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The presence of an extended line defect in graphene brings about some interesting electronic
properties to such a truly two-dimensional (2D) carbon material, such as the energy band engineering
and valley filtering. By establishing an appropriate connection condition for the spinor wavefunction
across the line defect, we find that the massless Dirac equation is still a valid theoretical model to
describe low-energy electronic properties of the line defect embedded graphene structure. To check
the validity of the wavefunction connection condition, we take two kinds of line defect embedded
graphene structures as examples to study the low-energy electronic states by solving the Dirac
equation. Firstly, for a line defect embedded zigzag-edged graphene nanoribbon, we obtain analytical
results about the subband dispersion and eigen wavefunction, which coincide well with the numerical
results from the tight-binding approach. Then, for a 2D graphene embedded with an extended line
defect, we get an exact expression about the valley polarized electronic transmission probability,
which demonstrates the simple result estimated previously in zero-energy limit. More interestingly,
our analytical result indicates that in such a 2D graphene structure a quasi one-dimensional (1D)
electronic state occurs along the line defect. And the electronic group velocity in this quasi 1D
electronic state can be readily modulated by applying a strain field around the line defect.

PACS numbers: 73.22.Pr, 72.80.Vp, 81.05.ue

I. INTRODUCTION

Because of the presence of dislocations, microcracks, grain boundaries, phase interfaces, etc. in their growth,1–10

experimentally obtained graphene samples are not always single-crystalline materials. The aligned adjoining grains
make grain boundaries intrinsic topological defects11 which are expected to markedly alter the electronic properties
in graphene without the need to introduce exotic atoms.12,13 Recently, an extended line defect of millimeter scale
in an epitaxial layer of graphene was successfully fabricated.10,14 Subsequently, it was demonstrated that during the
growth of graphene by chemical vapor deposition, the crystallographic orientation and the size of individual grains
can be controlled.15 These experimental results indicate that graphene in the presence of line defects is currently a
practical structure, which certainly merits further investigations, both experimentally and theoretically.
Although there are many kinds of extended line defects in graphene,16 in the present work we will only focus on one

kind of them, which is composed of a periodic repetition of one octagon plus two pentagons, see Fig. 1. Some recent
theoretical investigations revealed many interesting electronic properties when such a line defect emerges in graphene.
At first, such a line defect can be utilized as a valley filter because the transmission probability of a low-energy electron
incident upon it shows notable valley polarization.17 Secondly, around the line defect the electronic spin polarization
also occurs, though it is much weaker than the valley polarization.18 Thirdly, when the line defect is embedded in a
zigzag-edged graphene nanoribbon, it introduces new conductance quantization values and modifies the conductance
quantization threshold.19 Furthermore, when the line defect is positioned very close to one of the zigzag edge, the
graphene nanoribbon shows a half-metallic subband structure.20

To our knowledge, most theoretical investigations, e.g., the aforementioned works, on the electronic properties of
graphene in the presence of line defects are so far based on the tight-binding (TB) model or the ab-initio calculations.
It is well known that within a continuum model the low-energy (in the vicinity of Fermi level) electronic properties of
graphene can be well described by a massless 2D Dirac equation .21–23 In such a theoretical framework, it is usually
possible to get analytical results about the electronic eigen states.24,25 And thereby many electronic properties unique
to graphene can be understood intuitively,26 such as the chiral tunneling27 and the integer quantum Hall effect.24,28

