)]. This is mainly due to the full devel-
opment (within the plotted Φ range) of the Hofstadter-
butterfly10,74 fractal patterns (designated as region F),
which appear for very strong magnetic fields such that
lB <

∼ a, i.e., when the magnetic length is similar to or
smaller than the honeycomb graphene-lattice constant.
Furthermore the Landau levels (region B) and region D
(which is unique to the reczag edges and has been our
main focus in this paper) are hardly recognizable; they
are strongly quenched compared to the case of the large
flake in Fig. 3(c).

For the intermediate-size case shown in Fig. 12(c), both
the Landau-level regime and the two regimes D1 (three-
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member braid bands) and D2 (Halperin-type edge states
with enhanced density) are well developed; see enlarged
part in Fig. 13(a). We note again the constancy and
size-independence of the lower bound εb of the D region.
We take advantage of the full development of the spec-

trum in the intermediate size, and we calculate explic-
itly for this size the Landau magnetization [displayed in
Fig. 13(b)] for a positively charged flake with N = 60
holes (spin included). Following Ref. 19, we carry out
this calculation in the canonical ensemble and zero tem-
perature, and the thick black line in Fig. 13(a) denotes
the corresponding Fermi level. As a function of the total
magnetic flux Φ, the magnetization exhibits clear (al-
beit with variable shapes) oscillatory Aharonov-Bohm
patterns associated with the braid bands. At the same
time, these AB patterns are superimposed on larger os-
cillations generated by the rapid variation (with Φ) of
background Halperin-type edge states crossing the braid
bands. These background Halperin edge states are also
responsible for the skipping of the Fermi level between
different braid bands and between different states in the
same braid band, which results in the jumps and in the
variation of the shape of the AB patterns (which is to be
contrasted with the regular AB oscillations in graphene
nanorings with zigzag edges19).
We display also in Fig. 13(c) and Fig. 13(d) the energy

spectrum and Landau magnetization, respectively, for
the corresponding zigzag trigonal flake (with 38 hexagons
in the outer row along each side). The absence of
Aharonov-Bohm oscillations in Fig. 13(d) is apparent.
For a meaningful comparison, the Fermi level in the
canonical ensemble [see thick black line in (c)] was cho-
sen to fall within the εb = −0.205t < ε < 0 energy band.
We note that for the reczag flake this energy band con-
tains the special D region; for the zigzag flake this en-
ergy band is reduced to being part of region C1. For the
zigzag flake the Fermi level is determined by the number
N∗ of effective holes (N∗ = 4 here, spin included). In-
deed the total number of holes is N = N0 +N∗, with N0

being the number of strictly zero-energy states present
in the zigzag trigonal flake (N0 equals11,13 the number
of hexagons along one side minus one). Naturally, the
strictly zero-energy states do not contribute to the Lan-
dau magnetization. We further note that as a result of
the reconstruction process (reczag flake), however, the
strictly zero-energy states acquire finite energies. In a
continuum model (see Sec. IV below), this mapping is
codified by the boundary condition specified by Eq. (8),
which involves the reczag parameter F [Eq. (9)]; for
F = 0, the zigzag-edge case is recovered.

IV. CONTINUOUS DIRAC-WEYL

DESCRIPTION FOR CIRCULAR RECZAG GQDS

In order to describe the properties of graphene and
graphene nanosystems near the neutral Dirac point, the
continuous Dirac-Weyl equation has been widely and suc-
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FIG. 14. (Color online) Single-particle spectra as a function of
the magnetic flux Φ, according to the continuous Dirac-Weyl
description for a circular GQD with a reczag edge termina-
tion. (a) The K valley. (b) The K′ valley. The radius of the
dot is R = 8 nm. Energies in units of t = 2.7 eV.