Additionally, as for graphene nanoribbons,29 graphene with a reconstructed zigzag edge,30 and graphene with a
terminated honeycomb lattice along an arbitrary direction,31 the low-energy electronic properties of these structures
can be well treated within such a continuum model, provided that the Dirac equation is supplemented by appropriate
boundary conditions. Motivated by these theoretical advances, we attempt to generalize the Dirac-equation approach
to the line defect embedded graphene structures. In view of the nontrivial role of the line defect in modulating the
low-energy electronic properties of graphene, such a theoretical method is highly desirable.
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In this work, we will show that the low-energy electronic states of graphene in the presence of an extended line
defect can be described by Dirac equation if it is supplemented by an appropriate wavefunction connection condition
across the line defect. With the help of TB model, we establish such a connection condition obeyed by the spinor
wavefunction in the Dirac equation. Then, in order to demonstrate the validity of the obtained connection condition,
we derive the eigen solutions of the Dirac equation of a zigzag-edged graphene nanoribbon with an extended line
defect parallel to the ribbon edges (hereafter this structure is abbreviated to LD-ZGNR). We find that the obtained
subband structures agree well with the TB results. In addition, taking a line defect embedded 2D bulk graphene
structure (we denote this structure as LD-BG) as an example, by means of such a connection condition, we obtain an
exact expression of the valley polarized transmission probability when an electron passes through the line defect. This
result proves the simple result estimated previously in zero-energy limit.17 More importantly, our analytical result
indicates that in such an LD-BG a quasi 1D electronic state exists around the line defect. And the electronic group
velocity in such a state can be readily tuned by applying a strain field along the extended line defect. Accordingly,
the extended line defect can be viewed as a 1D quantum wire to carry the current in an LD-BG sample.
The rest of this paper is organized as follows: In section II, a detailed derivation of the spinor wavefunction

connection condition across the line defect in graphene is presented. Then in section III the electronic eigen states
of A): an LD-ZGNR and B): an LD-BG are, respectively, obtained by solving the Dirac equation subject to the
wavefunction connection condition. Finally, the main results are summarized in section IV.

II. THE WAVEFUNCTION CONNECTION CONDITION FOR DIRAC EQUATION

The lattice structure of a line defect embedded graphene is illustrated in Fig. 1. The topological geometry of
the line defect consists of the periodic repetition of one octagonal plus two pentagonal rings along y direction.10 For
conduction electrons in this structure, the TB Hamiltonian within the nearest-neighbor approximation can be formally
written as

HTB =
∑

<nj,n′j′>

tnj,n′j′ |nj〉〈n′j′| (1)

with |nj〉 standing for the Wannier state localized at the jth atom of the nth layer. As seen in Fig. 1, an individual
carbon atom at a lattice point can be specified by a pair of indexes (n, j). The notation 〈nj, n′j′〉 means that the
summation is restricted within the nearest-neighbor atomic pairs. In the bulk region, the hopping energy tnj,n′j′

takes a uniform value tnj,n′j′ = t = −3eV. On the other hand, associated with the line defect, we define two hopping
energies (τ1 and τ2) to account for the possible lattice distortion. Within the TB model, the Schrödinger equation
can be written in a form as

[E −HTB(n, n)]ψTB(n) = HTB(n, n− 1)ψTB(n− 1) +HTB(n, n+ 1)ψTB(n+ 1), (2)

where HTB(n, n
′) is the TB Hamiltonian matrix which describes the interaction between the nth and n′th layer. The

wavefunction ψTB(n) = [· · · , ψTB(n,−1), ψTB(n, 0), ψTB(n, 1), · · · ]T with ψTB(n, j) being the electronic probability
amplitude at a lattice point (n, j). Hereafter we adopt the shorthands j = −j and n = −n for convenience. We take
the line defect as the n = 0 layer (as shown in Fig. 1). Just following Eq. (2), we write out the concrete TB equations
centered at n = 1, 0, 1 layers below, since they will be employed in our sequent formulation. They are given by











EψTB(1) = τ1ψTB(0) + UψTB(2)

(E − Σ)ψTB(0) = τ1ψTB(1) + τ1ψTB(1)

EψTB(1) = τ1ψTB(0) + UψTB(2)

, (3)

where U , the atomic interaction between the adjacent layers, is an infinite matrix with its element defined as [U ]jj′ =
t(δj,j′ + δj,j′−1) (δj,j′ is the Kronecker delta function); And Σ = τ2Diag[· · · , σ, σ, σ, · · · ] with σ being x component
of Pauli matrix, standing for the interaction of the atoms in the line defect. It can be readily seen from Fig. 1 that
ψTB(1) and ψTB(1) just correspond to atoms of two distinct sublattices (A and B respectively).
Since we are only concerned with the low-energy electronic states, it seems suitable to adopt the k · p

approximation,25,32 which is characterized by a massless 2D Dirac equation for graphene. First of all, we need
to establish a coordinate frame for such a continuum model, which is illustrated in Fig. 1. In the bulk region far
from the line defect, there is no problem that the low-energy electronic state can be solved through Dirac equation
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HDΨD = EΨD. The Dirac Hamiltonian is given by

HD = γ









0 k̂− 0 0

k̂+ 0 0 0

0 0 0 k̂−
0 0 k̂+ 0









, (4)

and the spinor wavefunction has the form

ΨD =
[

uA

D
,−iuB

D
, iũB

D
,−ũA

D

]

. (5)

In the above equations, γ =
√
3at/2 with a being the lattice constant of pristine graphene. k̂± = k̂x ± ik̂y and

k̂x(y) = −i∂x(y) is an operator to measure the momentum deviation from the Dirac point K = (0,−4π/3a) or

K
′ = (0, 4π/3a). In the spinor wavefunction ΨD, the components uX

D
and ũX

D
stand actually for the envelope function

of X ∈ {A,B} sublattice points in K and K
′ valleys respectively. Because that the TB model and Dirac equation are

both involved in our formulation, as we have done, we adopt subscripts TB and D (Dirac equation) to the respective
Hamiltonians and wavefunctions to avoid confusion.
In the vicinity of a line defect, the eigen wavefunction becomes more complicated. Strictly speaking, even for an

eigen state with a very low eigen energy, the electronic probability amplitudes on the atoms quite close to the line
defect can not be completely determined by a solution of the Dirac equation. We now explain such a viewpoint in
detail based on an argument presented in Ref. [30]. Suppose that there are two Bloch states with a wavevector
component difference qy − q′y = −π/a, where qy = Ky(K

′
y) + ky is the y component of the electronic wavevector

measured from the Brillouin zone center. For a pristine graphene, they are certainly two independent electronic eigen
states. However, the presence of an extended line defect makes the translational period in y direction twice, i.e., it
is equal to 2a, rather than a. As a result, the above two Bloch states correspond to the same point in the reduced
Brillouin zone of the line defect embedded graphene. Therefore, an eigen state of graphene in the presence of a line
defect is a linear combination of such two Bloch states. Now we consider a very low-energy eigen state who consists of
two Bloch states. Suppose that one component Bloch state of this eigen state possesses a wavevector component qy
which is in the vicinity of K valley of a pristine graphene. Thus the slow-varying part of such a component of the eigen
state obeys the Dirac equation. Meanwhile, the other Bloch state in the eigen state has a wavevector component q′y
in the vicinity of (0,−π/3a). In a pristine graphene, such a Bloch state corresponds to a relatively high eigen energy
since it is far from the Dirac points. However, when a line defect is embedded in graphene, such a Bloch state has its
contribution to the eigen state, but it is supposed to possess an imaginary wavevector component along x direction
since the eigen energy has been assumed to be very small. In addition, because that the Brillouin zone folding caused
by the doubling of translational period in y direction does not mix the K and K

′ valleys, we can treat the eigen states
in the two valleys separately. To sum up the above analyses, for an eigen state in the K valley, we can denote it as

ψTB(x, y) = uX

D
(x, y)e−iy4π/3a + φX

loc(x, y)e
−iyπ/3a, (6)

where the propagating mode uX

D
(x, y) obeys the Dirac equation, and the localized mode φX

loc(x, y) decays rapidly as
going away from the line defect. Below we will see that such a classification is reasonable. In the above expression,
although we have explicitly written out y dependence of the envelope functions uX

D
(x, y) and φX

loc(x, y), it should be
emphasized that these functions are slow-varying ones along this orientation in the scale of graphene lattice constant.
If we employ such an expression only in a local region, say, around a lattice point (n, j), it can be approximatively
changed into a form as