cessfully used as an alternative to the TB calculations.
In particular for graphene nanoribbons with zigzag and
armchair edge terminations there is an overall agreement
between the TB results and those of the DW approach.
Although the shape of a GQD in the continuous descrip-
tion is most often taken as circular and not polygonal,
this overall agreement (albeit with certain caveats) be-
tween circular and TB calculations was also found to ex-
tend to the case of graphene nanoflakes and nanodots
(see, e.g., Ref. 16). It is thus of interest to investi-
gate whether such overall agreement applies also for the
unique features of a reczag flake discussed in earlier sec-
tions.
In the continuum approach, a graphene Dirac elec-

tron (or hole) is represented by a four-component spinor
(ΨA,ΨB,Ψ

′
A,Ψ

′
B)

T , with the indices A and B denot-
ing the two sublattices, and the unprimed and primed
symbols denoting the K and K ′ valleys. In the case of
zigzag or armchair edge terminations, the four compo-
nents of the spinor obey well-known characteristic bound-
ary conditions.49,53,75 For the case of the reczag edge, cor-
responding boundary conditions were proposed recently
in Ref. 31. For the K valley these conditions relate the
components on the A and B sublattices as follows:

ΨA = iFΨB, (8)

where the parameter F is defined as

F =
t21t4(t2t4 − t23)

2t(t43 + t2t23t4 + t22t
2
4)
. (9)

The value for F = 0.07 for the reczag edge; see Table
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I for the values of the hopping matrix elements tk, k =
1, 2, 3, 4. For the K ′ valley, the boundary condition is
obtained via the substitution F → −1/F . Note that the
reczag edge does not mix the two valleys,31 as is the case
with the zigzag boundary condition.

For a finite circular graphene sample of radius R, we
seek solutions of Eq. (4) for ε 6= 0 that are regular at

the origin (x = 0). For a nanodot with a reczag edge
one finds that the single-particle spectrum is given by
the solutions of the following dispersion relation:

χB(ε,m, x) + FχA(ε,m, x) = 0, (10)

where F = 0.07 for the K valley and F = −1/0.07 for
the K ′ valley, x = R/lB, m is an angular momentum,
and (see Ref. 15)

χA(ε,m, x) ∝

{

xme−x2/4M(m+ 1− ε2

2 ,m+ 1, x
2

2 ); if m ≥ 0

x−me−x2/4M(1− ε2

2 ,−m+ 1, x
2

2 ); if m ≤ −1
(11)

and

χB(ε,m, x) ∝

{

ε
2
xm+1

m+1 e
−x2/4M(m+ 1− ε2

2 ,m+ 2, x
2

2 ); if m ≥ 0
2m
ε x

−m−1e−x2/4M(− ε2

2 ,−m,
x2

2 ); if m ≤ −1
, (12)
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FIG. 15. (Color online) Single-particle energies as a func-
tion of the angular momentum m, according to the continu-
ous Dirac-Weyl description for a circular GQD with a reczag
edge termination. The total flux is fixed at Φ = 15Φ0. Both
the K and K′ valleys are considered. Note the four disper-
sive branches of edge states [(a), (b), (c), and (d)] associated
with the zeroth Landau level. We note that only two dis-
persive branches of edge states [(a) and (c)], associated with
the zeroth Landau level, appear in a circular GQD with a
zigzag edge termination. The radius of the dot is R = 8 nm.
Energies in units of t = 2.7 eV.

where M(a, b, z) is Kummer’s confluent hypergeometric
function.76

The solutions of the dispersion relation in Eq. (10) are
plotted in Fig. 14(a) for the K valley and in Fig. 14(b)
for the K ′ valley. One observes that the general features
discussed in Sec. III A (namely, the Landau levels, and
the Halperin-type edge states) are also present in the
continuum-DW reczag spectra. However, concerning the

unique features found via TB calculations [Sec. III B] and
associated with a trigonal reczag flake, only the feature of
the Halperin-type edge states with an enhanced density
spectrum (D2 region) maintains also in the continuum
spectra [see Fig. 14(b)]. The rest of the special reczag
features are missing in Fig. 14: in particular we note the
nonexistence of a lower-energy bound εb for the D region
and the absence of the three-member braid bands (region
D1), the latter being a reflection of the ability of the de-
fective reczag edge to behave as a 1D quantum nanoring.
Furthermore, we note that the E1 and E2 states, which
are localized at the corners, are also missing in the con-
tinuum model.