ψTB(n, j) = uX

D
(n)e−i4πj(n)/3 + φX

loc(n)e
−iπj(n)/3, (7)

with
{

j(n) = j, for n = ±1,±4,±5,±8 · · · ,
j(n) = j + 1/2, for n = ±2,±3,±6,±7 · · · . (8)

Note that the sublattice attribution of the wavefunction ψTB(n, j) is determined by the layer index n. When the
condition of low-energy limit E → 0 is used, from the TB equation we can get the following relations of the envelope
functions. For neighboring layers in the right-hand side of the line defect, we have

uA

D
(n+ 3) = uA

D
(n+ 1), uB

D
(n+ 2) = uB

D
(n),

φA

loc(n+ 3) =
1√
3
φA

loc(n+ 1), φB

loc(n) = 0, (9)
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with n = 1, 3, 5, · · · . On the other hand, in the close region to the left of the line defect, the same relations hold
true except that a swap of the sublattice attribution to these functions should be made. This result indicates that
uX

D
(x, y)’s are slow-varying envelope functions which just follow the Dirac equation, whereas φX

loc(x, y)’s only exist in
the vicinity of the line defect. And they can not be described by the Dirac equation. It should be noted that a similar
result was previously derived to determine the boundary condition at the lattice edge of graphene.31

Under the condition E → 0, and after eliminating the term ψTB(0), the TB equation (3) then evolves into



















FψTB(1, j) = −FψTB(1, j) + ψTB(2, j − 1) + ψTB(2, j − 2)

FψTB(1, j − 1) = −FψTB(1, j − 1) + ψTB(2, j) + ψTB(2, j − 1)

FψTB(1, j) = −FψTB(1, j) + ψTB(2, j − 1) + ψTB(2, j − 2)

FψTB(1, j − 1) = −FψTB(1, j − 1) + ψTB(2, j) + ψTB(2, j − 1)

, (10)

with F = τ21 /tτ2 and j = · · · , 3, 1, 1, 3, · · · . Substituting Eqs. (7-9) into Eq. (10) and eliminating the localized modes,
we finally obtain the connection condition of the spinor wavefunction in Dirac equation. It is given by

uB

D
(0−) = uA

D
(0+)

FuA

D
(0−)− uB

D
(0−) = uA

D
(0+)−FuB

D
(0+). (11)

uX

D
(0±) represents the envelope function very close to the left (0−) or the right (0+) of the line defect. By the same

token, we can obtain the connection condition in K
′ valley. As a result, we find that ũX

D
(0±) obeys the same equation

as given above for uX

D
(0±). Eq. (11) is our central result, by which the Dirac equation can be used to quantitatively

describe the low-energy electronic states when a line defect is present in a graphene structure.

III. ELECTRONIC EIGEN STATES OF DIRAC EQUATION

In order to confirm the validity of the wavefunction connection condition we have developed, we choose two rep-
resentative graphene structures to solve the eigen states of Dirac equation. The first one is an LD-ZGNR whose
electronic and transport properties have been previously calculated by a TB model.19 It has been reported that the
line defect behaves as an effective third edge and can be used as a quantum wire.19 The second one is an LD-BG, in
which the line defect has been reported to give rise to the valley filtering effect.17 To comparing the dispersion relation
and the wavefunction obtained by solving the Dirac equation with the TB numerical result, we find both results agree
with each other very well in low-energy region. This indicate unambiguously the validity of the connection condition
we have developed.
Although our main objective to treat theoretically the two line defect embedded graphene structures is to check

the applicability of the wavefunction connection condition, some interesting results obtained from the Dirac-equation
approach are noteworthy. First, for the LD-ZGNR, we obtain the analytical wavefunction of an electronic eigen state,
which is useful to study the electronic transport or optical properties of such a structure. Then, for the LD-BG, we
find a kind of quasi 1D eigen state along the line defect, thus the line defect acts as a quantum wire to carry current
along a specific direction in a 2D graphene sheet. Besides, we get an exact expression about the valley polarized
electronic transmission probability through the line defect. This result is energy independent, which demonstrates
the simple result estimated previously in zero-energy limit. Next we will present these results in detail.

A. Zigzag-edged graphene nanoribbon with a line defect

We now consider an LD-ZGNR with the extended line defect parallel to the ribbon edges. The width of the
nanoribbon with a line defect is denoted as W = L1 + L2, where L1 and L2 are the widths from the left and right
edges of the nanoribbon to the line defect respectively. Without loss of generality, in this subsection we only consider
the case of τ1 = τ2 = t, namely, F = 1 for simplicity. Besides the connection condition shown in Eq. (11), the
wavefunction is subject to the following boundary conditions at the zigzag edges of the nanoribbon:

uA

D
(x = −L1, y) = uB

D
(x = L2, y) = 0. (12)
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To satisfy these conditions, an allowed eigen wavefunction of the Dirac equation in K valley takes a form as

ΨK

D
=

[

uA

D

−iuB

D

]

=































zeikyy

[

ε sinkx(x+ L1)

i [ky sin kx(x+ L1)− kx cos kx(x + L1)]

]

,−L1 ≤ x ≤ 0

zeikyy

[

[ky sin kx(x− L2) + kx cos kx(x − L2)]

iε sinkx(x− L2)

]

, 0 ≤ x ≤ L2

(13)

where the normalized constant is

z = λε
{

ε2(ky sin kxL1 − kx cos kxL1)
2 ·

[

ε2L2 − ky/kx sin kxL2(ky cos kxL2 + kx sinkxL2)
]

+ L1⇋L2

}−1/2

(14)

with λ = (kx cos kxL2 − ky sin kxL2) for −L1 ≤ x ≤ 0 and λ = (kx cos kxL1 − ky sinkxL1) for 0 ≤ x ≤ L2. The
notation L1⇋L2 means a term produced by exchanging L1 and L2 in the former term. The corresponding eigen
energy E satisfies the following transcendental equation

(εky + k2y − k2x) + kx(ε+ 2ky) tan kx(L1 + L2) = ε(ε+ ky)
cos kx(L1 − L2)

cos kx(L1 + L2)
(15)

with

ε =
E

γ
= η

√

k2x + k2y, (16)

where η = 1 or −1 , corresponds to the conduction or valence band respectively. Due to the property of translational
invariance in y direction, only real ky is allowed. In contrast, the electronic wavevector component kx can take an
imaginary value. In such a case, by making a simple substitution kx = iα with α > 0, we can see from Eq. (13)
that the electronic wavefunction decays exponentially as it goes away from the zigzag edges or the line defect. We
call such a kind of eigen state as the edge state. On the other hand, for a real kx the above solution is referred to
as the confined state. In addition, as seen from Eq. (13), the nature of standing wave of the eigen wavefunction in x
direction indicates that +kx and −kx correspond to the same eigen state. Thereby we need only consider the case of
kx ≥ 0.
In Fig. 2 we compare low-energy subband structures in K valley of LD-ZGNRs calculated by the Dirac-equation

and the TB approaches respectively. For all calculated results shown in this figure, the characteristic width L1 of an
LD-ZGNR is fixed at a large value, i.e., L1 = 75

√
3a ≈ 32nm. Figs. 2(a) and (b) show the case of L2 = 25

√
3a ≈ 11nm.

We can find that the calculated results of the two approaches agree well with each other in the wavevector range
−0.3/2a ≤ ky ≤ 0.4/2a. This implies that the Dirac equation plus the wavefunction connection condition can
quantitatively describe the electronic states in the energy range of ±450meV around the Fermi level, even though
L2, the smaller characteristic width of the LD-ZGNR, is as small as 10nm. We wonder whether the Dirac-equation
approach still works well if L2 gets smaller. A result with L2 = 5