Due to these major discrepancies between the TB and
continuum descriptions, we are led to conclude that the
linearized DW equation fails to capture essential nonlin-
ear physics resulting from the introduction of a nontriv-
ial defect in the honeycomb graphene lattice. Indeed the
Dirac-Weyl equation is obtained for the low-energy states
of electrons in the honeycomb lattice, and it is not valid
at the reczag edges and the corners, where the topological
structures are very different from the honeycomb lattice.

As mentioned earlier in Sec. III B 3, the presence of
Halperin-type edge states with an enhanced density spec-
trum (D2 region) raises naturally the question whether
this feature may impact the conductance behavior of the
anomalous49–51 relativistic IQHE. To be able to answer
this question within the continuous DW description, one
needs to count the dispersive branches of edge states
present in the spectrum of the circular reczag dot when
the single-particle energies are plotted versus the angular
momentum m and at a fixed value of the magnetic flux
(the magnetic field). For a circular reczag GQD with ra-
dius R = 8 nm (as was the case in Fig. 14 where the mag-
netic flux was varied), this latter spectrum is displayed
in Fig. 15 (for a fixed magnetic flux Φ = 15Φ0). Both the
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K and K ′ valleys are considered. We note that there are
four dispersive branches [labeled as (a), (b), (c), and (d)]
associated with the zeroth Landau level. Furthermore,
it was found that all four channels represent edge states;
see also Ref. 31 where the case of the linear reczag edge
of a semi-infinite graphene plane was considered. In con-
trast, only two dispersive branches [corresponding to (a)
and (c)], associated with the zeroth Landau level, appear
in a circular GQD with a zigzag edge termination.50,51

The appearance of these four branches in the spectrum
of the circular reczag GQD, however, does not influence
the IQHE conductance, because two of them, i.e., the (c)
and (d) are counter propagating, and thus their contri-
butions are expected to cancel each other.
We stress, however, that the above conclusion is based

on the continuous DW spectrum. As noted above,
the DW spectrum differs drastically from the TB one,
and thus a definitive answer to the question concern-
ing the IQHE-conductance behavior associated with a
trigonal reczag flake requires a full study of the cur-
rent/transmission using the tight-binding method.77

V. SUMMARY AND DISCUSSION

The electronic spectra of graphene nanoflakes with
reczag edges, where a succession of pentagons and hep-
tagons, that is 5-7 topological defects, replaces the
hexagons at the familiar zigzag edge, were investigated
via systematic tight-binding calculations. Three different
sizes of trigonal graphene flakes were considered in Sec.
III, with the two smaller sizes being discussed in Sec.
III C. (A detailed recapitulation of the results was given
in Sec. I C of the Introduction.) Emphasis was placed on
topological aspects and connections underlying the pat-
terns dominating these spectra. A central result is that
the spectra of trigonal reczag flakes exhibit both general
features (Sec. III A), which are shared with GQDs hav-
ing other edge terminations (i.e., zigzag or armchair),
as well as special ones (Sec. III B), which are unique to
the reczag edge termination. These unique features in-
clude breaking of the particle-hole symmetry, and they
are associated with a nonlinear dispersion of the energy
as a function of momentum, which may be interpreted as
nonrelativistic behavior.
The general topological features (Sec. III A) shared

with the zigzag flakes include the appearance of energy
gaps at zero and low magnetic fields due to finite size,
the formation of relativistic Landau levels at high mag-
netic fields, and the presence between the Landau levels
of Halperin-type edge states associated with the integer
quantum Hall effect. Topological regimes, unique to the
reczag nanoflakes (Sec. III B), appear within a stripe of
negative energies εb = −0.205t < ε < 0, and along a sep-
arate feature forming a constant-energy line outside this
stripe.
Prominent among the patterns within the εb =