√
3a ≈ 2nm is shown in Figs. 2(c) and (d). We can

see that the coincidence between the results of Dirac-equation and TB approaches becomes poor even if ky is close
to the Dirac point. More precisely, the Dirac equation works well in the wavevector range −0.3/2a ≤ ky ≤ 0.13/2a.
However, when ky > 0.13/2a the dispersion calculated by Dirac equation shows an appreciable deviation from the
TB result, even if it is still in the relatively low-energy range. This result can be readily understood by calculating
the electronic probability distributions (the squared wavefunctions) of an eigen state on the lattice points in a unit
cell of the LD-ZGNR.
In Fig. 3 we select some representative eigen states (labeled in Figs. 2(c) and (d)) to show their electronic probability

distributions on the lattice points in a unit cell. Figs. 3(a) and (b) show the results for the two eigen states which
are labeled by points 1 and 2 at ky = 0.014/2a in Fig. 2(d) respectively. For these states the eigen energies obtained
by Dirac equation are not too bad, see Fig. 2(d). In contrast, Fig. 3(c) depicts the result of an eigen state labeled
by point 3 in Fig. 2(c) at ky = 0.344/2a, for which the eigen energy obtained by the Dirac equation becomes poor.
From the results shown in Fig. 3 we infer that those eigen states to which the Dirac equation is valid are largely
localized in the left side (the wider side) of the line defect. On contrary, some eigen states are almost localized in
the right (narrower) side of the line defect, to which the Dirac-equation description is invalid. In other words, the
line defect acts as a third edge to divide the nanoribbon into two smaller ones. And both of them contribute to the
subbands of the LD-ZGNR. When the smaller characteristic width L2 becomes too small, only part of the subbands
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which just correspond to the eigen states localized in the narrower side of the line defect can not be quantitatively
described by Dirac-equation approach. In addition, from the results shown in Fig. 3 we can see that the analytical
spinor wavefunction can correctly describe the electronic probability distribution on the lattice points by comparing
with the TB results, except the range very close to the line defect. It is the localized mode emerging in Eq. (6) to
make the Dirac equation unable to give an accurate result of the electronic probability distribution on the lattice
points in the vicinity of the line defect.

B. Infinite graphene with a line defect

Now we turn to treat the electronic states in an LD-BG with an extended line defect at x = 0. Due to the mirror
symmetry of the lattice with respect to the line defect, an eigen state of the LD-BG obtained from Dirac equation
has the conserved odd or even parity. For the odd-parity eigen wavefunction, the connection condition reduces to
uA

D
(0+) = uB

D
(0−) = 0. So that the odd-parity solution is equivalent to the eigen state of two identical semi-infinite

graphenes. The electronic states of the semi-infinite graphene were detailedly studied with the Dirac equation in
previous literatures.24,25 Therefore, herein we need only to deal with the even-parity eigen solution. By means of the
symmetry ψTB(n) = ψTB(n) we can reduce the connection condition to

uA

D
(0+) = FuB

D
(0+). (17)

In the same way one can derive the connection condition of K′ valley which has the same form.
In principle, with the help of the connection condition (17), all the even-parity eigen states can be worked out from

Dirac equation. For the extended eigen states, the electronic wavevector components kx and ky are independent, thus

the dispersion relation just follows the one of the pristine graphene, namely, E = ηγ
√

k2x + k2y. However, from the

eigen solutions of the Dirac equation subject to the connection condition (17) we can obtain a quasi 1D eigen state
unique to the LD-BG structure. By letting kx = iα with α > 0, such an interesting eigen wavefunction in K valley
takes an explicit form as

ΨK

D
=

[

uA

D

−iuB

D

]

=























√

α/[2ky(α+ ky)]e
αx

[

i(α+ ky)

−ε

]

, x ≤ 0

√

α/[2ky(α+ ky)]e
−αx

[

−iε

α+ ky

]

, x ≥ 0

(18)

with

α = −(εF−1 + ky). (19)

And the corresponding eigen energy is given by

ε = −2ky/(F + F−1). (20)

Note that the condition α > 0 requires F < 1. This implies that the lattice distortion is needed for the appearance
of such a quasi 1D state. From the above expressions, we can find that the quasi 1D state is localized around the
line defect. The localization strength and the electronic group velocity are associated with the parameter F . This
indicates that this eigen state can be tuned by applying a strain field around the line defect. As a result, the line
defect can be viewed as a 1D quantum wire to carry the current in a bulk graphene sample. Besides, when the eigen
energy is very small, in such a quasi 1D state the electron mainly distributes on A sublattice if x ≤ 0 whereas on B
sublattice if x ≥ 0. We choose τ1 = 0.5t and τ2 = 1.0t, hence F = 0.25 < 1, to calculate the edge state dispersion
relation from Eq. (20). The result is shown in Fig. 4. Meanwhile, a comparison with the corresponding TB result is

made (The TB result is calculated by means of an LD-ZGNR of a width L = 500
√
3a subject to a periodic boundary

condition). We find that the dispersion of this quasi 1D state deviates from the Dirac cone of the bulk band. And
the calculated results of the two approaches agree with each other very well when the electronic wavevector does not
go too far from the Dirac point. From Fig. 4 we can readily find that due to the presence of this quasi 1D state,
the electron-hole symmetry in the dispersion of the LD-BG no longer holds true. In fact, this is a direct result of the
breaking of sublattice (chiral) symmetry caused by the line defect. To observe the subband structures shown in Fig.
2, we can see that the electron-hole symmetry is also destroyed by the line defect in LD-ZGNRs. The same result can
also appear in a reconstructed zigzag-edged graphene nanoribbon because the edge reconstruction causes the breaking
of sublattice (chiral) symmetry.30
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Next we discuss the valley filtering effect in the LD-BG which was firstly pointed out in Ref. [17]. Therein a simple
expression of the electronic transmission probability for an electron to pass through the line defect showed a notable
valley polarization, regardless of the energy of the incident electron. But such a result was obtained in zero-energy
limit. Therefore, it remains a problem whether and how the valley polarization effect is influenced by a nonzero
incident electron energy. By means of the wavefunction connection condition we have just established, it is possible
to derive an exact expression about the electronic transmission probability through the line defect as a function of
the incident electron energy. In so doing, we need only to consider the scattering of a K valley electron by the line

defect (the case of K′ valley can be treated alike). For a Dirac electron with an energy ε = η
√

k2x + k2y = ηk (kx > 0),

the wavefunction at the left of the line defect consists of an incident and a reflected wave, which can be denoted as

[ΨK

D
]left =

[

uA

D

−iuB

D

]

=

[

i
ikx − ky

]

· 1√
2
eikyy+ikxx + rK

[

i
−ikx − ky

]

· 1√
2
eikyy−ikxx, (21)

while the wavefunction at the right of the line defect describes the electronic transmission through the line defect. It
then takes a form as

[ΨK

D
]right =

[

uA

D

−iuB

D

]

= tK

[

i
ikx − ky

]

· 1√
2
eikyy+ikxx. (22)

In the above equations, rK and tK denote the reflection and transmission probability amplitudes respectively. By
means of the wavefunction connection condition we can establish a relation between the spinor wavefunctions at both
sides of the line defect. An analytical expression about the transmission probability can be then obtained. To write
out the results of both valleys together, the transmission probability takes a form as

TK(K′) = |tK(K′)|2 =
F2 cos2 θ

1 + F2 ± 2F sin θ
, (23)

where + and − correspond to K and K
′ valleys respectively. The incident angle θ is just the angle of the electronic

wavevector k = (kx, ky) with respect to x axis. Surprisingly, such an exact result is the same as the expression of
the transmission probability estimated in zero-energy limit in Ref. [17]. This indicates that the energy independent
transmission probability through a line defect is an intrinsic electronic property of graphene if only the electron energy
is restricted in the linear dispersion region.