−0.205t < ε < 0 energy stripe is the formation of three-

member braid bands, resembling those in the spectra of
narrow graphene nanorings (Sec. III B 1). The reczag
edges along the three sides of the triangle act as a one-
dimenional quantum wire (with the corners behaving as
scatterers) enclosing the magnetic flux through the en-
tire area of the graphene flake (Sec. III B 2). This leads
to the development of Aharonov-Bohm-type oscillations
in the magnetization (Sec. III C). Another prominent
feature within the εb = −0.205t < ε < 0 energy stripe
is a subregion of Halperin-type edge states of enhanced
density immediately below the zero-Landau level (Sec.
III B 3). Furthermore, there are features resulting from
localization of the Dirac quasiparticles at the corners of
the polygonal flake (Sec. III B 4).
A main finding concerns the limited applicability of the

continuous Dirac-Weyl equation in conjuntion with the
boundary condition proposed in Ref. 31. Indeed, this
combination does not reproduce the special reczag fea-
tures. Due to this discrepancy between the tight-binding
and continuum descriptions, one is led to the conclusion
that the linearized Dirac-Weyl equation fails to capture
essential nonlinear physics resulting from the introduc-
tion of a multiple topological defect in the honeycomb
graphene lattice.
We comment here that simpler topological defects

(e.g., a single56 pentagon, heptagon, or pentagon-
heptagon pair embedded in the honeycomb lattice) are
often described57,58 (at zero magnetic field) in the contin-
uum DW approach via a gauge field (an additional vector
potential) resembling the one generated by an Aharonov-
Bohm magnetic-flux solenoid. The generalization of this
gauge-field modification of the DW equation to multiple
topological defects may provide a better overall agree-
ment with the TB results.
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Appendix: Expressions for the transfer matrices

For the first region of the unit subcell in Fig. 8(a), the
transfer matrix is68

M1 =

(

cos(k1L1) − sin(k1L1)/k1
k1 sin(k1L1) cos(k1L1)

)

, (A.1)

with k1 =
√

2mE/h̄2; m is the nonrelativistic electron

mass and E the energy variable.
For the second region of the unit subcell, the transfer

matrix is68

M2 =

(

cosh(κ2L2) − sinh(κ2L2)/κ2
−κ2 sinh(κ2L2) cosh(κ2L2)

)

, (A.2)
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with κ2 =
√

2m(V2 − E)/h̄2, if E < V2, and

M2 =

(

cos(k2L2) − sin(k2L2)/k2
k2 sin(k2L2) cos(k2L2)

)

, (A.3)

with k2 =
√

2m(E − V2)/h̄
2, if E ≥ V2.

Using the matrices M1 and M2 defined above,
and with the help of the algebraic language
MATHEMATICA,78 we found that the trace of
the transfer matrix T [see Eqs. (5) − (7)], which is
associated with the unit cell of the virtual magnetic
superlattice, is given by

Tr[T(E)] =
{

2k31κ
3
2 cos(3k1L1) cosh

3(κ2L2) + 3k21κ
2
2(−k

2
1 + κ22) cosh

2(κ2L2) sin(3k1L1) sinh(κ2L2)+

3k1κ2 cos(k1L1)
(((

k41 + κ42 − (k21 − κ22)
2 cos(2k1L1)

)))

cosh(κ2L2) sinh
2(κ2L2) +

(k21 − κ22)
((
(

−3(k21 + κ22)
2 sin(k1L1) + (k21 − κ22)

2 sin(3k1L1)
))
)

sinh3(κ2L2)/4
}

/(k31κ
3
2), (A.4)

when E < V2, and

Tr[T(E)] = −
{

−2k31k
3
2 cos

3(k1L1) cos(3k2L2)+

3k1k2 cos(k1L1) cos(k2L2)
((
(

−k41 − k42 + (k21 + k22)
2 cos(2k2L2)

))
)

sin2(k1L1)+

sin3(k1L1) sin(k2L2)
(((

−3k21k
2
2(k

2
1 + k22) cos

2(k2L2) + (k61 + k62) sin
2(k2L2)

)))

+

3k21k
2
2(k

2
1 + k22) cos

2(k1L1) sin(k1L1) sin(3k2L2)
}

/(k31k
3
2), (A.5)

when E ≥ V2.
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