IV. SUMMARY

In this work, we study the applicability of the Dirac-equation approach to describe the electronic properties of
graphene when a line defect appears. With the help of the TB model, we have established an appropriate connection
condition for the spinor wavefunction across the line defect. As a result, the massless 2D Dirac equation is still a
valid theoretical model to describe low-energy electronic characteristics of graphene in the presence of a line defect.
To check the validity of the wavefunction connection condition, we have taken two kinds of line defect embedded
graphene structures as examples to work out the low-energy electronic states from Dirac equation. For the LD-ZGNR
structures, we find that the Dirac equation subject to the wavefunction connection condition across the line defect
and the boundary condition at the ribbon edges provides analytical results about the low-energy subband structure
and the corresponding eigen wavefunction. These results agree well with the numerical results from the TB model
even when the smaller characteristic width of the LD-ZGNR is as small as 10nm. For an LD-BG, we have derived an
exact expression about the electronic transmission probability through the line defect, which demonstrates the valley
polarization and the energy independence of the electronic transmission probability estimated in zero-energy limit in
a previous work.17 More interestingly, our analytical result indicates that in such a 2D graphene structure a quasi 1D
electronic state exists along the extended line defect. And the electronic group velocity in this quasi 1D electronic
state can be readily modulated by applying a strain field along the line defect. As a result, the line defect can be
viewed as a 1D quantum wire to carry the current in a bulk graphene sample.
A remarkable advantage of the Dirac-equation approach supplemented by the wavefunction connection condition

over the TB model and ab initio calculation approach is that analytical solutions about the electronic states are
accessible in many cases. Thus the resultant electronic properties can be understood or anticipated in an intuitive
way. With the wavefunction connection condition we have established in this work, many electronic characteristics of
graphene in the presence of a line defect can be further studied by Dirac-equation approach, for example, the subband
structure of a line defect superlattice of graphene, the magnetic minibands and magneto-transport properties of some
line defect embedded graphene structures when a perpendicular magnetic field is applied. In addition, our theoretical
method can be generalized to obtain the spinor wavefunction connection conditions when other kinds of line defects
emerge in graphene.
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FIG. 1: (Color online) Lattice structure of a zigzag-edged graphene nanoribbon embedded with an extended line defect along
the longitudinal direction (y direction). The shadow region denotes a unit cell of such a structure. 2a (a is the lattice constant
of a pristine graphene) is the primitive translational vector along y direction when the extended line defect is present. The
light (grey) solid circles are the atoms at the line defect. The hollow circles and heavy solid circles denote the atoms in A and
B sublattices respectively. The integer n denotes the layer number and j specifies an individual atom in a given layer. The
ribbon width is W = L1 +L2 with L1 and L2 are two characteristic widths to measure the transverse sizes of the ribbon on the
opposite side of the line defect. When L1 = L2 → ∞, this structure becomes a bulk graphene with the line defect at x = 0.

FIG. 2: (Color online) Low-energy subbands of the LD-ZGNR in K valley calculated by Dirac-equation and TB approaches.
The characteristic width L1 is fixed at L1=75

√
3a. (a) The case of L2=25

√
3a. (b) Enlarged view of (a) in the wavevector range

−0.3/2a ≤ ky ≤ 0.4/2a. (c) The case of L2=5
√
3a. (d) Enlarged view of (c) in the wavevector range −0.3/2a ≤ ky ≤ 0.13/2a.

The three points labeled by (1, 2, 3) specify the eigen states selected to show their electronic probability distributions on lattice
points in a unit cell in Fig. 3.

FIG. 3: (Color online) The electronic probability distributions of the selected three eigen states marked in Figs. 2(c) and (d)
with the characteristic widths of the LD-ZGNR being L1=75

√
3a and L2=5

√
3a. The results depicted by square and triangle

symbols are from the TB calculations, while the solid and dashed lines show the results from the Dirac-equation approach. (a)
The case of point 1 in Fig. 2(d). (b) The case of point 2 in Fig. 2(d). (c) The case of point 3 in Fig. 2(c).

FIG. 4: (Color online) Comparison between TB and Dirac-equation calculations for the dispersion relation of the quasi 1D
state of an LD-BG at K valley. The low-energy bulk band (gray) shows the Dirac-cone-like structure. The TB results are
calculated by means of an LD-ZGNR of L = 500

√
3a subject to a periodic boundary condition.
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